Appendices

A. Proof of Lemma 3.1

We have $Q(\tilde{\mathbf{w}}(t))$ such that for all t, $\nabla Q(\tilde{\mathbf{w}}(t)) = \mathbf{X}\nu(t)$. Thus we get that for every finite time t, $\tilde{\mathbf{w}}(t)$ is the solution of the minimization problem $\tilde{\mathbf{w}}(t) = \arg\min_{\mathbf{w}} Q(\mathbf{w})$ s.t. $\mathbf{X}^{\top}\mathbf{w} = \mathbf{X}^{\top}\tilde{\mathbf{w}}(t)$. Since the square loss $\|\mathbf{X}^{\top}\tilde{\mathbf{w}}(t) - \mathbf{y}\|^2$ is minimized by gradient flow and therefore bounded for all time t, we get that the predictions are also bounded, i.e. $\forall t : \|\mathbf{X}^{\top}\tilde{\mathbf{w}}(t)\| < C$ for some finite C. Therefore, the solution \mathbf{w} to the minimization problem above is of bounded constraints and is therefore also of bounded norm, i.e. $\|\tilde{\mathbf{w}}(t)\| < C'$ for some finite C' for all t. Taking the limit $t \to \infty$ we therefore converge to a finite weight vector $\tilde{\mathbf{w}}(\infty)$.

Next, from the relation $\nabla Q(\tilde{\mathbf{w}}(t)) = \mathbf{X}\boldsymbol{\nu}(t)$ we get that if the RHS is infinite at $t \to \infty$ then $\nabla Q(\tilde{\mathbf{w}}(\infty))$ is infinite. However, since we converge to a finite weight vector $\tilde{\mathbf{w}}(\infty)$, we get a contradiction since $\nabla Q(\tilde{\mathbf{w}})$ is bounded for any finite input. Therefore, $\lim_{t \to \infty} \mathbf{X}\boldsymbol{\nu}(t)$ is finite.

Next, we decompose X to its singular value decomposition

$$\mathbf{X} = \sum_{j:s_j>0} s_j \mathbf{v}_j \boldsymbol{u}_j^{ op}$$

where s_i are the singular values, and $\{\mathbf{v}_i\}$ and $\{\mathbf{u}_i\}$ are two sets of orthogonal vectors. We define

$$oldsymbol{
u} riangleq \lim_{t o \infty} \sum_{i: s_i > 0} oldsymbol{u}_i oldsymbol{u}_i^ op oldsymbol{
u}(t)$$

and note that

$$\mathbf{X}\boldsymbol{\nu} = \lim_{t \to \infty} \sum_{j:s_j > 0} s_j \mathbf{v}_j \boldsymbol{u}_j^{\top} \sum_{i:s_i > 0} \boldsymbol{u}_i \boldsymbol{u}_i^{\top} \boldsymbol{\nu}\left(t\right)$$

$$= \lim_{t \to \infty} \sum_{j:s_j > 0} \sum_{i:s_i > 0} s_j \mathbf{v}_i \boldsymbol{u}_j^{\top} \boldsymbol{u}_i \boldsymbol{u}_i^{\top} \boldsymbol{\nu}\left(t\right)$$

$$\stackrel{(1)}{=} \lim_{t \to \infty} \sum_{j:s_j > 0} s_i \mathbf{v}_i \boldsymbol{u}_i^{\top} \boldsymbol{\nu}\left(t\right)$$

$$= \lim_{t \to \infty} \mathbf{X}\boldsymbol{\nu}(t) = \nabla Q\left(\tilde{\mathbf{w}}\left(\infty\right)\right)$$

where in (1) we used the fact that $u_j^{\top}u_i = \delta_{i,j}$. Therefore, ν respects the KKT stationary condition

$$\mathbf{X}\boldsymbol{\nu} = \nabla Q\left(\tilde{\mathbf{w}}\left(\infty\right)\right)$$
.

Lastly, we show that ν is finite. Recall that

$$\nabla Q\left(\tilde{\mathbf{w}}\left(\infty\right)\right) = \lim_{t \to \infty} \sum_{j: s_j > 0} s_i \boldsymbol{v}_i \boldsymbol{u}_i^{\top} \boldsymbol{\nu}\left(t\right)$$

For any i such that $s_i > 0$, if we multiply this equation by \mathbf{v}_i^{\top} from the left, recalling $\mathbf{v}_i^{\top} \mathbf{v}_i = \delta_{i,j}$, we obtain

$$\infty > s_{i}^{-1} \boldsymbol{v}_{i}^{\top} \nabla Q \left(\tilde{\mathbf{w}} \left(\infty \right) \right) = \lim_{t \to \infty} \boldsymbol{u}_{i}^{\top} \boldsymbol{\nu} \left(t \right)$$

Therefore,

$$\|\boldsymbol{\nu}\| = \left\|\lim_{t \to \infty} \sum_{i:s_i > 0} \boldsymbol{u}_i \boldsymbol{u}_i^{\top} \boldsymbol{\nu}\left(t\right)\right\| < \infty.$$

