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A. Proof of Theorem 4.1

Proof. We reduce to the (unrelaxed) projection mechanism,
which has the following guarantee proven by (Nikolov et al.,
2013): for any dataset D consisting of n elements from
a finite data universe X, and for any set of m statistical
queries g, the projection mechanism results in a dataset D’
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Consider a finite data universe X" = {0,7,27,..., 1}‘1/
for some discretization parameter 0 < 1 < 1/k. Given
a dataset D' € X7, let D% € X" be the dataset that
results from “snapping” each real-valued x € D to its
closest discrete valued point x,, € X". Observe that by
construction, ||z — 2(n)|lc < 7, and as a result, for
k-way product query ¢;, we have |¢;(D’) — ¢:(Dy)| <
|| and
D" = argminpr ¢y~ |la — q(D")||. From above, we

know that \/%Hq(D”) —q(D")]] < O(nk), and hence
from an application of the triangle inequality, we have that
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Finally, for any dataset D’ € (X7)*, there exists a

€ (x7) Vs lla(D") — (D)3 <
O( V\I/O% ) (This follows from a sampling argument, and

is proven formally in (Blum et al., 2008).) Hence, a final
application of the triangle inequality yields:
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Choosing n = Vklf/’g’; and noting that | X7 = (L)% yields
the bound in our theorem.
O

B. Proof of Theorem 4.2

Proof. The privacy of Algorithm 2 follows straightfor-
wardly from the tools we introduced in Section 2. First
consider the case of T' = 1. The algorithm makes m calls to
the Gaussian mechanism, each of each satisfies p/m-zCDP
by construction and Lemma 2.10. In combination, this sat-
isfies p-zCDP by the composition Lemma (Lemma 2.6). It
then makes a call to the relaxed projection algorithm RP,
which is a postprocessing of the Gaussian mechanism, and
hence does not increase the zCDP parameter, by Lemma
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Figure 7. Total number of queries consistent with the selected ran-
dom 3-way and 5-way marginals on ADULT and LOANS datasets.
Y-axis in log scale.

2.7. Hence the algorithm is p-zCDP, and by our choice of p
and Lemma 2.8, satisfies (e, 0) differential privacy.

Now consider the case of 7" > 1. Each iteration of the inner
loop makes one call to report noisy max, and one call to
the Gaussian mechanism. By construction and by Lemmas
2.10 and 2.12, each of these calls satisfies 2TK -zCDP, and
together by the composition Lemma 2.6, satisfy 75--zCDP.
The algorithm then makes a call to the relaxed projection
algorithm R P, which is a post-processing of the composi-
tion of the Gaussian mechanism with report noisy max, and
so does not increase the zCDP parameter by Lemma 2.7.
The inner loop runs 7" - K times, and so the entire algorithm
satisfies p-zCDP by the composition Lemma 2.6. By our
choice of p and Lemma 2.8, our algorithm satisfies (e, d)
differential privacy as desired. O

C. Additional Plots

Figure 7 provides the correspondence between the workload
size and the number of marginal queries preserved in our
experiments. Note that LOANS is a higher dimensional
dataset, and so the number of queries continues to increase
with the workload, whereas for large enough workloads, we
saturate all available queries on ADULT.

Figure 8 documents our investigation of the run-time and ac-
curacy of our algorithm as a function of the synthetic dataset
size n/. n’ is a hyperparameter that we can use to trade of
the representation ability of our synthetic data (larger n’
allows the synthetic data to represent richer sets of answer
vectors) with optimization cost. In Figure 8 we plot a) the
run-time per iteration, b) the total run-time (over all itera-
tions), and c) the error on several datasets and workloads,
all as a function of n’. We find that although (as expected)
the run-time per iteration is monotonically increasing in n’,
the overall run-time is not — it grows for sufficiently large
n/, but also grows for n’ that is very small. This seems to be
because as our optimization problem becomes sufficiently
under-parameterized, the optimization becomes more diffi-
cult, and thus our algorithm needs to run for more iterations
before convergence. We find that n’ = 1000 is generally a
good choice across datasets and query workloads, simulta-
neously achieving near minimal error and run-time. Hence
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Figure 8. Run time and error as a function of the synthetic dataset
size n’. At n’ = 1000, both total run-time and overall error are
near optimal across all settings.

we use n’ = 1000 for all of our other experiments.

D. Linear Threshold Functions

In the body of the paper, we focused on marginal queries
because of their centrality in the differential privacy liter-
ature. But our techniques easily extend to other classes
of statistical queries — all that is required is that we can
write python code to evaluate (a differentiable surrogate for)
queries in our class. Here we do this for a natural class of
linear threshold functions: ¢-out-of-k threshold functions.

Definition D.1. A t-out-of-k threshold query is defined by
a subset S C [d] of |\S| = k features, a particular value for
each of the features y € Hie ¢ Xj, and a threshold ¢ < k.
Given such a pair (5,y,t), the corresponding statistical
query ¢s.y,¢ is defined as:

) =1( Z]l > 1)

Observe that for each collection of features S, there are
[l;cs|X:| many t-out-of-k threshold queries for each
threshold ¢.

qSyt

In words, a t-out-of-k threshold query evaluates to 1 exactly
when at least ¢ of the & features indexed by S take the values
indicated by y. These generalize the marginal queries that
we studied in the body of the paper: A marginal query is
simply the special case of a t-out-of-k threshold query for
t=k.

To use our approach to generate synthetic data for t-out-of-%
linear threshold functions, we need an extended differen-

(b)Total run-time as a func-

differentiable query for) 1-out-of-3 linear threshold functions

tiable query class for them. It will be convenient to work
with the same one-hot-encoding function h : X — {0,1}%
from the body of the paper, that maps d-dimensional vectors
of categorical features to d’-dimensional vectors of binary
features. Our statistical queries are then binary functions
defined on the hypercube. We can generically find a differ-
entiable surrogate for our query class by polynomial inter-
polation: in fact for every boolean function that depends
on k variables, there always exists a polynomial of degree
k that matches the function on boolean variables, but also
extends it in a differentiable manner to the reals. t-out-of-k
threshold functions are such a class, and so can always be
represented by polynomials of degree k.

Lemma D.2. Any boolean class of queries that depends
on at most k variables (i.e. a ‘k-junta’) has an equivalent
extended differentiable query that is a polynomial of degree
k.

In our experiments we will consider 1-out-of-k queries
(equivalently, disjunctions), which have an especially simple
extended differentiable representation.

Definition D.3. Given a subset of features 7' C [d'], the
1-out-of-k polynomial query g7 : X" — R is defined as:
gr(z)=1-— HieT(l — ;).

It is easy to see that 1-out-of-k polynomials are extended
differentiable queries equivalent to 1-out-of-k threshold
queries. They are differentiable because they are polynomi-
als. A 1-out-of-k threshold query corresponding to a set of
k binary features T (i.e. the one-hot encoded indices for the
categorical feature values y;) evaluates to 0 exactly when ev-
ery binary feature x; € T takes value x; = 0 — i.e. exactly
when [[;.,(1 — x1) = 1. Our 1-out-of-k polynomials are
the negation of this monomial on binary valued inputs.

The code to evaluate such queries is similarly easy to write
— see Figure 9.

We repeat our experiments on the Adult and Loans datasets
using 1l-out-of-3 threshold queries in place of 3-way
marginals. All other experimental details remain the same.
In Figure 10, we report the results on a workload of size 64,
with § fixed to 1/n?, and € ranging from 0.1 to 1.0.
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Figure 10. Max error for increasing e of 1-out-of-3 threshold
queries with workload 64



