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Abstract
This paper bridges discrete and continuous opti-
mization approaches for decomposable submod-
ular function minimization, in both the standard
and parametric settings. We provide improved
running times for this problem by reducing it to a
number of calls to a maximum flow oracle. When
each function in the decomposition acts on O(1)
elements of the ground set V and is polynomially
bounded, our running time is up to polylogarith-
mic factors equal to that of solving maximum
flow in a sparse graph with O(|V |) vertices and
polynomial integral capacities. We achieve this
by providing a simple iterative method which can
optimize to high precision any convex function
defined on the submodular base polytope, pro-
vided we can efficiently minimize it on the base
polytope corresponding to the cut function of a
certain graph that we construct. We solve this
minimization problem by lifting the solutions of
a parametric cut problem, which we obtain via
a new efficient combinatorial reduction to maxi-
mum flow. This reduction is of independent inter-
est and implies some previously unknown bounds
for the parametric minimum s, t-cut problem in
multiple settings.

1. Introduction
A significant amount of work has been dedicated to the
study of submodular functions. While this topic has gar-
nered a lot of excitement from the theory community due
to its the multiple connections to diverse algorithmic ar-
eas (Lovász, 1983; Grötschel et al., 1981), on the practical
side minimizing submodular functions has been intensively
used to model discrete problems in machine learning. MAP
inference in Markov Random Fields (Kohli et al., 2009),
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image segmentation (Arora et al., 2012; Shanu et al., 2016),
clustering (Narasimhan & Bilmes, 2007), corpus extraction
problems (Lin & Bilmes, 2011) are just a few success stories
of submodular minimization.

Polynomial time algorithms for this problem have been
known ever since the 80’s (Grötschel et al., 1981), and they
have seen major running time improvements in more re-
cent years (Schrijver, 2000; Iwata, 2003; Fleischer & Iwata,
2003; Orlin, 2009; Lee et al., 2015; Chakrabarty et al., 2017).
However, the massive scale of the problems that use sub-
modular minimization nowadays drives the need for further
developments.

One great advantage offered by the submodular functions
that occur in practice is that they are structured. For ex-
ample, in many common cases (hypergraph cuts (Veldt
et al., 2020), covering functions (Stobbe & Krause, 2010),
MAP inference (Fix et al., 2013; Kohli et al., 2009; Vicente
et al., 2009)) these can be decomposed into sums of sim-
ple submodular functions defined on small subsets. For
these instances, prior work (Jegelka et al., 2013; Nishihara
et al., 2014; Ene & Nguyen, 2015; Ene et al., 2017; Li &
Milenkovic, 2018; Kumar et al., 2019) has focused on pro-
viding efficient algorithms in the regime where the functions
in the decomposition admit fast optimization oracles.

Notably, many of these recent developments have leveraged
a mix of ideas coming from both discrete and continuous op-
timization. In particular, Ene et al. (Ene et al., 2017) present
algorithms for decomposable function minimization that are
based on both continuous methods (i.e. gradient descent)
and discrete algorithms, as the authors employ a version of
the preflow-push algorithm for maximum flow (Goldberg &
Tarjan, 1988). 1

As this work was paralleled by multiple improvements to
the running time for maximum flow (Madry, 2013; 2016;
Liu & Sidford, 2020; Kathuria et al., 2020; Brand et al.,
2021; Gao et al., 2021), most of which stemmed from in-
novations in convex optimization, it seemed plausible that
the same new optimization techniques could be helpful for

1In light of their result, there seems to be an apparent con-
nection to max flow, but their algorithm is unable to black-box it.
This is because their scheme relies on local moves in an auxiliary
graph, which need to be carefully controlled in order to maintain
feasibility in the submodular base polytope.



improving the running times of other fundamental problems
in combinatorial optimization, including submodular func-
tion minimization. In this context, a particularly intriguing
question emerged:

Can we leverage the techniques used to obtain faster
algorithms for maximum flow to provide faster algorithms

for submodular function minimization?

We answer this question in the affirmative, by showing how
to solve decomposable submodular function minimization
using black-box access to any routine that can compute the
maximum flow in a capacitated directed graph. To compare
the running times, in the case where all the functions in the
decomposition act on O(1) elements of the ground set and
are polynomially bounded (such as the case of a hypergraph
cut function, with O(1) sized hyperedges), our algorithm
has – up to polylogarithmic factors – the same running time
as that of computing maximum flow in a sparse graph with
O(|V |) vertices, and polynomial integral capacities (Gold-
berg & Rao, 1998; Brand et al., 2021; Gao et al., 2021).

As it turns out, to achieve this it is not sufficient to di-
rectly use off-the-shelf maximum flow algorithms. Instead,
our approach is based on solving submodular minimization
in the more general parametric setting, where we further
parametrize the problem with an additional time-dependent
penalty term on the elements in the set, and want to simul-
taneously solve all the problems in this family. In turn,
our reduction requires solving the parametric minimum cut
problem, which has been intensely studied in the classical
graph theoretic literature (Gallo et al., 1989; McCormick,
1999; Tarjan et al., 2006; Granot et al., 2012). In this setting,
which is essentially a particular case of parametric submod-
ular minimization, the capacities of certain arcs in the graph
evolve in a monotonic fashion.

While some of the existing work on parametric cuts and
flows does provide efficient algorithms via reductions to
maximum flow (Tarjan et al., 2006), the type of paramet-
ric capacities it supports does not cover the requirements
for our more general scenario. Therefore, we develop a
new efficient algorithm for computing parametric cuts under
a broad range of parametric capacities. Our algorithm is
nearly optimal from the perspective of weakly-polynomial
time algorithms, since its running time matches (up to poly-
logarithmic factors involving certain parameters) that of the
fastest maximum flow algorithm in a directed graph with
integer capacities. In addition, our reduction also provides
novel improvements in several other regimes, involving the
strongly polynomial case, and that of planar graphs, both of
which may be of independent interest.

1.1. Our Results

In this paper we establish further connections between dis-
crete and continuous optimization to provide an efficient
algorithm for solving the decomposable submodular func-
tion minimization problem in the more general parametric
setting. Our algorithm is at its core based on a continuous
optimization method, but whose progress steps are driven
by a new combinatorial algorithm we devise for the paramet-
ric cut problem. In this sense, our approach leverages the
paradigm of combinatorial preconditioning from scientific
computing literature (Spielman & Teng, 2004; Bern et al.,
2006; Koutis et al., 2009; Toledo & Avron, 2010).

