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Abstract

We consider stochastic convex optimization
problems, where several machines act asyn-
chronously in parallel while sharing a common
memory. We propose a robust training method
for the constrained setting and derive non asymp-
totic convergence guarantees that do not depend
on prior knowledge of update delays, objective
smoothness, and gradient variance. Conversely,
existing methods for this setting crucially rely on
this prior knowledge, which render them unsuit-
able for essentially all shared-resources compu-
tational environments, such as clouds and data
centers. Concretely, existing approaches are
unable to accommodate changes in the delays
which result from dynamic allocation of the ma-
chines, while our method implicitly adapts to
such changes.

1. Introduction

The past decade has witnessed a wide adoption of machine
learning (ML) techniques in various fields. However, the
underlying model complexity and the vast amount of data
required to train modern ML models may lead to impracti-
cal prolonged training time. Parallelizing the learning pro-
cess has the potential to greatly decrease the learning dura-
tion, by exploiting more computation power at every step.

Stochastic Gradient Descent (SGD) and its variants are
amongst the most popular training methods in ML, and are
known to work well even for modern large scale problems.
However, due to the sequential nature of SGD, extending
its usage for distributed learning is not straightforward.

Distributed learning methods with parameter-servercan be
divided into synchronous Vs. asynchronous approaches.
In the synchronous setting, all of the machines communi-
cate at the same time and depend on one another to pro-
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ceed. Such methods are easier to analyze, yet their per-
formance depends on the slowest machine and they require
large communication overheads. Conversely, in the asyn-
chronous case, machines may communicate independently
of other machines, which allows more flexibility and re-
duces communication. It is well known that the perfor-
mance of asynchronous methods degrades due to the stal-
eness of the gradient updates, i.e., the delay between the
current model, and the (outdated) model for which the gra-
dient feedback is computed.

The asynchronous setting was extensively investigated in
the context of stochastic convex optimization, which cap-
tures fundamental learning problems like linear regression,
logistic regression and SVMs. It was shown that if the
learning objective is non-smooth, delays in the computed
gradient feedback necessarily degrade the performance of
SGD compared to the non-delayed setting, see e.g. (Joulani
et al., 2013; Nedi¢ et al., 2001).

Nevertheless, it was recently shown that the latter does not
apply for smooth objectives. Arjevani et al. (2020) were
the first to obtain the optimal rates for SGD with delays
in the smooth convex case. They have provided a version
of delayed SGD that incurs no degradation compared to the
non-delayed case as long as the maximal delay 7y« is small
enough: T < O(\/T), where T is the total number of
SGD updates. In the strongly-convex case they have shown
that there is no degradation as long as Ti,x < O(T'/logT).
While the result of Arjevani et al. (2020) was limited to
quadratic objectives, in a very recent work, Stich & Karim-
ireddy (2020) have generalized their result for the gen-
eral convex smooth case, while obtaining the same optimal
guarantees.

Unfortunately, the optimal methods of Arjevani et al.
(2020) and Stich & Karimireddy (2020) (i) do not hold
for constrained problems, (ii) degrade with the maximal
delay, which might be substantially higher than the aver-
age delay, and are not able to accommodate changes in
the delays throughout the training process, and (iii) require
prior knowledge of the maximal delay and smoothness pa-
rameter. In practice, when working with shared resources
computational systems, delays might vary with time due
to dynamic allocation of machines. Such scalable systems
are central to the entire discipline of distributed learning,
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when more and more computations are carried on remote
machines.

Thus, we propose delay-adaptive and delay-robust algo-
rithms for asynchronous stochastic convex optimization,
with arbitrary time varying delays. Delay-robust means
that one can tune a baseline (online) algorithm for a given
model without delays, yet apply it for a delay incorporated
model, without further tuning, while achieving the opti-
mal delay dependency (or vice versa). By delay-adaptive
we mean that our methods do not require any information
regarding the delays, and are able to accommodate non-
stationary changes in the delays.

Contributions: We summarize our contributions below,

* For the general convex smooth case we utilize a sim-
ple yet general approach to develop a delay-adaptive
algorithm that obtains the optimal rates for the delayed
constrained setting, thus resolving an open question
posed by Stich & Karimireddy (2020). Our algorithm
implicitly adapts to the objective smoothness and the
gradient variance.