B. Proof of Theorem 4.1

Proof. We examine a two-layer "diagonal linear network" with untied weights

$$f(\mathbf{x}; \mathbf{u}_+, \mathbf{u}_-, \mathbf{v}_+, \mathbf{v}_-) = (\mathbf{u}_+ \circ \mathbf{v}_+ - \mathbf{u}_- \circ \mathbf{v}_-)^\top \mathbf{x} = \tilde{\mathbf{w}}^\top \mathbf{x}$$

where

$$\tilde{\mathbf{w}} = \mathbf{u}_{+} \circ \mathbf{v}_{+} - \mathbf{u}_{-} \circ \mathbf{v}_{-} . \tag{17}$$

The gradient flow dynamics of the parameters is given by:

$$\frac{du_{+,i}}{dt} = -\frac{\partial \mathcal{L}}{\partial u_{+,i}} = v_{+,i}(t) \left(\sum_{n=1}^{N} x_i^{(n)} r^{(n)}(t) \right)$$

$$\frac{du_{-,i}}{dt} = -\frac{\partial \mathcal{L}}{\partial u_{-,i}} = -v_{-,i}(t) \left(\sum_{n=1}^{N} x_i^{(n)} r^{(n)}(t) \right)$$

$$\frac{dv_{+,i}}{dt} = -\frac{\partial \mathcal{L}}{\partial v_{+,i}} = u_{+,i}(t) \left(\sum_{n=1}^{N} x_i^{(n)} r^{(n)}(t) \right)$$

$$\frac{dv_{-,i}}{dt} = -\frac{\partial \mathcal{L}}{\partial v_{-,i}} = -u_{-,i}(t) \left(\sum_{n=1}^{N} x_i^{(n)} r^{(n)}(t) \right)$$

where we denote the residual

$$r^{(n)}(t) \triangleq y^{(n)} - \tilde{\mathbf{w}}^{\top}(t)\mathbf{x}^{(n)}$$
.

From Eq. 17 we can write:

$$\begin{split} \frac{d\tilde{w}_i}{dt} &= \frac{du_{+,i}}{dt} v_{+,i} + u_{+,i} \frac{dv_{+,i}}{dt} - \frac{du_{-,i}}{dt} v_{-,i} - u_{-,i} \frac{dv_{-,i}}{dt} \\ &= v_{+,i}^2 \sum_{n=1}^N x_i^{(n)} r^{(n)} + u_{+,i}^2 \sum_{n=1}^N x_i^{(n)} r^{(n)} + v_{-,i}^2 \sum_{n=1}^N x_i^{(n)} r^{(n)} + u_{-,i}^2 \sum_{n=1}^N x_i^{(n)} r^{(n)} \\ &= \left(u_{+,i}^2 + v_{+,i}^2 + u_{-,i}^2 + v_{-,i}^2 \right) \sum_{n=1}^N x_i^{(n)} r^{(n)} \; . \end{split}$$

Thus,

$$\frac{1}{u_{+,i}^2 + v_{+,i}^2 + u_{-,i}^2 + v_{-,i}^2} \frac{d\tilde{w}_i}{dt} = \sum_{n=1}^{N} x_i^{(n)} r^{(n)} .$$

We note that the quantity $u_{+,i}u_{-,i} + v_{+,i}v_{-,i}$ is conserved during training, since

$$\begin{split} \frac{d}{dt} \left(u_{+,i} u_{-,i} + v_{+,i} v_{-,i} \right) &= \frac{d u_{+,i}}{dt} u_{-,i} + u_{+,i} \frac{d u_{-,i}}{dt} + \frac{d v_{+,i}}{dt} v_{-,i} + v_{+,i} \frac{d v_{-,i}}{dt} \\ &= u_{-,i} v_{+,i} \sum_{n=1}^{N} x_i^{(n)} r^{(n)} - u_{+,i} v_{-,i} \sum_{n=1}^{N} x_i^{(n)} r^{(n)} + u_{+,i} v_{-,i} \sum_{n=1}^{N} x_i^{(n)} r^{(n)} - v_{+,i} u_{-,i} \sum_{n=1}^{N} x_i^{(n)} r^{(n)} \\ &= 0 \; . \end{split}$$

So

$$u_{+,i}u_{-,i} + v_{+,i}v_{-,i} = u_{+,i}(0)u_{-,i}(0) + v_{+,i}(0)v_{-,i}(0) \triangleq c_i.$$
(18)

Combining Eq. 17 and Eq. 18 we can write:

$$\begin{cases} \tilde{w}_i = u_{+,i}v_{+,i} - u_{-,i}v_{-,i} \\ u_{+,i}u_{-,i} + v_{+,i}v_{-,i} = c_i \end{cases} \Rightarrow \begin{cases} \tilde{w}_i^2 = u_{+,i}^2v_{+,i}^2 + u_{-,i}^2v_{-,i}^2 - 2u_{+,i}v_{+,i}u_{-,i}v_{-,i} \\ u_{+,i}^2u_{-,i}^2 + v_{+,i}^2v_{-,i}^2 + 2u_{+,i}u_{-,i}v_{+,i}v_{-,i} = c_i^2 \end{cases}$$

$$\Rightarrow u_{+i}^2 u_{-i}^2 + v_{+i}^2 v_{-i}^2 + u_{+i}^2 v_{+i}^2 + u_{-i}^2 v_{-i}^2 - \tilde{w}_i^2 = c_i^2.$$
 (19)