To properly state our main result, we need to introduce some
notation. Let V = {1, . . . , n} and let F : 2V → N be a
submodular set function with the special property that

F (S) =
r∑
i=1

Fi(S), for all S ⊆ V ,

where each Fi : 2V → N is a submodular set function
acting on a subset Vi ⊆ V of elements, in the sense that
Fi(S) = Fi(S ∩ Vi) for all S ⊆ V . Let EOi be the time
required to evaluate Fi(S) for any S ⊆ Vi, and letOi be the
time required to minimize Fi(S) + w(S) over Vi, where w
is any linear function, and suppose that maxS⊆V F (S) =
(n + r)O(1). Furthermore, for each i ∈ V let ψi : R → R
be a strictly convex function satisfying (n + r)−O(1) ≤
|ψ′′i (x)| ≤ (n+ r)O(1) and |ψ′i(0)| ≤ (n+ r)O(1).

Then our main theorem is the following.

Theorem 1.1. There is an algorithm which for all λ ∈ R
simultaneously optimizes the objective

min
S⊆V

(
F (S) +

∑
i∈S

ψ′i(λ)

)

by returning a vector x such that for any λ ∈ R the set
Sλ = {u : xu ≥ λ} satisfies

F (Sλ) +
∑
u∈Sλ

ψ′u(λ) ≤ min
S⊆V

(
F (S) +

∑
u∈S

ψ′u(λ)

)
+ ε .

Furthermore, if Tmaxflow(n,m) is the time required to com-
pute the maximum flow in a directed graph with polynomi-
ally bounded integral capacities, then our algorithm runs in
time

Õ

(
max
i
|Vi|2

( r∑
i=1

|Vi|2Oi

+ Tmaxflow

(
n, n+

r∑
i=1

|Vi|2
))

log
1

ε

)
.



To better understand this result, let us consider the case
where each submodular function in the decomposition acts
on a small number of elements, i.e. |Vi| = O(1). 2 In this
case we have the following corollary:

Corollary 1.2. If each function Fi in the decomposition
acts on O(1) elements of the ground set, then we can the
solve parametric submodular minimization problem to ε
precision in time

Õ

(
Tmaxflow(n, n+ r) log

1

ε

)
.

While our statements concern the parametric setting, it is
easy to use them to recover the solution to the standard sub-
modular minimization problem. Simply by letting ψ′i(t) = t
for all i, and thresholding the returned vector at 0 we obtain
the desired result. Using Goldberg-Rao (Goldberg & Rao,
1998) or the current state of the art algorithms for maxi-
mum flow (van den Brand et al., 2021; Gao et al., 2021),
we see that this significantly improves over all the previ-
ous algorithms for decomposable submodular minimization,
in the regime where all sets Vi are small. Following (Ene
et al., 2017) it has remained widely open whether algorithms
improving upon the Õ(min{n2, nr} logO(1)(1/ε)) running
time exist, and it has been conjectured that faster running
times could be obtained by leveraging the newer techniques
for graph algorithms based on interior point methods.

Using (van den Brand et al., 2021; Gao
et al., 2021), we obtain a running time of
Õ
(
min{n3/2 + r, (n+ r)3/2−1/328} log 1/ε

)
.

A crucial subroutine our algorithm is based on is a novel
efficient algorithm for solving the parametric cut problem
using a maximum flow oracle. We give an overview of our
reduction and its additional applications in Section 3, and
describe it in detail in Appendix C.

1.2. Previous Work

Related Works on Submodular Minimization Submod-
ular function minimization is a classical problem in combi-
natorial optimization, which goes back to the seminal work
of Edmonds (Edmonds, 1970). The first polynomial-time
algorithm was obtained by Grötschel et al. (Grötschel et al.,
1981) using the ellipsoid method. This was followed by a
plethora of improvements, among which the more recent

2We emphasize the regime of O(1) sized supports because it
covers MAP inference with k-order potentials, for small k, which
appears in image segmentation tasks, such as those described
in (Ene & Nguyen, 2015; Ene et al., 2017). The latter explic-
itly presents the running time of their combinatorial algorithm
in terms of the maximum support size. Our algorithm yields an
improvement for moderately small values of maxi |Vi| (roughly
at most n1/3), and this situation can improve if faster maximum
flow algorithms are developed.

ones (Dadush et al., 2018; Jiang et al., 2020) leveraged
related techniques. On a different front, there has been sig-
nificant work dedicated to obtaining strongly polynomial
time algorithms for this problem (Fleischer & Iwata, 2003;
Iwata, 2003; Iwata et al., 2001; Orlin, 2009; Schrijver, 2000;
Lee et al., 2015; Dadush et al., 2018; Jiang et al., 2020).

For the more structured regime of decomposable submod-
ular function minimization, algorithms based on both dis-
crete and continuous methods have been developed. Kol-
mogorov (Kolmogorov, 2012) has shown that this problem
reduces to computing maximum submodular flows, and
gave an algorithm for this problem based on augmenting
paths. This was followed by further algorithms based on
discrete methods (Arora et al., 2012; Fix et al., 2013). The
continuous methods are based on convex optimization on
the submodular base polytope, which is also used here. No-
tably, Stobbe and Krause (Stobbe & Krause, 2010) tackled
this problem using gradient descent, Nishihara et al. (Nishi-
hara et al., 2014) used alternating projections to obtain an
algorithm with linear convergence, Ene and Nguyen (Ene
& Nguyen, 2015) achieved an improved algorithm with
a linear convergence rate based on accelerated coordinate
descent, while Ene et al. provided further improvements
both via gradient descent and combinatorial techniques (Ene
et al., 2017).

Related Works on Parametric Min Cut The seminal
work of Gallo et al. (Gallo et al., 1989) studied the gener-
alization of the maximum flow problem where some edge-
capacities, instead of being fixed, are allowed to be (possibly
different) monotonic functions of a single parameter. They
showed how to modify certain versions of the push-relabel
algorithm for ordinary maximum flow to the parametric
problem with the same asymptotic time complexity. In
particular, using the Goldberg-Tarjan max-flow algorithm
(Goldberg & Tarjan, 1988) they gave an O(nm log(n2/m))
time bound for the parametric version. Their algorithm
can compute the min cuts either when a set of parameter
values are given (Gusfield & Martel, 1992) or the capacity
functions are all affine functions of the parameter λ.