* For the strongly-convex smooth case we develop a
delay-adaptive algorithm which obtains meaningful
yet suboptimal guarantees for the delayed constrained
setting, without prior knowledge of the smoothness
parameter or the gradient variance. This is the first
method for the delayed strongly-convex and con-
strained setting with non-trivial guarantees.

* We allow for arbitrary delays that may vary with time,
with no further assumptions. Our algorithm implic-
itly adapts to changes in delays, which enhances its
robustness and enables usage in scalable systems. In
contrast to previous works on this topic, the perfor-
mance of our method degrades proportionally to the
average delay rather than to the maximal one.

* We validate the performance of our algorithm on real-
world data. The experiments demonstrate our algo-
rithm robustness and adaptivity. Concretely, when
tuning SGD to train a given model for a specific delay
regime and then changing the delay regime, its per-
formance might degrade. Conversely, our algorithm
maintains its high performance.

On the technical side, our work builds on a recent online
to batch technique (Cutkosky, 2019; Kavis et al., 2019),
that we combine with optimistic online learning techniques
(Mohri & Yang, 2016; Rakhlin & Sridharan, 2013).

1.1. Related Work

There is a large volume of published studies considering
distributed learning; we provide few closely related exam-

ples. A recent survey on this topic can be viewed e.g. in
(Verbraeken et al., 2020; Ben-Nun & Hoefler, 2019).

Our focus here is on centralized distributed setting, where
there is a single parameter-vector that is updated using in-
formation received from several parallel machines. The
centralized case further divides into synchronous Vs. asyn-
chronous approaches. Synchronous training methods usu-
ally employ large batches to compute gradient estimates,
when the batch computation is distributed between the ma-
chines. This approach was extensively investigated e.g. in
(Dekel et al., 2012; Cotter et al., 2011; Shalev-Shwartz &
Zhang, 2013; Li et al., 2014; Takac et al., 2015; Jain et al.,
2016).

The centralized asynchronous case was investigated e.g.
in (Bertsekas & Tsitsiklis, 1989; Agarwal & Duchi, 2012;
Shamir & Srebro, 2014; McMahan & Streeter, 2014; Sra
et al., 2015; Dutta et al., 2018). One line of work that has
gained much interest in the asynchronous case is a model
where the updates in the parameter-vector are performed
with individual coordinate granularity (Recht et al., 2011;
Leblond et al., 2018). It was shown that this approach is
beneficial when data features are sparse.

Another line of work in the context of asynchronous train-
ing is to analyze SGD with delayed gradient feedbacks.
This study was initiated by (Agarwal & Duchi, 2012), and
followed by (McMahan & Streeter, 2014; Sra et al., 2015;
Lian et al., 2015; Feyzmahdavian et al., 2016; Zheng et al.,
2017; Dutta et al., 2018; Arjevani et al., 2020; Stich &
Karimireddy, 2020) amongst others.

An optimal SGD variant for the delayed convex smooth
case was first suggested by (Arjevani et al., 2020), pro-
viding an optimal convergence rate of O(1/v/T + 7/T),
where 7 is some constant delay and 7' is the total num-
ber of gradient updates. They also proved an optimal

rate of O (1 /T + exp (‘i?)) for the strongly-convex

and smooth case, where L and H are the smoothness
and strong-convexity parameters of the objective. These
bounds imply that we suffer no degradation compared to
non-delayed SGD, as long as 7 < O(\/T) in the convex
case, and 7 < O(T/logT) in the strongly-convex case.
While the method of (Arjevani et al., 2020) only applies for
quadratic losses, the very recent work of (Stich & Karim-
ireddy, 2020) has generalized these results to the general
convex case and upper bounded delays 7 € [0, Tmax]-

Finally, while previous papers assume upper bounded de-
lays (Lian et al., 2015), (Agarwal & Duchi, 2012), (Zheng
et al., 2017), in environments such as clouds and data cen-
ters this assumptions is often violated. To ensure scala-
bility, the algorithm must accommodate changes in delays.
Sra et al. (2015); McMahan & Streeter (2014); Dutta et al.
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(2018); Ren et al. (2020); Zhou et al. (2018) have addressed
this issue, though with either some additional assumptions
on the delay distribution, suboptimal guarantees, or asymp-
totic guarantees.