We also know that:

$$v_{+,i}^{2} - u_{+,i}^{2} = v_{+,i}^{2}(0) - u_{+,i}^{2}(0) \triangleq \delta_{+,i}$$

$$v_{-,i}^{2} - u_{-,i}^{2} = v_{-,i}^{2}(0) - u_{-,i}^{2}(0) \triangleq \delta_{-,i}$$

which can be easily shown since $\frac{d}{dt}\left(v_{+,i}^2-u_{+,i}^2\right)=0$ and $\frac{d}{dt}\left(v_{-,i}^2-u_{-,i}^2\right)=0$. So using Eq. 19 we can write:

$$\begin{aligned} u_{+,i}^2 u_{-,i}^2 + \left(\delta_{+,i} + u_{+,i}^2\right) \left(\delta_{-,i} + u_{-,i}^2\right) + u_{+,i}^2 \left(\delta_{+,i} + u_{+,i}^2\right) + u_{-,i}^2 \left(\delta_{-,i} + u_{-,i}^2\right) - \tilde{w}_i^2 &= c_i^2 \\ \Rightarrow \left(u_{+,i}^2 + u_{-,i}^2\right)^2 + \left(\delta_{+,i} + \delta_{-,i}\right) \left(u_{+,i}^2 + u_{-,i}^2\right) + \delta_{+,i} \delta_{-,i} - \tilde{w}_i^2 - c_i^2 &= 0 \end{aligned}$$

$$\Rightarrow u_{+,i}^{2} + u_{-,i}^{2} = \frac{-\left(\delta_{+,i} + \delta_{-,i}\right) + \sqrt{\left(\delta_{+,i} + \delta_{-,i}\right)^{2} - 4\left(\delta_{+,i}\delta_{-,i} - \tilde{w}_{i}^{2} - c_{i}^{2}\right)}}{2}$$

$$= \frac{-\left(\delta_{+,i} + \delta_{-,i}\right) + \sqrt{\left(\delta_{+,i} - \delta_{-,i}\right)^{2} + 4c_{i}^{2} + 4\tilde{w}_{i}^{2}}}{2}.$$
(20)

Coming back to $u_{+,i}^2 + v_{+,i}^2 + u_{-,i}^2 + v_{-,i}^2$ we have using Eq. 20 that:

$$\begin{aligned} u_{+,i}^2 + v_{+,i}^2 + u_{-,i}^2 + v_{-,i}^2 &= 2\left(u_{+,i}^2 + u_{-,i}^2\right) + \delta_{+,i} + \delta_{-,i} \\ &= \sqrt{\left(\delta_{+,i} - \delta_{-,i}\right)^2 + 4c_i^2 + 4\tilde{w}_i^2} \;. \end{aligned}$$

Therefore,

$$\frac{1}{\sqrt{(\delta_{+,i} - \delta_{-,i})^2 + 4c_i^2 + 4\tilde{w}_i^2}} \frac{d\tilde{w}_i}{dt} = \sum_{n=1}^N x_i^{(n)} r^{(n)} .$$

We follow the IMD approach for deriving the implicit bias (presented in detail in Section 3 of the main paper) and try and find a function $q(\tilde{w}_i)$ such that:

$$\nabla^2 q\left(\tilde{w}_i(t)\right) = \frac{1}{\sqrt{\left(\delta_{+,i} - \delta_{-,i}\right)^2 + 4c_i^2 + 4\tilde{w}_i^2}},\tag{21}$$

which will then give us that

$$\nabla^2 q\left(\tilde{w}_i(t)\right) \frac{d}{dt} \tilde{w}_i(t) = \sum_{n=1}^N x_i^{(n)} r^{(n)}$$

or

$$\frac{d}{dt} \left(\nabla q \left(\tilde{w}_i(t) \right) \right) = \sum_{n=1}^{N} x_i^{(n)} r^{(n)} .$$

Integrating the above, we get

$$\nabla q(\tilde{w}_i(t)) - \nabla q(\tilde{w}_i(0)) = \sum_{n=1}^{N} x_i^{(n)} \int_0^t r^{(n)}(t')dt'.$$

Denoting $\nu^{(n)} = \int_0^\infty r^{(n)}(t')dt'$, and assuming q also satisfies $\nabla q\left(\tilde{w}_i(0)\right) = 0$, will in turn give us the KKT stationarity condition

$$\nabla q\left(\tilde{w}_i(\infty)\right) = \sum_{n=1}^N x_i^{(n)} \nu^{(n)} .$$

Namely, if we find a q that satisfies the conditions above we will have that gradient flow (for each weight \tilde{w}_i) satisfies the KKT conditions for minimizing this q.

We next turn to solving for this q, beginning with Eq. 21:

$$q''(\tilde{w}_i) = \frac{1}{\sqrt{(\delta_{+,i} - \delta_{-,i})^2 + 4c_i^2 + 4\tilde{w}_i^2}} = \frac{1}{\sqrt{k_i + 4\tilde{w}_i^2}},$$

where $k_i \triangleq (\delta_{+,i} - \delta_{-,i})^2 + 4c_i^2$.