Several other max-flow algorithms were also shown to fit
into their framework (see e.g., (Granot et al., 2012)) though
all requiring Ω(mn) time in the worst case. Further general-
izations of the parametric min-cut problems have also been
considered (McCormick, 1999; Granot et al., 2012). When
all parameterized capacities are equal to the parameter λ,
Tarjan et al. (Tarjan et al., 2006) give a divide and conquer
approach that can use any maximum flow algorithm as a
black box, but is slower by a factor of min{n, log(nU)}.



2. Background and Preliminaries
2.1. Notation

We let [n]
def
= {1, . . . , n}. We write ‖ · ‖p for the `p norm,

i.e. ‖x‖p = (
∑
i |xi|p)

1/p, with ‖x‖∞ = maxi |xi|.

2.2. Submodular Set Functions and Convex Analysis

Let V be a finite ground set of size n, and we assume w.l.o.g.
that V = {1, . . . , n}. A set function F : 2V → R is sub-
modular if F (A) + F (B) ≥ F (A ∪B) + F (A ∩B) for
any two sets A,B ⊆ V . We are concerned with minimizing
submodular set functions of the form F =

∑r
i=1 Fi, where

each Fi is a submodular set function:

min
A⊆V

F (A) = min
A⊆V

r∑
i=1

Fi (A) .

For the rest of the paper we will assume that Fi are non-
negative, integral, and that maxS⊆V F (S) ≤ Fmax. The
non-negativity constraint holds without loss of generality, as
we can simply shift each Fi by a constant until it becomes
non-negative. For rational functions that are represented
on bounded bit precision, the integrality can be enforced
simply by scaling them, at the expense of increasing Fmax.
As we will see, some of our subroutines depend on the
magnitude of Fmax, so we will generally assume that this is
polynomially bounded.

As in previous works (Ene et al., 2017; Li & Milenkovic,
2018), in this paper we are concerned with the regime
where each function Fi in the decomposition acts on few
elements of the ground set V .3 More precisely, for each
i ∈ {1, . . . , r} there is a small set Vi ⊆ V such that
Fi(A) = Fi(A ∩ Vi) for all A ⊆ V . We assume w.l.o.g.
that Fi(∅) = Fi(Vi), which we discuss in more detail in
Section D. The running time of our algorithm depends on
max1≤i≤r |Vi|. This assumption is important as, further-
more, the final running time of our algorithm depends on (i)
the timeOi to optimize functions of the form Fi(S) +w(S)
over Vi, where w is a linear function and (ii) the time EOi to
evaluate Fi for subsets of Vi. In the case where |Vi| = O(1),
this is also constant time.

Given an arbitrary vector w ∈ Rn and a subset A ⊆ V , we
use the notation w (A) =

∑
i∈A wi.

Definition 2.1. Given a submodular set function F : 2V →
R, such that F (∅) = 0, its submodular base polytope B (F )

3To be more specific, many previous works (Nishihara et al.,
2014; Ene & Nguyen, 2015; Ene et al., 2017; Li & Milenkovic,
2018; Kumar et al., 2019) only assumed that each Fi has access
to an optimization oracle. (Ene et al., 2017) used the additional
assumption of limited support to obtain an improved combina-
torial algorithm. Similarly, (Li & Milenkovic, 2018) used this
assumption to provide a more efficient continuous method.

is defined as follows:

B (F ) = {w ∈ Rn :w (A) ≤ F (A) for all A ⊆ V,
w (V ) = F (V )} .

Definition 2.2. Given a submodular set function F : 2V →
R, F (∅) = 0, its Lovász extension f : Rn → R is defined
over [0, 1]n as the convex closure of F . However, it will be
more convenient to consider its extension of Rn, given by

f (x) =

∫ ∞
0

F ({i : xi ≥ t}) dt

+

∫ 0

−∞
(F ({i : xi ≥ t})− F (V )) dt .

Fact 2.3. It is well known (Bach, 2011) that the Lovász
extension of a submodular set function F can be equiva-
lently characterized in terms of its submodular base poly-
tope B (F ). More precisely, if F (∅) = 0, then:

f (x) = max
w∈B(F )

〈w, x〉 .

For parametric submodular function minimization we con-
sider a family of functions parameterized by α ∈ R:

Fα (A) = F (A) +
∑
i∈A

ψ′i (α) , (1)

where ψj : R → R are strictly convex differen-
tiable functions, satisfying limα→−∞ ψ′i(α) = −∞ and
limα→∞ ψ′i(α) = ∞, for all i. A common example is
ψ′j(α) = α, which imposes an `1 penalty on the size of
the set A. It is shown in (Chambolle & Darbon, 2009;
Bach, 2011) that minimizing Fα (A) for the entire range of
scalars α amounts to minimizing a regularized version of
the Lovász extension.
Lemma 2.4. Let Fα be the family of parameterized sub-
modular set functions defined as in (1), where ψi are strictly
convex functions. Let f be the Lovász extension of F , and
consider the optimization problem

min
x∈Rn

f (x) +
∑
i∈V

ψi (xi) . (2)

Let Aα = arg minA⊆V Fα (A), and let x∗ be the minimizer
of (2). Then

Aα = {i : x∗i ≥ α} . (3)

For completeness we reproduce the proof of Lemma 2.4 in
Section B.

Via convex duality one can prove that minimizing (2) is
equivalent to a dual optimization problem on the submodular
base polytope B(F ):

min
w∈B(F )

∑
i∈V

ψ∗i (−wi) , (4)

where ψ∗i is the Fenchel dual of ψi.



Definition 2.5 (Fenchel dual). Let g : Rn → R ∪
{−∞,+∞} be a convex function. Its Fenchel dual or con-
vex conjugate g∗ : Rn → R ∪ {−∞,+∞} is defined as

g∗(w) = sup
x
〈w, x〉 − g(x) .

We will refer to (2) as the primal problem and (4) as the dual
problem. The algorithm described in this paper will focus on
optimizing (4) while strongly leveraging the decomposable
structure of F . We assume that all functions ψi have “nice”
second derivatives, which will play an important role in the
algorithm, since this will also ensure that the minimizers of
(2) and (4) are unique.

Assumption 2.6. The function ψi is L-smooth and σ-
strongly convex for all i ∈ V . Equivalently for each i,
its second derivative satisfies 0 < σ ≤ ψ′′i (x) ≤ L, for all
x ∈ R. Furthermore, |ψ′i(0)| ≤ (n+ r)O(1), for all i ∈ V .

This condition also helps us ensure that we can efficiently
convert between the primal and dual spaces onto which
the ψi and its Fenchel dual ψ∗i act. Also, whenever it is
convenient, we will use the notation ψ(x) =

∑
i∈V ψi(xi),

ψ∗(y) =
∑
i∈V ψ

∗
i (yi). A relevant example to consider is

ψi(x) = x2
i /2, which corresponds to the standard paramet-

ric problem of minimizing F (S) + α · |S| for all values of
α > 0.