The rest of the paper is organized as follows. The next
section describes our problem formulation and introduces
the concept of Online Convex Optimization. Section 3 of-
fers our main Theorem for smooth non strongly convex ob-
jectives. Section 4 presents the main Theorem for smooth
strongly convex objectives, and in Section 5 we detail our
experimental setup and results. Complete proofs can be
found in the supplement.

2. Problem Formulation

We focus on solving the following optimization problem,

min f(w

min f(w)
where f : K — R is a convex and smooth function, and K
is a compact convex subset of R%.

We consider first-order iterative optimization algorithms
with access to a stochastic gradient oracle that returns un-
biased estimates of the objective gradients. In the standard
non-delayed setup, in each iteration ¢ the algorithm queries
a noisy gradient oracle with a point x; € K, and in return
it receives an unbiased estimate,

g =Vf(x)+& Vt,

where E[€;|x;] = 0. After T iterations the algorithm out-
puts an estimate X of the optimal solution, and its accu-
racy is measured by the expected excess loss,

E[f(xr) = f(w*)],
where w* € argming, o f(W).

In this paper we consider centralized distributed asyn-
chronous learning problems. Concretely, we assume a cen-
tral server which maintains a global parameter-vector, and
employs several workers in parallel to update that vector
using first order information. Each worker queries the cen-
tral server for the most updated parameter-vector, and com-
putes its gradients with respect to that vector. The gradients
are sent back to the central server, which then updates its
parameter-vector accordingly. Since every worker commu-
nicates with the central server independently of the others,
by the time a certain worker has restored the gradients to
the server, another may have updated the parameter-vector.
Thus, the server updates the model based on stale gradients.

This setting can be described as a first order stochastic opti-
mization problem, yet with a delayed noisy gradient oracle.
Now, when we query this oracle with x;, a stale gradient

estimate of the objective at a previous query point X;_r, is
received. We assume that the delays 7, € [0,¢ — 1] may
change arbitrarily and are unknown in advance. Similarly
to (Arjevani et al., 2020), we describe the delayed noisy
gradient oracle as follows,

8t—7, = vf(xt—‘rt) + £t 5

where E[&;|x:] = 0. In Appendix A we explain why
E[&:|x:] = 0 makes sense in the context of the asyn-
chronous distributed setting. Note that in order for this as-
sumption to hold for asynchronous stochastic optimization,
all workers must have equal access to the data and the de-
lays are assumed to be data-independent.

We make the following standard assumptions throughout
the paper:

1. Bounded gradients. There exists a constant G > 0
such that

IVIx) <G vxek.

2. Bounded variance. There exist a constant o2 such that

E[l&)7/x] < o* V.

3. Compact domain. There exist a constant D such that

Ix —yl|* <D* ¥x,y €.

4. We assume 7y < t — 1, since the first computed gradi-
entis g;.

Online Convex Optimization. Our results rely on Online
Convex Optimization (OCO) techniques that we use as a
mechanism for solving the aforementioned stochastic opti-
mization problem. Next, we describe this setting and nec-
essary definitions.

OCO problems can be depicted as a repeated game of T’
rounds. Atevery round ¢ € [T'] alearner makes a prediction
w; € K, after which a convex loss function f; : £ — R
is chosen. Then, the learner incurs a loss f;(w;), and re-
ceives f:(-) as a feedback. We assume that the losses f;(-)
may change arbitrarily, and may depend on the choices of
the learner up to round ¢. Now, given a sequence of non-
negative weights {c;}sc(r), the goal of the learner is to
minimize the (weighted) regret, which is defined below,

T T
Reg,(w™) = Zatft(wt) - gleiII%Zatft(w) .
t=1 t=1

Note that if oy = 1Vt this is the standard definition of
regret. Oftentimes we assume that the learner can access
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f+(+) through a first order oracle, i.e., he may query a gra-
dient oracle of f(-).

There is a strong connection between OCO and stochas-
tic optimization. Concretely, if the losses { f:(-) }se[r re-
ceived by the OCO algorithm are unbiased estimates of a
fixed function f(-), i.e., fi(w) := f(w;2;) where z,’s are
ii.d. samples from some unknown distribution D, then
one can show the following online to batch conversion
between regret guarantees and excess loss (Cesa-Bianchi
etal., 2004),

T
E |/ (Zg;_“;ft> — /(W)

where f(w) := E..p[f(w;z)]. This conversion allows
usage of OCO methods for offline stochastic optimization,
while maintaining the powerful framework of OCO and its
strong guarantees. The next section shows how our results
build on a recent novel online to batch conversion that is
different than the standard one that we have just described.