Integrating the above, and using the constraint q'(0) = 0 we get:

$$q'\left(\tilde{w}_{i}\right) = \frac{\log\left(\sqrt{4\tilde{w}_{i}^{2} + k} + 2\tilde{w}_{i}\right) - \log\left(\sqrt{k}\right)}{2}.$$

Simplifying the above we obtain:

$$q'\left(\tilde{w}_{i}\right) = \frac{1}{2}\log\left(\frac{\sqrt{4\tilde{w}_{i}^{2}+k_{i}}+2\tilde{w}_{i}}{\sqrt{k_{i}}}\right) = \frac{1}{2}\log\left(\sqrt{1+\frac{4\tilde{w}_{i}^{2}}{k_{i}}}+\frac{2\tilde{w}_{i}}{\sqrt{k_{i}}}\right) = \frac{1}{2}\operatorname{arcsinh}\left(\frac{2\tilde{w}_{i}}{\sqrt{k_{i}}}\right).$$

Finally, we integrate again to obtain the desired q:

$$q_{k_i}\left(\tilde{w}_i\right) = \frac{1}{2} \int_0^{\tilde{w}_i} \operatorname{arcsinh}\left(\frac{2z}{\sqrt{k_i}}\right) dz = \frac{\sqrt{k_i}}{4} \left[1 - \sqrt{1 + \frac{4\tilde{w}_i^2}{k_i}} + \frac{2\tilde{w}_i}{\sqrt{k_i}} \operatorname{arcsinh}\left(\frac{2\tilde{w}_i}{\sqrt{k_i}}\right)\right] ,$$

where

$$k_{i} = \left(\delta_{+,i} - \delta_{-,i}\right)^{2} + 4c_{i}^{2} = \left(v_{+,i}^{2}\left(0\right) - u_{+,i}^{2}\left(0\right) - v_{-,i}^{2}\left(0\right) + u_{-,i}^{2}\left(0\right)\right)^{2} + 4\left(u_{+,i}\left(0\right)u_{-,i}\left(0\right) + v_{+,i}\left(0\right)v_{-,i}\left(0\right)\right)^{2}.$$

For the case $u_{+,i}\left(0\right)=u_{-,i}\left(0\right),v_{+,i}\left(0\right)=v_{-,i}\left(0\right)$ (unbiased initialization of $\tilde{w}_{i}\left(0\right)=0$) we get

$$k_i = 4 \left(u_{+,i}^2 \left(0 \right) + v_{+,i}^2 \left(0 \right) \right)^2$$

$$\Rightarrow \sqrt{k_i} = 2\left(u_{+,i}^2(0) + v_{+,i}^2(0)\right) = \frac{4\alpha_i \left(1 + s_i^2\right)}{1 - s_i^2}.$$

Next, if we denote $Q_{\mathbf{k}}(\tilde{\mathbf{w}}) = \sum_{i=1}^d q_{k_i} \, (\tilde{w}_i)$, we can write

$$\nabla Q_{\mathbf{k}}(\tilde{\mathbf{w}}(\infty)) = (\nabla q(\tilde{w}_1(\infty)), ..., \nabla q(\tilde{w}_d(\infty)))^{\top} = \sum_{n=1}^{N} \mathbf{x}^{(n)} \nu^{(n)}.$$

We note that $\|\nabla Q_{\mathbf{k}}(\tilde{\mathbf{w}})\| < \infty$ when $\|\tilde{\mathbf{w}}\| < \infty$, and thus by using Lemma 3.1 we get that $\nu^{(n)} < \infty$ for all n. Therefore, we get that gradient flow satisfies the KKT conditions for minimizing this Q, which completes the proof.

C. Proof of Theorem 6.1

Proof. We start by examining a general multi-neuron fully connected linear network of depth 2, reducing our claim at the end to the case of a network with a single hidden neuron (m = 1).

The fully connected linear network of depth 2 is defined as

$$f(\mathbf{x}; \{a_i\}, \{\mathbf{w}_i\}) = \sum_{i=1}^m a_i \mathbf{w}_i^\top \mathbf{x} = \tilde{\mathbf{w}}^\top \mathbf{x} ,$$

where $\tilde{\mathbf{w}} \triangleq \sum_{i=1}^{m} \tilde{\mathbf{w}}_i$, and $\tilde{\mathbf{w}}_i \triangleq a_i \mathbf{w}_i$.

The parameter gradient flow dynamics are given by:

$$\dot{a}_i = -\partial_{a_i} \mathcal{L} = \mathbf{w}_i^{\top} \left(\sum_{n=1}^N \mathbf{x}^{(n)} r^{(n)} \right)$$

$$\dot{\mathbf{w}}_i = -\partial_{\mathbf{w}_i} \mathcal{L} = a_i \left(\sum_{n=1}^N \mathbf{x}^{(n)} r^{(n)} \right)$$

$$\frac{d}{dt}\tilde{\mathbf{w}}_i = \dot{a}_i \mathbf{w}_i + a_i \dot{\mathbf{w}}_i = \left(a_i^2 \mathbf{I} + \mathbf{w}_i \mathbf{w}_i^\top\right) \left(\sum_{n=1}^N \mathbf{x}^{(n)} r^{(n)}\right),\,$$

where we denote the residual

$$r^{(n)}(t) \triangleq y^{(n)} - \tilde{\mathbf{w}}^{\top}(t)\mathbf{x}^{(n)}$$
.