2.3. Overview of Approach

Decomposable Submodular Minimization Here we pro-
vide an overview of our approach for minimizing decompos-
able submodular functions. Our approach for the parametric
setting yields a strictly stronger result without sacrificing
running time, so we will focus on this more general problem.

Our approach is based on minimizing a convex function
on the submodular base polytope B(F ). As it has been
seen in previous works (Bach, 2011), in order to solve the
parametric problem (1), it suffices to solve the dual problem
(4), which is a convex optimization problem overB(F ). For
convenience let us denote by h(w) =

∑
i∈V ψ

∗
i (−wi), so

that our objective becomes computing minw∈B(F ) h(w).

We use an iterative method, which maintains a point w ∈
B(F ) and updates it in such a way that the objective value
improves significantly in each step. To do so, we find a
polytope P such that

w +
1

α
· P ⊆ B(F ) ⊆ w + P (5)

and such that we can efficiently minimize ψ over w+ 1
α ·P .

If we can find the minimizer w′ over w+ 1
α ·P , then moving

our iterate to w′ also guarantees that

h(w′)− h(w∗) ≤
(

1− 1

α

)
(h(w)− h(w∗)) ,

where w∗ is the minimizer of h over B(F ). This is true
due to the convexity of h. Indeed, let w̃ = w + t(w∗ − w)
where t = max{t ≤ 1 : w + t(w∗ − w) ∈ w + 1

αP}; in
other words w̃ represents the furthest point on the segment
connecting w and w∗ such that w̃ still lies inside the small
polytope w + 1

αP . Due to the sandwiching property of the
polytopes (5), we have that t ≥ 1/α. Hence, using the
convexity of h, we obtain that

h(w̃)− h(w∗) = h(w + t(w∗ − w))− h(w∗)

≤ (1− t) (h(w)− h(w∗)) ≤ (1− 1/α)(h(w)− h(w∗)) .

Since w′ minimizes h over w + 1
α · B(F ), we must have

h(w′) ≤ h(w̃), and we obtain the desired progress in func-
tion value. Thus iterating Õ(α) times we obtain a high
precision solution, which we then convert back to a combi-
natorial solution to the original problem using some careful
error analysis.

More importantly, we need to address the question of finding
a polytope P satisfying (5).

To do so, for each i, we define the “residual” submodular
functions F ′i (A) = Fi(A) − wi(A) for all A ⊆ V , where
wi ∈ B(Fi) such that

∑r
i=1 wi = w. The existence of such

a decomposition of w ∈ B(
∑r
i=1 Fi) is well-known, and

goes back to Edmonds (Edmonds, 1971). Very importantly,
we note that since Fi were non-negative, F ′i remain non-
negative submodular set functions.

It is known (Devanur et al., 2013) that non-negative sub-
modular set functions can be approximated by graph cuts.
Following the proof from (Devanur et al., 2013), for each i
we construct a graph onO(|Vi|) vertices whose cuts approxi-
mate the value of F ′i within a factor ofO(|Vi|2). Combining
all these graphs into a single one, we obtain a weighted di-
rected graph on O(|V |) vertices and O(|V |+

∑r
i=1 |Vi|2)

arcs such that its cut function G approximates F ′ within a
factor of O(maxi |Vi|2).

Crucially, we can show that if G is the cut function which
approximates F ′, then we also have that

1

maxi |Vi|2
·B(G) ⊆ B(F ′i ) ⊆ B(G) ,

and therefore it suffices to implement a routine that mini-
mizes h over w + 1

maxi |Vi|2 · B(G) in order to obtain an

algorithm that terminates in Õ(maxi |Vi|2) such iterations.

To implement this routine, we devise a new combinatorial
algorithm for solving the parametric flow problem, with gen-
eral parameterized capacities. By comparison to previous
literature, our algorithm efficiently leverages a maximum
flow oracle on a sequence of graphs obtained via contract-
ing edges, and whose running time is up to polylogarith-
mic factors equal to that of computing a maximum flow



in a capacitated directed graph with O(|V |) vertices and
O(|V |+

∑r
i=1 |Vi|2) arcs.

Following this, we convert the combinatorial solution to the
parametric flow problem into a solution to its correspond-
ing dual problem on the submodular base polytope, which
returns the new iterate w′.

Throughout the algorithm we need to control the errors
introduced by the fact that both the solution we receive for
the parametric flow problem and the one we return as an
approximate minimizer of h over B(F ) are approximate,
but these are easily tolerable since our main routines return
high precision solutions.

3. Parametric Min s, t-Cut
In the general parametric min s, t-cut problem (Gallo et al.,
1989), the capacities of the source’s outgoing edges (s, v)
are (possibly different) nonnegative real nondecreasing func-
tions of a parameter λ ∈ D, where D ⊆ R is some domain,
whereas the capacities of the sink’s incoming edges vt are
nonincreasing functions of λ. The goal is to compute the
representation of the cut function κ : D→ R such that κ(λ)
equals the capacity of the minimum s, t-cut in Gλ obtained
from G by evaluating the parameterized capacity functions
at λ. It is known that κ consists of O(n) pieces, where each
piece equals the parameterized capacity of some fixed cut
in G as a function of λ.

More formally, let λmin ∈ D be such that the minimal
min s, t-cuts of Gλmin

and Gλ′ are equal for all λ′ ∈ D,
λ′ < λmin. Similarly, let λmax ∈ D be such that the
minimal min s, t-cuts of Gλmax

and Gλ′ are equal for all
λ′ ∈ D with λ′ > λmax. We will consider λmin and λmax

inputs to our problem. Then, there exist O(n) breakpoints
Λ = {λ1, . . . , λk}, λmin = λ0 < λ1 < . . . < λk and an
embedding of vertices τ : V → Λ ∪ {λmin,∞} such that
for all i = 0, . . . , k − 1, λ′ ∈ [λi, λi+1) ∩ D, κ(λ′) equals
the capacity of the cut S(λi) = {v ∈ V : τ(v) ≤ λi} in
Gλ′ , and also S(λk) is a min s, t-cut of Gλmax .