_ Regy(w’)

> T
Dot Qi

)

Preliminaries

Definition 2.1. Smoothness. Function f is said to be
smooth if and only if its gradient is L Lipschitz with some
L > 0 over K. Meaning,

IVIx) =Vl < Lix—yl vx,y € K.

Definition 2.2. Strong convexity. Function f is said to be
H strongly-convex if and only if

F)=(y) € V6T (y)~ ey ¥y € K.

Definition 2.3. Projection Operation. Let IIx(-) denote
the projection operation onto set K. Namely,

Ik (y) £ argmin ||x — y| .
xekl

Notations. We denote «vy.; = Z§=1 a;, || - || as the Eu-

clidean norm, and [t] := {1,...,t}. For a series of delays
Ty, -+ ,Tp we denote their average by p, and their vari-
ance by o, i.e.,

L T L I
L 2._ 1 2 _ 2
= ;:1 w & of= T E TL — ps .

3. Delay Adaptive Scheme for General
Convex Case

In this section we suggest two algorithms for the stochastic
delayed setting, assuming that the objective f(-) is convex
and smooth. In Section 3.1 we analyze a general scheme

that enables to take any OCO algorithm and turn it to a
delay-adaptive and delay-robust stochastic optimization al-
gorithm. This scheme does not require any prior knowl-
edge of the delays or their statistics, and furthermore it does
not require any tuning that depends on the delays.

In Section 3.2 we describe and analyze a fully adaptive
algorithm for the delayed setting. This algorithm obtains
the optimal guarantees for this setting, while requiring the
knowledge of neither the delays, nor any other problem
parameters like noise variance, smoothness and gradient
scale.

The difficulty of learning in the delayed setting stems from
the difference between the stale gradient that we receive
and the true gradient of the current iterate. This differ-
ence can be related directly to the degradation in the per-
formance, where larger differences lead to worse perfor-
mance. In the smooth case one can relate the difference
between gradients to the difference between query points.
Examining this difference for standard SGD with a fixed
learning rate 1 shows that the distance between w; and
w;_r, can be bounded by O(7:nG) (using the update rule
of SGD). Nevertheless, (optimizing over 7)) this bound is of
the order of O(G+/7/T), which leads to suboptimal per-
formance.

Thus, in the context of the delayed setting, we would
wish for an algorithm that employs slowly changing query
points. Ideally, we would like to employ queries {x; };¢[7]
such that ||x; — x¢—-,|| < O(7/t), which is significantly
smaller than the O(y/7:/T) that we have seen for stan-
dard SGD. Fortunately, it was recently demonstrated in
(Cutkosky, 2019) and (Kavis et al., 2019) that it is possible
to achieve slowly varying queries, while still maintain same
guarantees as of standard SGD. They proposed an alterna-
tive approach to online to batch conversion, which queries
the gradients at the iterate averages rather than the iter-
ates themselves. When the objective is smooth, the use of
such a conversion scheme stabilizes the predictions of the
algorithm and thus leads to optimal convergence rates for
the delayed setting. In other words, by querying the gra-
dient oracle at the running averages, we implicitly adapt to
gradient delays. We follow (Cutkosky, 2019; Kavis et al.,
2019), and relate to this scheme as anytime online to batch
conversion.

3.1. General Delay-Adaptive Scheme

In this section we analyze algorithm 1, which utilizes a
general OCO algorithm A, together with anytime online
to batch conversion. Recall that in the standard online to
batch scheme, gradients are queried at the iterates of the
OCO algorithm. Conversely, in the anytime online to batch
scheme that we utilize in algorithm 1, the OCO algorithm
A produces iterates wy, while the gradients that A receives
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Algorithm 1 Delay Adaptive Anytime Online to Batch

Input: # of iterations 7', w; € IC, weights {a;}, e[T]

fort =1t9 T do
X 2oy QW
Q1:¢
get gy, from worker

define f,(x) = g/, x
send a fi(x) to A
get wy 1 from A

end for

return xo

are queried at x;’s, which are weighted averages of the it-
erates.

By querying the gradients at the average we ensure slowly
varying query points, even when the OCO iterates change
rapidly. This allows us to receive general convergence
guarantees for the delayed setting, compatible with any
number of OCO algorithms, including such which are not
tuned for the delayed setting. The result is stated in Theo-
rem 3.1.