Using Theorem 2.1 of Du et al. (2018) (stated in Section 6), we can write

$$\frac{d}{dt}\tilde{\mathbf{w}}_i(t) = \left(\left(\delta_i + \|\mathbf{w}_i(t)\|^2 \right) \mathbf{I} + \mathbf{w}_i(t) \mathbf{w}_i^{\top}(t) \right) \left(\sum_{n=1}^N \mathbf{x}^{(n)} r^{(n)} \right) , \tag{22}$$

or also

$$\left(\left(\delta_i + \|\mathbf{w}_i(t)\|^2\right)\mathbf{I} + \mathbf{w}_i(t)\mathbf{w}_i^{\top}(t)\right)^{-1} \frac{d}{dt}\tilde{\mathbf{w}}_i(t) = \left(\sum_{n=1}^N \mathbf{x}^{(n)}r^{(n)}\right)$$

where assuming $\delta_i \geq 0$, a non-zero initialization $\tilde{\mathbf{w}}(0) = a(0)\mathbf{w}(0) \neq \mathbf{0}$ and that we converge to zero-loss solution, gives us that the expression $\left(\left(\delta_i + \|\mathbf{w}_i(t)\|^2\right)\mathbf{I} + \mathbf{w}_i(t)\mathbf{w}_i^\top(t)\right)^{-1}$ exists.

Using the Sherman-Morisson Lemma, we have

$$\left(\delta_i + \|\mathbf{w}_i(t)\|^2\right)^{-1} \left(\mathbf{I} - \frac{\mathbf{w}_i(t)\mathbf{w}_i^{\top}(t)}{\left(\delta_i + 2\|\mathbf{w}_i(t)\|^2\right)}\right) \frac{d}{dt} \tilde{\mathbf{w}}_i = \left(\sum_{n=1}^N \mathbf{x}^{(n)} r^{(n)}\right) ,$$

or

$$\left(\delta_{i} + \|\mathbf{w}_{i}(t)\|^{2}\right)^{-1} \left(\mathbf{I} - \frac{\tilde{\mathbf{w}}_{i}(t)\tilde{\mathbf{w}}_{i}^{\top}(t)}{\left(\delta_{i} + \|\mathbf{w}_{i}(t)\|^{2}\right)\left(\delta_{i} + 2\|\mathbf{w}_{i}(t)\|^{2}\right)}\right) \frac{d}{dt}\tilde{\mathbf{w}}_{i} = \left(\sum_{n=1}^{N} \mathbf{x}^{(n)}r^{(n)}\right)$$
(23)

where we again employed Theorem 2.1 of Du et al. (2018). Also, since

$$\|\tilde{\mathbf{w}}_i(t)\|^2 = a_i^2(t) \|\mathbf{w}_i(t)\|^2 = \|\mathbf{w}_i(t)\|^2 \left(\delta_i + \|\mathbf{w}_i(t)\|^2\right)$$

we can express w as a function of $\tilde{\mathbf{w}}$:

$$\|\mathbf{w}_{i}(t)\|^{2} = \frac{-\delta_{i}}{2} \pm \sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}$$

Since $\|\mathbf{w}_i(t)\|^2 \ge 0$ we choose the (+) sign and obtain

$$\|\mathbf{w}_{i}(t)\| = \sqrt{\frac{-\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}}$$
.

Therefore, we can write Eq. 23 as:

$$\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}\right)^{-1} \left(\mathbf{I} - \frac{\tilde{\mathbf{w}}_{i}(t)\tilde{\mathbf{w}}_{i}^{\top}(t)}{2\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}\right)\sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}}\right) \frac{d}{dt}\tilde{\mathbf{w}}_{i}(t) = \sum_{n=1}^{N} \mathbf{x}^{(n)} r^{(n)}(t) . \tag{24}$$

We follow the "warped IMD" technique for deriving the implicit bias (presented in detail in Section 5 of the main text) and multiply Eq. 24 by some function $g(\tilde{\mathbf{w}}_i(t))$

$$g\left(\tilde{\mathbf{w}}_{i}(t)\right)\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}\right)^{-1}\left(\mathbf{I} - \frac{\tilde{\mathbf{w}}_{i}(t)\tilde{\mathbf{w}}_{i}^{\top}(t)}{2\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}\right)\sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}}\right)\frac{d}{dt}\tilde{\mathbf{w}}_{i}(t)$$

$$= \sum_{n=1}^{N} \mathbf{x}^{(n)}g\left(\tilde{\mathbf{w}}_{i}(t)\right)r^{(n)}(t).$$

Following the approach in Section 5, we then try and find $q(\tilde{\mathbf{w}}_i(t)) = \hat{q}(\|\tilde{\mathbf{w}}_i(t)\|) + \mathbf{z}^{\top}\tilde{\mathbf{w}}_i(t)$ and $q(\tilde{\mathbf{w}}_i(t))$ such that

$$\nabla^{2}q\left(\tilde{\mathbf{w}}_{i}(t)\right) = g\left(\tilde{\mathbf{w}}_{i}(t)\right)\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}\right)^{-1}\left(\mathbf{I} - \frac{\tilde{\mathbf{w}}_{i}(t)\tilde{\mathbf{w}}_{i}^{\top}(t)}{2\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}\right)\sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}}\right), \quad (25)$$

so that then we'll have,

$$\nabla^{2}q\left(\tilde{\mathbf{w}}_{i}(t)\right)\frac{d}{dt}\tilde{\mathbf{w}}_{i}(t) = \sum_{n=1}^{N}\mathbf{x}^{(n)}g\left(\tilde{\mathbf{w}}_{i}(t)\right)r^{(n)}(t)$$
$$\frac{d}{dt}\left(\nabla q\left(\tilde{\mathbf{w}}_{i}(t)\right)\right) = \sum_{n=1}^{N}\mathbf{x}^{(n)}g\left(\tilde{\mathbf{w}}_{i}(t)\right)r^{(n)}(t)$$
$$\nabla q\left(\tilde{\mathbf{w}}_{i}(t)\right) - \nabla q\left(\tilde{\mathbf{w}}_{i}(0)\right) = \sum_{n=1}^{N}\mathbf{x}^{(n)}\int_{0}^{t}g\left(\tilde{\mathbf{w}}_{i}(t')\right)r^{(n)}(t')dt'.$$