Motivated by our submodular minimization application,
our algorithm in the most general setting solves the ε-
approximate parametric min s, t-cut problem.
Definition 3.1 (ε-approximate parametric min s, t-cut). Let
Λ, τ , and S : D→ 2V be as defined above. A pair (Λ, τ) is
called an ε-approximate parametric min s, t-cut of G if:

1. For i = 0, . . . , k− 1, S(λi) is a min s, t-cut of Gλ′ for
all λ′ ∈ [λi, λi+1 − ε) ∩ D.

2. S(λk) is a min s, t-cut of Gλmax
.

3. For i = 0, . . . , k − 1, S(λi) ( S(λi+1).

We prove that an ε-approximate parametric min s, t-cut

yields breakpoints within ε additive error wrt. to the break-
points of the exact parametric min s, t-cut. Our algorithm
solves the above problem assuming only constant-time
black-box access to the capacity functions.
Theorem 3.2. LetR = λmax−λmin be an integral multiple
of ε > 0. Let Tmaxflow(n′,m′) = Ω(m′ + n′) be a convex
function bounding the time needed to compute maximum
flow in a graph with n′ vertices and m′ edges obtained from
Gλ by edge/vertex deletions and/or edge contractions (with
merging parallel edges by summing their capacities) for
any λ = λmin + `ε and any integer ` ∈ [0, R/ε]. Then, ε-
approximate parametric min s, t-cut in G can be computed
in O(Tmaxflow(n,m log n) · log R

ε · log n) time.

The algorithm is recursive. In order to ensure uniqueness of
the minimum cuts considered, it always computes cuts with
minimal s-side.

Roughly speaking, given initial guesses λmin, λmax the al-
gorithm finds, using O(log((λmax − λmin)/ε)) maximum
flow computations, the most balanced split λ1, λ2 of the
domain such that (1) the s-sides for all the min-cuts of Gλ′
for λ′ > λ2 have size at least n/2, (2) the t-sides of all
the min-cuts of Gλ′ for λ′ < λ1 have size at least n/2, (3)
λ2 − λ1 ≤ ε. We then recurse on the intervals [λmin, λ1]
and [λ2, λmax] on minors of G with at least n/2 vertices
contracted. Even though the contraction requires merging
parallel edges in order to have at most m+ n (as opposed
to 2m) edges in the recursive calls, we are able to guarantee
that the capacity functions in the recursive calls are all ob-
tained by shifting the original capacity functions by a real
number, and thus can be evaluated in constant time as well.
Since the number of vertices decreases by a factor of two in
every recursive call, one can prove that for each level of the
recursion tree, the sum of numbers of vertices in the calls at
that level is O(n), whereas the sum of sizes of edge sets is
O(m+ n log n) = O(m log n).

We show that the ε-approximate algorithm can be turned
into an exact algorithm in two important special cases.
First of all, if the capacity functions are low-degree
(say, at most 4) polynomials with integer coefficients in
[−U,U ], then one can compute parametric min s, t-cut only
O(polylog{n,U}) factors slower than best known max-
flow algorithm for integer capacities (Gao et al., 2021;
van den Brand et al., 2021; Goldberg & Rao, 1998). Sec-
ond, we can solve the discrete domain case, i.e., when D
has finite size ` with only O(polylog{n, `}) multiplicative
overhead wrt. the respective maximum flow algorithm.

Moreover, since our reduction runs maximum flow com-
putations only on minors of the input graph G, it also
yields very efficient parametric min s, t-cut algorithms for
planar graphs. In particular, since near-optimal strongly-
polynomial s, t-max flow algorithms for planar graphs are
known (Borradaile & Klein, 2009; Erickson, 2010), we



obtain near-optimal algorithms for the integer polynomial
capacity functions (as above) and discrete domains. What is
perhaps more surprising, using our reduction we can even
obtain a strongly polynomial exact parametric min s, t-cut
algorithm for planar graphs with linear capacity functions
with real coefficients. The algorithm runs in Õ(n1.21875)
time and constitutes the only known subquadratic strongly
polynomial parametric min-s, t-cut algorithm.

The details of our parametric min s, t-cut algorithm and
its applications are covered in Appendix C. It should be
noted that the idea of using cuts contraction is not new and
appeared previously in (Tarjan et al., 2006). Compared
to (Tarjan et al., 2006), our reduction provably handles more
general parameterized capacity functions.4 As it does not
operate on any auxiliary networks that may not preserve
structural properties of G, but merely on minors of G, it
proves much more robust in important special cases such
as planar graphs. Finally, we believe that our reduction is
also more natural and operates on the breakpoints of the
cut function directly, whereas the reduction of (Tarjan et al.,
2006) operates on so-called balanced flows.

4. Parametric Decomposable Submodular
Minimization via Base Polytope
Approximations

4.1. Algorithm Overview

In Algorithm 3 we give the description of our main routine.

4.2. Removing Assumptions

In Section 2 we assumed that for all i, Fi(∅) = Fi(Vi) = 0
and Fi(S) ≥ 0 for all S. These assumptions hold without
loss of generality. In Section D we show how to preprocess
the input such that these assumptions are valid.

4.3. From Parametric Minimum Cut to Cut Base
Polytope Optimization

In this section, we will focus on the problem of minimizing
a convex function over the base polytope of the s, t-cut
function of a graph G(V ∪ {s, t}, E, c). We define the s, t-
cut function G : 2V → R as G(S) = c+(S ∪ {s}) for
S ⊆ V , and let B(G) be the base polytope of G. Now, the
parametric min s, t-cut problem can be written as

min
S⊆V

G(S) +
∑
u∈S

φ′u(λ) , (6)

4(Tarjan et al., 2006) only claim a O(min(n, log(nU))) mul-
tiplicative overhead when all the parametric capacities are equal
to λ. Otherwise, it does not claim any bound, and when capaci-
ties are arbitrary linear functions their algorithm might pay O(n)
overhead in the worst case.

Algorithm 1 Parametric Decomposable Submodular Func-
tion Minimization

1: Input: ε: error tolerance // Returns ε-optimal solution
of min

w∈B(F )
ψ∗(−w)

2: Set w0,i = 0 for i ∈ [r] // Initialize a feasible solution
3: Set T = α log ψ∗(−w0)+ψ(0)

ε
4: for t = 1 . . . T do
5: Set Gi(Vi, Ei, ci) = GRAPHAPPROX(wt−1,i), for

i ∈ [r], and construct G(V,E, c) by combining the
graphs Gi

6: Set φ(x) := ψ(x) + 〈
r∑
i=1

wt−1,i, x〉

7: Set w̃ = FINDMINCUTS(G(V,E, c), φ, 1
3L ) // Find

parametric min s, t-cuts
8: Round all the entries of w̃ to the nearest integer
9: Decompose w̃ =

∑r
i=1 w̃

i, with w̃i ∈ B(Gi) using
Lemma 4.3

10: Set wt,i = wt−1,i + w̃i, for all i ∈ [r]
11: end for
12:

13: return
r∑
i=1

wT,i

where the capacity of an edge (u, t) at time λ is cut+φ′u(λ)
and φ is a function satisfying Assumption 2.6. In particular,
our goal in this section is, given solutions to (6) for all λ, to
solve the following dual problem:

min
w∈B(G)

φ∗(−w) . (7)

Definition 4.1 (W -restricted function). A submodular func-
tion F : 2V → R≥0 is called W -restricted if F (S) =
F (S ∩W ) for all S ⊆ V , where W ⊆ V .