Theorem 3.1. Assume that f : K — R is L-smooth. Let
Reg(w*) be the regret of A with respect to the following
sequence {u(x) i= g, %}epr,

T
Regp(w™) := Z atg;[n (wy —w™). ()
t=1

Then, using Alg. 1 with oy = t ensures,

B 1str) - w)) = 0 (FEE 10 )

where (i, is the average delay.

Theorem 3.1 implies that by using anytime online to batch
conversion it is possible to convert any OCO algorithm into
a delay-robust and delay-adaptive algorithm. In addition,
while previous works obtained error bounds which are pro-
portional to O(Tmax/T), our bounds depend on O(p, /T
which might be substantially smaller.

Note that there are several standard algorithms that can be
plugged into Alg. 1, such as OGD (Online Gradient De-
scent), and FTRL (Follow the Regularized Leader) (Zinke-
vich, 2003), (Shalev-Shwartz et al., 2011). For example,
a delay adaptive version of SGD, can be applied by using
OGD as A inside Alg. 1. The update rule in this case boils
down to,

Wil = HIC(Wt - ﬁtgt—n) . 3)

where 7, o< a;/\/S00_, a2 =~ 1/v/t, and g;_,, is a stale
gradient of one of the past query points. Moreover, the

query points {X; }+c || are weighted averages of past iter-
ates; i.e., X; = Zle w;/aq.. Note that in this case, 7j;
does not depend on the delays.

The average (weighted) regret of OGD can be shown to be,

@) (RegT(W)> = O(GD/VT) .

ar:T

Combining this with Theorem 3.1 implies that delay adap-
tive SGD (Eq. (3)) obtains an overall rate of O(GD/v/T +
LD?u,/T) . For completeness, we include in Section C a
proof for the OGD average regret bound. The full proof
of Theorem 3.1 can be seen in the supplementary material.
‘We present here a rough description of it.

Proof Sketch. First, using the gradient inequality together

with ay(x¢ — wy) = ag.4-1(x¢—1 — X¢), which follows
from the definition of x;, we can decompose as follows,

E Y alf(xi) = f(w"))
t=1

T
<E Zal:t—lvf(xt)T(Xt—l —X¢) + Regp(w™)

t=1

T
+E D V) = VI (xemr) [ we = w1 |
t=1

“)
where Reg,.(w™) is the regret of A with respect to the se-
quence {f;(x) := ag/_, x}icir. Due to the smooth-

ness of the objective, bounding the last term is equivalent
to bounding ||x; — X;—r, ||. Since x; is a weighted average
of the w;’s, one can show that,

|x: — x¢—r, ]| = O (TtD/t) ) (5)

Note that querying the oracle at the iterate averages rather
than the iterates themselves was a key factor for establish-
ing this bound. Using Eq. (5), the last term of Eq. (4) is
bounded by LD?u.,.T. From here we follow similar steps
as in (Cutkosky, 2019) and show that,

’7'15D2

T
arrB[(f(xr) = f(w))] < Regr(w)+0 [ Y-’
t=1

Plugging oy = ¢, and using the bound on the average regret
concludes the proof. O

3.2. Fully Adaptive Algorithm

In this subsection we propose an optimal delay-adaptive,
delay-robust algorithm for the delayed setting, which im-
plicitly adapts both the variance and smoothness. Although
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Algorithm 2 Delay Optimistic Adaptive Anytime Online
to Batch
Input: # of iterations T, wi € K, weights {O‘t}te[T]
set go—r, = 0
fort =1to T do
send oy M;_;, = ay8¢—1_-,_, to A as the ¢’th hint

t
. Tl cuws
t x1:t

get g;_,, from worker
define f,(x) = g/ ,,x
send oy f(x) to A
get wy i1 from A

end for

return x

our scheme in Alg. 1 enables to use a variety of OCO al-
gorithms, it does not necessarily obtains the optimal rates
for the delayed setting. Moreover, the OCO algorithm A
that we employ may require the knowledge of the problem
parameters (like noise variance and smoothness) in order to
ensure such optimal performance.

Our algorithmic scheme is depicted in Alg. 2. It is similar
to the one we present in Alg. 1, only now we consider spe-
cialized OCO algorithms .4. Concretely, we assume that A
is an optimistic and adaptive OCO method. Here we limit
ourselves to OCO algorithms that receive a sequence of lin-
ear losses fi(x) = g/ x.