Requiring $\nabla q\left(\tilde{\mathbf{w}}_{i}(0)\right)=0$, and denoting $\nu_{i}^{(n)}=\int_{0}^{\infty}g\left(\tilde{\mathbf{w}}_{i}(t')\right)r^{(n)}(t')dt'$, we get the condition:

$$\nabla q\left(\tilde{\mathbf{w}}_{i}(\infty)\right) = \sum_{n=1}^{N} \mathbf{x}^{(n)} \nu_{i}^{(n)} .$$

To find q we note that:

$$\nabla q\left(\tilde{\mathbf{w}}_{i}(t)\right) = \hat{q}'\left(\left\|\tilde{\mathbf{w}}_{i}(t)\right\|\right) \frac{\tilde{\mathbf{w}}_{i}(t)}{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|} + \mathbf{z}$$

and

$$\begin{split} \nabla^{2}q\left(\tilde{\mathbf{w}}_{i}(t)\right) &= \left[\hat{q}''\left(\|\tilde{\mathbf{w}}_{i}(t)\|\right) - \hat{q}'\left(\|\tilde{\mathbf{w}}_{i}(t)\|\right) \frac{1}{\|\tilde{\mathbf{w}}_{i}(t)\|}\right] \frac{\tilde{\mathbf{w}}_{i}(t)\tilde{\mathbf{w}}_{i}^{\top}(t)}{\|\tilde{\mathbf{w}}_{i}(t)\|^{2}} + \hat{q}'\left(\|\tilde{\mathbf{w}}_{i}(t)\|\right) \frac{1}{\|\tilde{\mathbf{w}}_{i}(t)\|} \mathbf{I} \\ &= \frac{\hat{q}'\left(\|\tilde{\mathbf{w}}_{i}(t)\|\right)}{\|\tilde{\mathbf{w}}_{i}(t)\|} \left[\mathbf{I} - \left[1 - \|\tilde{\mathbf{w}}_{i}(t)\| \frac{\hat{q}''\left(\|\tilde{\mathbf{w}}_{i}(t)\|\right)}{\hat{q}'\left(\|\tilde{\mathbf{w}}_{i}(t)\|\right)}\right] \frac{\tilde{\mathbf{w}}_{i}(t)\tilde{\mathbf{w}}_{i}^{\top}(t)}{\|\tilde{\mathbf{w}}_{i}(t)\|^{2}}\right] \;. \end{split}$$

Comparing the form above with the Hessian in Eq. 25 we require

$$g\left(\tilde{\mathbf{w}}_{i}(t)\right) = \frac{\hat{q}'\left(\left\|\tilde{\mathbf{w}}_{i}(t)\right\|\right)}{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|} \left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}\right)$$

and

$$\frac{1}{2\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}\right)\sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}} = \frac{1 - \|\tilde{\mathbf{w}}_{i}(t)\| \frac{q'(\|\tilde{\mathbf{w}}_{i}(t)\|)}{\hat{q}'(\|\tilde{\mathbf{w}}_{i}(t)\|)}}{\|\tilde{\mathbf{w}}_{i}(t)\|^{2}}$$

$$\Rightarrow \frac{\hat{q}'''(\|\tilde{\mathbf{w}}_{i}(t)\|)}{\hat{q}'(\|\tilde{\mathbf{w}}_{i}(t)\|)} = \frac{1 - \frac{\|\tilde{\mathbf{w}}_{i}(t)\|^{2}}{\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \|\tilde{\mathbf{w}}_{i}(t)\|^{2}}\right)\sqrt{\delta_{i}^{2} + 4\|\tilde{\mathbf{w}}_{i}(t)\|^{2}}}{\|\tilde{\mathbf{w}}_{i}(t)\|}$$

$$\Rightarrow \frac{\hat{q}'''(x)}{\hat{q}'(x)} = \frac{1 - \frac{x^{2}}{\left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + x^{2}}\right)\sqrt{\delta_{i}^{2} + 4x^{2}}}}{x}.$$

Integrating that we get

$$\log \hat{q}'\left(x\right) = \frac{1}{2} \log \left(\sqrt{x^2 + \frac{\delta_i^2}{4}} - \frac{\delta_i}{2}\right) + C$$

$$\Rightarrow \hat{q}'\left(x\right) = C\sqrt{\sqrt{x^2 + \frac{\delta_i^2}{4}} - \frac{\delta_i}{2}}$$

$$\Rightarrow \hat{q}\left(x\right) = C\frac{\left(x^2 - \frac{\delta_i}{2}\left(\frac{\delta_i}{2} + \sqrt{x^2 + \frac{\delta_i^2}{4}}\right)\right)\sqrt{\sqrt{x^2 + \frac{\delta_i^2}{4}} - \frac{\delta_i}{2}}}{x} + C'.$$