As the cut functions G(S) that we will be concerned with

will be decomposable, i.e. G(S) =
r∑
i=1

Gi(S) for all S ⊆

V , we introduce the following notion of a decomposition of
some w ∈ B(G) into a sum of wi ∈ B(Gi).

Definition 4.2 (F -decomposition). Let F : 2V → R≥0 with
|V | = n be a submodular function that is decomposable, i.e.

F (S) =
r∑
i=1

Fi(S) for all S ⊆ V , where Fi : 2V → R≥0

are submodular functions. Then for any w ∈ B(F ) there
exist vectors w1, . . . , wr ∈ Rn, where wi ∈ B(Fi) for all

i ∈ [r] and
r∑
i=1

wi = w. We call the sequence of vectors

w1, . . . , wr an (F1, . . . , Fr)-decomposition of w, or just an
F -decomposition of w if the Fi’s are clear from context.

What follows is the main lemma of this section, whose full
proof appears in Appendix E.1.

Lemma 4.3 (From parametric min-cut to cut base polytope



optimization). Consider a graph G(V,E, c ≥ 0) and a
function φ(x) =

∑
u∈V

φu(xu) that satisfies Assumption 2.6.

Additionally, let G(S) = c+(S) for all S ⊆ V be the
cut function associated with the graph, and suppose it is

decomposable as G(S) =
r∑
i=1

Gi(S) where Gi : 2V →

Z≥0 are Vi-restricted cut functions defined as Gi(S) =
ci+(S) that correspond to graphs Gi(V,E, ci ≥ 0), and

c =
r∑
i=1

ci.

We define an extended vertex set V ′ = V ∪ {s, t} with edge
setE′ = E∪

⋃
u∈V

(s, u)∪
⋃
u∈V

(u, t), the parametric capacity

of an edge (u, v) ∈ E′ as

cλ(u, v) =


max{0, φ′u(−λ)} if u ∈ V, v = t

max{0,−φ′u(−λ)} if u = s, v ∈ V
cuv otherwise

and let (Λ, τ) be a 1
3L -approximate parametric min s, t-cut

of G′(V ′, E′, cλ).

There exists an algorithm that, given (Λ, τ), out-
puts w̃∗ = argmin

w∈B(G)

φ∗(−w) and a G-decomposition

w̃∗1, . . . , w̃∗r of w̃∗. The running time of this algorithm

is O
(
n+

r∑
i=1

|Vi|2
)

.

4.4. Dual Progress Analysis in One Step

The following lemma states that there is a step that improves
the dual function value by at least an α fraction of the
distance to the optimal value, where α is the approximation
factor we lose when approximating a submodular function
by a graph.

Lemma 4.4 (Dual progress in one step). Let F : 2V → Z≥0

be a submodular function that is separable, i.e. F (S) =
r∑
i=1

Fi(S) for all S ⊆ V , where Fi : 2V → Z≥0 are Vi-

restricted submodular functions with Fi(∅) = 0. Addition-
ally, let ψ : Rn → R be a function that satisfies Assump-
tion 2.6, where |V | = n.

Given a feasible dual solution w ∈ B(F ) and an F -
decomposition w1, . . . , wr ∈ Zn of w, there is an algorithm
that outputs a vector w′ ∈ Zn, along with an (F1, . . . , Fr)-
decomposition w′1, . . . , w′r ∈ Zn of w′, such that

ψ∗(−w′)− ψ∗(−w∗) ≤
(

1− 1

α

)
(ψ∗(−w)− ψ∗(−w∗))

where α = max
i∈[r]
{|Vi|2/4} and w∗ = argmin

w∗∈B(F )

ψ∗(−w∗) is

the dual optimum. The running time of the algorithm is

Õ

(
r∑
i=1

|Vi|2Oi + Tmaxflow

(
n, n+

r∑
i=1

|Vi|2
))

.

The full proof of Lemma 4.4 appears in Appendix E.2.

4.5. Main Theorem

Proof of Theorem 1.1. We repeatedly apply Lemma 4.4,
and let w0, . . . , wT be the iterates after T =

α log ψ∗(−w0)−ψ∗(−w∗)
ζ iterations. We have

ψ∗(−wT )− ψ∗(−w∗)

≤
(

1− 1

α

)
(ψ∗(−wT−1)− ψ∗(−w∗)) .

Applying induction over T steps we obtain that

ψ∗(−wT )− ψ∗(−w∗)

≤
(

1− 1

α

)T
(ψ∗(−w0)− ψ∗(−w∗))

≤ e−T/α(ψ∗(−w0)− ψ∗(−w∗)) ≤ ζ .

We have obtained a high precision solution to the ob-
jective (4). Finally, setting 1

ζ = poly(LσnFmax/ε) =

(n+ r)O(1)/ε and applying Corollary B.4 to convert from
this solution to the actual sets, we obtain the desired solu-
tion.

As Assumption 2.6 implies ψ∗(−w0)− ψ∗(−w∗) = (n+
r)O(1), the total running time is

Õ

(
max
i
|Vi|2

( r∑
i=1

|Vi|2Oi

+ Tmaxflow

(
n, n+

r∑
i=1

|Vi|2
))

log
1

ε

)
.

Acknowledgements
KA was supported in part by the NSF grants CCF-1553428
and CNS-1815221. AK was supported by ERC Consolidator
Grant 772346 TUgbOAT and by the Foundation for Polish
Science (FNP) via the START programme. AM and PS were
supported in part by ERC consolidator grant TUgbOAT no
772346 and NCN no 2020/37/B/ST6/04179. We are grateful
to Michael B. Cohen for discussions on the possibility of
using second order methods for submodular minimization,
which motivated parts of this project. We thank Alina Ene
for pointing us to the relevant material from (Bach, 2011).