Optimism: an optimistic OCO algorithm, (Rakhlin &
Sridharan, 2013), is an algorithm that receives a “hint” M,
prior to choosing w;. When the hints are good estimates of
the loss gradient at round ¢, i.e., M; ~ g;, such algorithms
are able to use these hints in order to obtain better regret
guarantees.

Adaptive Optimistic Algorithm: An adaptive optimistic
OCO method is a method that upon receiving a sequence of
linear losses { f(z) := g x};[r}, and a sequence of hints
{M;}+¢[1)» enables to ensure a (weighted) regret bound of
the following form,

T
Reg,(w*) := Zatg:(wt —w")
t=1

T

<O|D ZafHMt—gtHZ , (0
T=1

where ay’s are predefined weight vectors. Note that the
bound indeed improves when M; ~ g;. In the context
of Alg. 2, the hint vector prior to round ¢ is M;_,, :=
gt—1-r,_,, and A receives the following loss sequence
{ft(x) := g/_,,x}. Adaptive optimistic methods are de-
veloped e.g. in (Rakhlin & Sridharan, 2013), as well as in
Mohri & Yang (2016).

Remark 3.2. The most natural example of an adaptive op-
timistic OCO method is the following Optimistic OGD al-
gorithm (Rakhlin & Sridharan, 2013), ¥Vt > 2,

Wy = HIC(thl - 77tCYtMt) & Yt = HIC(thl - matgt)

where, n; = D/\/l + Zf;} a?|lgi — M;||? , and y, =
w1 is an initial arbitrary point in K.

Observe that optimistic OGD utilizes an additional se-
quence {y}ic[r): whenever a hint My is received, we use
it to take a step from y;_1 to compute the next decision
point w,. Then, once we observe the true feedback g, we
use it to compute 'y by taking a gradient step from y;_.

The scheme in Alg. 2 is a combination of optimistic adap-
tive OCO method together with the anytime online to batch
conversion scheme, that we apply to the delayed stochas-
tic setting. It was previously shown in (Kavis et al., 2019)
and (Cutkosky, 2019) that employing optimistic and adap-
tive OCO methods in the context of stochastic optimization
enables to adapt to problem parameters like noise variance
and smoothness. Our next statement shows that combining
them within the anytime scheme enables to obtain a fully
adaptive algorithm for the delayed setting.

Theorem 3.3. Consider the delayed stochastic setting, and
assume that f : K — R is convex and L-smooth. Then, us-
ing Alg. 2 with oy = t and an optimistic adaptive OCO
method A that satisfies Eq. (6), ensures an optimal conver-
gence rate of,

E[f(xr) — f(w)] < O (LDQO + m>>

T3/2

2
1o (LDT“T +f/l;> G

Note that Alg. 2 requires neither knowledge of L, o nor in-
formation regarding the delays.

The rate in Theorem 3.3 matches the optimal rate for this
setting. We actually obtain an improvement over (Arje-
vani et al., 2020; Stich & Karimireddy, 2020) since our
bound implies that we do not degrade compared to the non-
delayed setting as long as ., < O(v/T), while their bound
necessitates Tax < O(VT).

Proof sketch of Theorem 3.3. Using the bound on ||x; —
X¢—r, || that we have previously shown, together with the
bounds on the variance and smoothness, enables us to prove
the following,

LD?*7?
E[|Mi—r, — gt—r|*] <O <t2 LA 02> )
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Then, by using some
equalities, we can bound

0 (LD% /T (02 + 1i2) + DaT3/2).

this with Theorem 3.1, we receive the desired bound. [

known algebraic in-
E[Rp(w*)]  with

By combining

4. Delay Adaptive Method for the Strongly
Convex Objectives

In this section we present a delay-adaptive algorithm for
the delayed setting, assuming that the objective is not
only smooth, but also strongly-convex. Previous works on
the delayed strongly-convex setting (Stich & Karimireddy,
2020; Arjevani et al., 2020) require the knowledge of all
relevant problem parameters including smoothness, strong-
convexity, noise variance and maximal delay. Conversely,
we only require the knowledge of the strong-convexity pa-
rameter. Moreover, our algorithm applies to constraint
problems, which resolves an open problem of (Stich &
Karimireddy, 2020).