Therefore,

$$q\left(\tilde{\mathbf{w}}_{i}(t)\right) = C \frac{\left(\left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2} - \frac{\delta_{i}}{2}\left(\frac{\delta_{i}}{2} + \sqrt{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2} + \frac{\delta_{i}^{2}}{4}}\right)\right)\sqrt{\sqrt{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2} + \frac{\delta_{i}^{2}}{4} - \frac{\delta_{i}}{2}}}}{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|} + \mathbf{z}^{\top}\tilde{\mathbf{w}}_{i}(t) + C'.$$

Now, from the condition $\nabla q\left(\tilde{\mathbf{w}}_i(0)\right) = 0$ we have

$$\nabla q\left(\tilde{\mathbf{w}}_{i}(0)\right) = \frac{3}{2} C \frac{\tilde{\mathbf{w}}_{i}(0)}{\|\tilde{\mathbf{w}}_{i}(0)\|} \sqrt{\sqrt{\|\tilde{\mathbf{w}}_{i}(0)\|^{2} + \frac{\delta_{i}^{2}}{4} - \frac{\delta_{i}}{2}} + \mathbf{z}} = 0$$

$$\Rightarrow \mathbf{z} = -\frac{3}{2} C \frac{\tilde{\mathbf{w}}_{i}(0)}{\|\tilde{\mathbf{w}}_{i}(0)\|} \sqrt{\sqrt{\|\tilde{\mathbf{w}}_{i}(0)\|^{2} + \frac{\delta_{i}^{2}}{4} - \frac{\delta_{i}}{2}}}.$$

We can set C = 1, C' = 0 and get

$$\begin{split} q\left(\tilde{\mathbf{w}}_{i}(t)\right) = & \frac{\left(\left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2} - \frac{\delta_{i}}{2}\left(\frac{\delta_{i}}{2} + \sqrt{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2} + \frac{\delta_{i}^{2}}{4}}\right)\right)\sqrt{\sqrt{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2} + \frac{\delta_{i}^{2}}{4}} - \frac{\delta_{i}}{2}}}{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|} \\ & - \frac{3}{2}\sqrt{\sqrt{\left\|\tilde{\mathbf{w}}_{i}(0)\right\|^{2} + \frac{\delta_{i}^{2}}{4}} - \frac{\delta_{i}}{2}}\frac{\tilde{\mathbf{w}}_{i}^{\top}(0)}{\left\|\tilde{\mathbf{w}}_{i}(0)\right\|}\tilde{\mathbf{w}}_{i}(t)}. \end{split}$$

Finally, for the case of a fully connected network with a single hidden neuron (m = 1), the condition

$$\nabla q\left(\tilde{\mathbf{w}}_{i}(\infty)\right) = \sum_{n=1}^{N} \mathbf{x}^{(n)} \nu_{i}^{(n)}$$

can be written as

$$\nabla q\left(\tilde{\mathbf{w}}(\infty)\right) = \sum_{n=1}^{N} \mathbf{x}^{(n)} \nu^{(n)}$$

in which $\nu^{(n)}$ has no dependency on the index i. Moreover, we note that $\|\nabla q(\tilde{\mathbf{w}})\| < \infty$ when $\|\tilde{\mathbf{w}}\| < \infty$, and thus by using Lemma 3.1 we get that $\nu^{(n)} < \infty$ for all n. And so we got a valid KKT stationarity condition for the q we found above. Therefore, the gradient flow satisfies the KKT conditions for minimizing the q we have found.

C.1. Validation of the use of the function g as a "Time-Warping"

First, we show that Eq. 24 cannot take the form suggested by Eq. 4 (as in the standard IMD approach described in Section 3):

$$\mathbf{H}(\tilde{\mathbf{w}}(t))\frac{d\tilde{\mathbf{w}}(t)}{dt} = \mathbf{X}\mathbf{r}(t)$$

where $\mathbf{H}(\tilde{\mathbf{w}}(t)) = \nabla^2 Q(\tilde{\mathbf{w}}(t))$ for some Q.

From Eq. 24 we get that $\mathbf{H}(\mathbf{w})$ takes the form

$$\mathbf{H}(\mathbf{w}) = \left(\frac{\delta}{2} + \sqrt{\frac{\delta^2}{4} + \|\mathbf{w}\|^2}\right)^{-1} \left(\mathbf{I} - \frac{\mathbf{w}\mathbf{w}^{\top}}{2\left(\frac{\delta}{2} + \sqrt{\frac{\delta^2}{4} + \|\mathbf{w}\|^2}\right)\sqrt{\frac{\delta^2}{4} + \|\mathbf{w}\|^2}}\right).$$

Suppose $\mathbf{H}(\mathbf{w})$ is indeed the Hessian of some $Q(\mathbf{w})$, then is must respect the Hessian-map condition (see Eq. 7) for any $\delta \geq 0$. Specifically, for $\delta = 0$ we get

$$\mathbf{H}(\mathbf{w}) = \frac{1}{\|\mathbf{w}\|} \left(\mathbf{I} - \frac{\mathbf{w}\mathbf{w}^{\top}}{2\|\mathbf{w}\|^2} \right) ,$$

which does not satisfy the Hessian-map condition

$$\frac{\partial \mathbf{H}_{i,i}(\mathbf{w})}{\partial \mathbf{w}_i} = -\frac{w_j}{\|\mathbf{w}\|^3} + \frac{3}{2} \frac{w_i^2 w_j}{\|\mathbf{w}\|^5} \neq -\frac{w_j}{2\|\mathbf{w}\|^3} + \frac{3}{2} \frac{w_i^2 w_j}{\|\mathbf{w}\|^5} = \frac{\partial \mathbf{H}_{i,j}(\mathbf{w})}{\partial \mathbf{w}_i} \ .$$

Therefore, Eq. 24 cannot be solved using the standard IMD approach, and requires our suggested "warped IMD" technique (see Section 5).