References
Agarwal, P. K., Sharir, M., and Toledo, S. Applications of

parametric searching in geometric optimization. J. Algo-
rithms, 17(3):292–318, 1994. doi: 10.1006/jagm.1994.
1038. URL https://doi.org/10.1006/jagm.
1994.1038.

Arora, C., Banerjee, S., Kalra, P., and Maheshwari, S.
Generic cuts: An efficient algorithm for optimal infer-
ence in higher order mrf-map. In European Conference
on Computer Vision, pp. 17–30. Springer, 2012.

Bach, F. Learning with submodular functions: A convex op-
timization perspective. arXiv preprint arXiv:1111.6453,
2011.

Bern, M., Gilbert, J. R., Hendrickson, B., Nguyen, N., and
Toledo, S. Support-graph preconditioners. SIAM Jour-
nal on Matrix Analysis and Applications, 27(4):930–951,
2006.

Borradaile, G. and Klein, P. N. An O(n log n) al-
gorithm for maximum st-flow in a directed planar
graph. J. ACM, 56(2):9:1–9:30, 2009. doi: 10.1145/
1502793.1502798. URL https://doi.org/10.
1145/1502793.1502798.

Borwein, J. and Lewis, A. S. Convex analysis and nonlinear
optimization: theory and examples. Springer Science &
Business Media, 2010.

Brand, J. v. d., Lee, Y. T., Liu, Y. P., Saranurak, T., Sidford,
A., Song, Z., and Wang, D. Minimum cost flows, mdps,
and `1-regression in nearly linear time for dense instances.
arXiv preprint arXiv:2101.05719, 2021.

Chakrabarty, D., Lee, Y. T., Sidford, A., and Wong, S. C.-
w. Subquadratic submodular function minimization. In
Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1220–1231, 2017.

Chambolle, A. and Darbon, J. On total variation minimiza-
tion and surface evolution using parametric maximum
flows. International journal of computer vision, 84(3):
288, 2009.

Dadush, D., Végh, L. A., and Zambelli, G. Geometric
rescaling algorithms for submodular function minimiza-
tion. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 832–848.
SIAM, 2018.

Devanur, N. R., Dughmi, S., Schwartz, R., Sharma, A., and
Singh, M. On the approximation of submodular functions.
arXiv preprint arXiv:1304.4948, 2013.

Edmonds, J. Submodular functions, matroids, and certain
polyhedra. In Combinatorial Structures and Their Appli-
cations, pp. 69–87. 1970.

Edmonds, J. Matroids and the greedy algorithm. Mathemat-
ical programming, 1(1):127–136, 1971.

Ene, A. and Nguyen, H. Random coordinate descent meth-
ods for minimizing decomposable submodular functions.
In International Conference on Machine Learning, pp.
787–795. PMLR, 2015.

Ene, A., Nguyen, H. L., and Végh, L. A. Decomposable sub-
modular function minimization: Discrete and continuous.
In NIPS, 2017.

Erickson, J. Maximum flows and parametric shortest paths
in planar graphs. In Charikar, M. (ed.), Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Austin, Texas, USA,
January 17-19, 2010, pp. 794–804. SIAM, 2010. doi:
10.1137/1.9781611973075.65.

Fix, A., Joachims, T., Park, S. M., and Zabih, R. Struc-
tured learning of sum-of-submodular higher order energy
functions. In Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 3104–3111, 2013.

Fleischer, L. and Iwata, S. A push-relabel framework for
submodular function minimization and applications to
parametric optimization. Discrete Applied Mathematics,
131(2):311–322, 2003.

Ford, L. R. and Fulkerson, D. R. Flows in Networks. Prince-
ton University Press, 1962. ISBN 9780691625393.

Fujishige, S. Lexicographically optimal base of a polyma-
troid with respect to a weight vector. Mathematics of
Operations Research, 5(2):186–196, 1980.

Gallo, G., Grigoriadis, M. D., and Tarjan, R. E. A fast para-
metric maximum flow algorithm and applications. SIAM
J. Comput., 18(1):30–55, 1989. doi: 10.1137/0218003.
URL https://doi.org/10.1137/0218003.

Gao, Y., Liu, Y. P., and Peng, R. Fully dynamic electrical
flows: Sparse maxflow faster than goldberg-rao. CoRR,
abs/2101.07233, 2021. URL https://arxiv.org/
abs/2101.07233.

Goldberg, A. V. and Rao, S. Beyond the flow decomposition
barrier. Journal of the ACM (JACM), 45(5):783–797,
1998.

Goldberg, A. V. and Tarjan, R. E. A new approach to the
maximum-flow problem. Journal of the ACM (JACM),
35(4):921–940, 1988.

https://doi.org/10.1006/jagm.1994.1038
https://doi.org/10.1006/jagm.1994.1038
https://doi.org/10.1145/1502793.1502798
https://doi.org/10.1145/1502793.1502798
https://doi.org/10.1137/0218003
https://arxiv.org/abs/2101.07233
https://arxiv.org/abs/2101.07233


Granot, F., McCormick, S. T., Queyranne, M., and Tardella,
F. Structural and algorithmic properties for parametric
minimum cuts. Math. Program., 135(1-2):337–367, 2012.
doi: 10.1007/s10107-011-0463-1.

Grötschel, M., Lovász, L., and Schrijver, A. The ellipsoid
method and its consequences in combinatorial optimiza-
tion. Combinatorica, 1(2):169–197, 1981.

Gusfield, D. and Martel, C. U. A fast algorithm for the
generalized parametric minimum cut problem and ap-
plications. Algorithmica, 7(5&6):499–519, 1992. doi:
10.1007/BF01758775.

Iwata, S. A faster scaling algorithm for minimizing sub-
modular functions. SIAM Journal on Computing, 32(4):
833–840, 2003.

Iwata, S., Fleischer, L., and Fujishige, S. A combinato-
rial strongly polynomial algorithm for minimizing sub-
modular functions. Journal of the ACM (JACM), 48(4):
761–777, 2001.

Jegelka, S., Bach, F., and Sra, S. Reflection methods for
user-friendly submodular optimization. arXiv preprint
arXiv:1311.4296, 2013.

Jiang, H., Lee, Y. T., Song, Z., and Wong, S. C.-w. An
improved cutting plane method for convex optimization,
convex-concave games, and its applications. In Proceed-
ings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pp. 944–953, 2020.

Kakade, S. M., Shalev-Shwartz, S., and Tewari, A. Regular-
ization techniques for learning with matrices. The Journal
of Machine Learning Research, 13(1):1865–1890, 2012.