Prior to handling the delayed setting, we first develop an
adaptive SGD variant (Alg. 3) that applies to the standard
strongly-convex, smooth, and constrained setting (Sec-
tion 4.1). Particularly, Alg. 3 obtains a rate of O(1/T? +
02 /T) without any prior knowledge except for the strong-
convexity parameter. This is the first adaptive algorithm
for this setting which does not require knowledge of the
objective smoothness and noise variance, which might be
of independent interest.

Then in Section 4.2 we introduce Alg. 4, an adaptation of
Alg. 3 for the delayed setting, and prove convergence rate
of O((02 + p2)/T? + 02 /T). Concretely, Alg. 4 implic-
itly accommodates changes in the delays and does not as-
sume prior knowledge of o or L. Conversely to the general
convex case, our method here is not based on an anytime
online-to-batch conversion.

4.1. Adaptive Optimistic Algorithm without Delays

Here we discuss the standard strongly-convex and smooth
constrained setting, and develop an adaptive algorithm for
this case, which only requires the knowledge of the strong-
convexity parameter. Note that this setting was already an-
alyzed in (Joulani et al., 2020) and (Zhang & Zhou, 2019),
nevertheless, their methods require the knowledge of L and
o !, similarly to the methods developed in (Stich & Karim-
ireddy, 2020). Thus, it seems like adapting these methods
to the delayed setting necessitates to equip them with the
knowledge of strong-convexity and maximal delay, H and

'Actually (Zhang & Zhou, 2019) do not require o explicitly,
nevertheless, they do not achieve a bound that captures the refined
dependence on o. It seems that in order to capture this depen-
dence they should encode o inside their learning rate.

Tmax, as 1s apparent from (Stich & Karimireddy, 2020).

Consider the following update rule,

Algorithm 3 Optimistic Strongly-Convex OGD

Input: # of iterations T, xg = yo € K, weights
{Oét}tem, Strong-convexity H
fort =1to 7T do
Define r, = 75—
= i T 1 x — 2
Xt = arg xmel,rclatMt X+ g llx = yeall

. T 1 2
¢ = argmin oy + — Vi1
y gmin g,y + g Iy — ye-ll
end for
_ T
return Xp o< ) .| Xy

where M; = Vf(x;—1) + &1 and g; = Vf(x;) + &;.

Alg. 3 depicts a gradient weighting scheme of optimistic
OGD algorithm (Rakhlin & Sridharan, 2013), that we adapt
to the strongly convex case. Indeed, as proven in Ap-
pendix E.2, Alg. 3 is equivalent to the optimistic OGD
scheme that we described in Remark 3.2, yet with a learn-
ing rate which is adapted to the strongly convex case,

Remark 4.1. The update rule in Alg. 3 is equivalent to,

Xt = i (yi—1 — 7:My) & yi = i (yi—1 — 7et)

8ayt

where 1 1= ol -

As we mention in Section 3.2, optimistic methods can im-
plicitly utilize smoothness to ensure better performance.
When the objective is also strongly-convex, we can further
improve our convergence guarantees as stated in Theorem
4.2 below.

Theorem 4.2. Assume that [ : K — R is H-strongly con-
vex and L-smooth. Then, using Alg. 3 with o, = t> ensures,

E[f()_(T) —f(W*)] <0 <(G2 +02)/H i o2 > .

T2 TH

The proof of Theorem 4.2 is described fully in Appendix E.

4.2. Delayed Constrained Setting

Consider the following update rule when delays are
present,
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Algorithm 4 Optimistic Strongly-Convex OGD with De-
lays

Input: # of iterations T , xg = yg € K, weights
{at}iepr)> Strong-convexity H
fort =1to T do

_ 8
Define n; = s . )
X; = argmin ayx ' M;_ X —
t ngIC t t—7¢ ZmH Yi— 1H

: T 2
= arg min o — 5 — _
Yt R |y = yeill
end for
- T
return Xp o< ., Xy

where Mt—Tt = Vf(xt—l—‘rt,l ) +£t—1—7t,1 and gt =
Vf(xt—n) + 51‘,—7}-

The main statement for the strongly convex case under de-
layed feedback is stated below.