Karczmarz, A. and Sankowski, P. A deterministic parallel
apsp algorithm and its applications. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 255–272. doi: 10.1137/1.9781611976465.
17. URL https://epubs.siam.org/doi/abs/
10.1137/1.9781611976465.17.

Kathuria, T., Liu, Y. P., and Sidford, A. Unit capacity
maxflow in almost o(m4/3) time. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science
(FOCS), pp. 119–130. IEEE, 2020.

Kohli, P., Torr, P. H., et al. Robust higher order potentials
for enforcing label consistency. International Journal of
Computer Vision, 82(3):302–324, 2009.

Kolmogorov, V. Minimizing a sum of submodular func-
tions. Discrete Applied Mathematics, 160(15):2246–
2258, 2012.

Koutis, I., Miller, G. L., and Tolliver, D. Combinatorial pre-
conditioners and multilevel solvers for problems in com-
puter vision and image processing. In International Sym-
posium on Visual Computing, pp. 1067–1078. Springer,
2009.

Kumar, K., Bach, F., and Pock, T. Fast decomposable
submodular function minimization using constrained total
variation. arXiv preprint arXiv:1905.11327, 2019.

Lee, Y. T., Sidford, A., and Wong, S. C.-w. A faster cutting
plane method and its implications for combinatorial and
convex optimization. In 2015 IEEE 56th Annual Sym-
posium on Foundations of Computer Science, pp. 1049–
1065. IEEE, 2015.

Li, P. and Milenkovic, O. Revisiting decomposable sub-
modular function minimization with incidence relations.
In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pp. 2242–2252,
2018.

Lin, H. and Bilmes, J. Optimal selection of limited vocabu-
lary speech corpora. In Twelfth Annual Conference of the
International Speech Communication Association, 2011.

Liu, Y. P. and Sidford, A. Faster energy maximization for
faster maximum flow. In Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, pp.
803–814, 2020.

Lovász, L. Submodular functions and convexity. In Math-
ematical programming the state of the art, pp. 235–257.
Springer, 1983.

Madry, A. Navigating central path with electrical flows:
From flows to matchings, and back. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
pp. 253–262. IEEE, 2013.

Madry, A. Computing maximum flow with augmenting
electrical flows. In 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 593–
602. IEEE, 2016.

Mahler, K. An inequality for the discriminant of a polyno-
mial. Michigan Math. J., 11(3):257–262, 09 1964. doi:
10.1307/mmj/1028999140. URL https://doi.org/
10.1307/mmj/1028999140.

McCormick, S. T. Fast algorithms for parametric scheduling
come from extensions to parametric maximum flow. Oper.
Res., 47(5):744–756, 1999. doi: 10.1287/opre.47.5.744.

Megiddo, N. Applying parallel computation algorithms
in the design of serial algorithms. J. ACM, 30(4):852–
865, 1983. doi: 10.1145/2157.322410. URL https:
//doi.org/10.1145/2157.322410.

https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.17
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.17
https://doi.org/10.1307/mmj/1028999140
https://doi.org/10.1307/mmj/1028999140
https://doi.org/10.1145/2157.322410
https://doi.org/10.1145/2157.322410


Narasimhan, M. and Bilmes, J. A. Local search for balanced
submodular clusterings. In IJCAI, pp. 981–986, 2007.

Nishihara, R., Jegelka, S., and Jordan, M. I. On the con-
vergence rate of decomposable submodular function min-
imization. Advances in Neural Information Processing
Systems, 27:640–648, 2014.

Orlin, J. B. A faster strongly polynomial time algorithm
for submodular function minimization. Mathematical
Programming, 118(2):237–251, 2009.

Rockafellar, R. T. Convex analysis, volume 36. Princeton
University Press, 1970.

Schrijver, A. A combinatorial algorithm minimizing sub-
modular functions in strongly polynomial time. Journal
of Combinatorial Theory, Series B, 80(2):346–355, 2000.

Shalev-Shwartz, S. and Singer, Y. Convex repeated games
and fenchel duality. In NIPS, volume 6, pp. 1265–1272,
2006.

Shanu, I., Arora, C., and Singla, P. Min norm point algo-
rithm for higher order mrf-map inference. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5365–5374, 2016.

Spielman, D. A. and Teng, S.-H. Smoothed analysis of
algorithms: Why the simplex algorithm usually takes
polynomial time. Journal of the ACM (JACM), 51(3):
385–463, 2004.

Stobbe, P. and Krause, A. Efficient minimization of
decomposable submodular functions. arXiv preprint
arXiv:1010.5511, 2010.

Tarjan, R. E., Ward, J., Zhang, B., Zhou, Y., and Mao,
J. Balancing applied to maximum network flow prob-
lems. In Algorithms - ESA 2006, 14th Annual Euro-
pean Symposium, Zurich, Switzerland, September 11-
13, 2006, Proceedings, pp. 612–623, 2006. doi: 10.
1007/11841036\ 55. URL https://doi.org/10.
1007/11841036_55.

Toledo, S. and Avron, H. Combinatorial preconditioners.
Combinatorial Scientific Computing, pp. 69–93, 2010.

van den Brand, J., Lee, Y. T., Liu, Y. P., Saranurak, T.,
Sidford, A., Song, Z., and Wang, D. Minimum cost
flows, mdps, and `1-regression in nearly linear time for
dense instances. CoRR, abs/2101.05719, 2021. URL
https://arxiv.org/abs/2101.05719.

Veldt, N., Benson, A. R., and Kleinberg, J. Minimizing
localized ratio cut objectives in hypergraphs. In Proceed-
ings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 1708–1718,
2020.

Vicente, S., Kolmogorov, V., and Rother, C. Joint optimiza-
tion of segmentation and appearance models. In 2009
IEEE 12th International Conference on Computer Vision,
pp. 755–762. IEEE, 2009.

Yap, C.-K. et al. Fundamental problems of algorithmic
algebra, volume 49. Oxford University Press Oxford,
2000.

https://doi.org/10.1007/11841036_55
https://doi.org/10.1007/11841036_55
https://arxiv.org/abs/2101.05719

	Introduction
	Our Results
	Previous Work

	Background and Preliminaries
	Notation
	Submodular Set Functions and Convex Analysis
	Overview of Approach

	Parametric Min s,t-Cut
	Parametric Decomposable Submodular Minimization via Base Polytope Approximations
	Algorithm Overview
	Removing Assumptions
	From Parametric Minimum Cut to Cut Base Polytope Optimization
	Dual Progress Analysis in One Step
	Main Theorem