Theorem 4.3. Assume that f : KC — R is H-strongly con-
vex and L-smooth. Then using Alg. 4 with o, = t? ensures,

(G*+02) o )

+
3+u3)> _

HT? HT
Theorem 4.3 offers a fully adaptive algorithm with conver-
gence guarantees. Concretely, the slower converging term
with variance dependency is similar to the one in (Stich &
Karimireddy, 2020), and does not depend upon the delays.
The above bound implies that we do not degrade compared
to non-delayed SGD as long as y1, < O(V/T).

E[f(xr) — f(w")] <O (

L*(G? + 0%)(o
o(Ee

Proof Sketch (Theorem 4.3). Here we highlight the part in
the proof that incorporates the delays, and demonstrate how
we handle it. The additional term in the analysis that arises
due to delays is the following,

T
D) =Y ar(Vf(xe) = Vf(xeor,)) T (x0 = W) .

t=1

Using ab < inf,~¢ (pa?/2 + b?/(2p)), together with the
strong-convexity of f(-) which implies H||x; — w*|? <
2(f(x¢) — f(w*)) enables to bound (D) as follows,

) OétH 20{,5 2
<Y g e =Wl (Y Ge) = Vf )|
t=1
T ozt Qat 2
Z fw™) + HVf x¢) = Vf(xi-r,)||
t=1

The left term is directly related to the error, and the right
term is then bounded using ||x; — x;—, || < O(1/t) com-
bined with the smoothness of the objective.
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Figure 1. Accuracy as a function of update delays, with learning
rate optimized for each of the algorithms for zero delay case.
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Figure 2. Accuracy as a function of learning rate when 7z = 500.

5. Experiments

In this section, we study the performance of anytime SGD:
Algorithm 1 using SGD as the OCO algorithm, as de-
scribed in Eq. (3). We trained anytime SGD on Fashion-
MNIST (Xiao et al., 2017) dataset with logistic regression
model and evaluated it using multi-class log loss. We com-
pare our algorithm to SGD with validated constant step
size, as was suggested in (Stich & Karimireddy, 2020).
Fashion-MNIST consists of 6 - 10* training examples and

10% test examples, when each example is a 28x28
grayscale clothing image, associated with a label from 10
categories. The distributed system is simulated via an up-
date queue, similarly to what was done in (McMahan &
Streeter, 2014), which allows us to simulate delays of our
choice.

We show both scalability and robustness advantages of any-
time SGD. As was mentioned before, on scalable systems
the delay regime may change during the operation, making
both these qualities essential for adequate performance. In
addition, hyper-parameter tuning is expensive (Akiba et al.,
2019; Bergstra et al., 2011; Falkner et al., 2018), espe-
cially when required to tune with respect to different delay
regimes.

Our scalability and delay adaptivity experiment is demon-
strated in Figure 1, where anytime SGD maintains high fi-
nal accuracy even with significant amount of delay in the
training. In this experiment we tuned the learning rate for
each algorithm separately only in the zero delay setting,
and then evaluate them on different delay regimes. Fig-
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ure 1 shows that as the delay increases, the gap between
the final accuracy of anytime SGD and SGD grows. Thus,
while our algorithm maintains its high performance for dif-
ferent delay regimes with no further tuning, SGD greatly
deteriorates. Note that similar results were received when
tuning the algorithms with larger delay, and then changing
the delay regime.

The robustness of anytime SGD is presented in Figure 2,
where anytime SGD achieves high accuracy on a wide
range of learning rates, whereas SGD achieves its top ac-
curacy on a very narrow range. In this experiment we eval-
vated the algorithms with different learning rates, when
7¢ = 500. This shows that anytime SGD is much less sen-
sitive to learning changes than SGD.

For additional experimental results, please refer to Sec-
tion G in the supplement.

6. Discussion

We leverage anytime online to batch scheme to prove con-
vergence guarantees for delayed feedback setting, when
updates are delayed to an unknown extent. We propose
a delay adaptive training methods for constrained setting
which do not depend on prior knowledge of problem pa-
rameters. We demonstrate experimentally (see Figures 1,2)
that our algorithm outperforms alternative schemes for de-
layed feedback setting, exhibiting accuracy and robustness
even when substantial delays are present.

One interesting direction for future research is to extend our
approach to be used with accelerated first-order methods
(Cutkosky, 2019; Kavis et al., 2019). Moreover, our results
suggest that incorporating anytime online to batch scheme
has great potential for other challenging settings as well.
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