Second, we write $q(\tilde{\mathbf{w}}_i(t))$ explicitly and show it is positive, monotone and bounded.

From Eq. 24 we have

$$g\left(\tilde{\mathbf{w}}_{i}(t)\right) = \frac{\hat{q}'\left(\left\|\tilde{\mathbf{w}}_{i}(t)\right\|\right)}{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|} \left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}\right) = \frac{1}{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|} \sqrt{\sqrt{\left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2} + \frac{\delta_{i}^{2}}{4} - \frac{\delta_{i}}{2}}} \left(\frac{\delta_{i}}{2} + \sqrt{\frac{\delta_{i}^{2}}{4} + \left\|\tilde{\mathbf{w}}_{i}(t)\right\|^{2}}\right).$$

We can see that $g(\tilde{\mathbf{w}}_i(t)) = \hat{g}(\|\tilde{\mathbf{w}}_i(t)\|)$ where

$$\hat{g}(x) = \frac{\sqrt{\sqrt{x^2 + \frac{\delta_i^2}{4} - \frac{\delta_i}{2}}}}{x} \left(\frac{\delta_i}{2} + \sqrt{\frac{\delta_i^2}{4} + x^2}\right).$$

We notice that $\hat{g}(x)$ is smooth and positive for $\forall x > 0$, and since $\lim_{x \to 0^+} \hat{g}(x) = \sqrt{\delta_i}$ (see Lemma H.3) it is also bounded for any finite x.

Also, using

$$\hat{g}'(x) = \frac{2\sqrt{x^2 + \frac{\delta_i^2}{4} - \delta_i}}{4\sqrt{x^2 + \frac{\delta_i^2}{4}}\sqrt{\sqrt{x^2 + \frac{\delta_i^2}{4} - \frac{\delta_i}{2}}}}$$

we see that $\hat{g}'(x) > 0$, $\forall x > 0$ and so $\hat{g}(x)$ is monotonically increasing.

C.2. Verification of the Hessian map condition

Finally, we show that $g(\tilde{\mathbf{w}}(t))\mathbf{H}(\tilde{\mathbf{w}}(t))$ does satisfy the Hessian-map condition. We note that this is immediate from the construction of q, but provide it here for completeness.

$$g(\mathbf{w})\mathbf{H}(\mathbf{w}) = \frac{1}{\|\mathbf{w}\|} \sqrt{\sqrt{\|\mathbf{w}\|^2 + \frac{\delta^2}{4} - \frac{\delta}{2}}} \left(\mathbf{I} - \frac{\mathbf{w}\mathbf{w}^{\top}}{2\left(\frac{\delta}{2} + \sqrt{\frac{\delta^2}{4} + \|\mathbf{w}\|^2}\right)\sqrt{\frac{\delta^2}{4} + \|\mathbf{w}\|^2}} \right).$$

We denote
$$f(x)=rac{1}{x}\sqrt{\sqrt{x^2+rac{\delta^2}{4}}-rac{\delta}{2}}$$
 and $h(x)=rac{f(x)}{2\left(rac{\delta}{2}+\sqrt{rac{\delta^2}{4}+x^2}
ight)\sqrt{rac{\delta^2}{4}+x^2}}.$

Without loss of generality it is enough to observe the following settings:

$$i \neq j \neq k$$
:

$$\frac{\partial \mathbf{H}_{i,j}(\mathbf{w})}{\partial \mathbf{w}_k} = -w_i w_j h'(\|\mathbf{w}\|) \frac{w_k}{\|\mathbf{w}\|} = -w_i w_k h'(\|\mathbf{w}\|) \frac{w_j}{\|\mathbf{w}\|} = \frac{\partial \mathbf{H}_{i,k}(\mathbf{w})}{\partial \mathbf{w}_j}$$

$$i = j \neq k$$
:

$$\frac{\partial \mathbf{H}_{i,i}(\mathbf{w})}{\partial \mathbf{w}_k} = f'(\|\mathbf{w}\|) \frac{w_k}{\|\mathbf{w}\|} - w_i^2 h'(\|\mathbf{w}\|) \frac{w_k}{\|\mathbf{w}\|}$$

$$\frac{\partial \mathbf{H}_{i,k}(\mathbf{w})}{\partial \mathbf{w}_i} = -w_k h(\|\mathbf{w}\|) - w_i w_k h'(\|\mathbf{w}\|) \frac{w_i}{\|\mathbf{w}\|} = -w_k h(\|\mathbf{w}\|) - w_i^2 h'(\|\mathbf{w}\|) \frac{w_k}{\|\mathbf{w}\|}$$

Therefore, if $\forall x \;, \frac{f'(x)}{x} = -h(x)$ we get that $\frac{\partial \mathbf{H}_{i,i}(\mathbf{w})}{\partial \mathbf{w}_k} = \frac{\partial \mathbf{H}_{i,k}(\mathbf{w})}{\partial \mathbf{w}_i}$

Using the derivative of f(x) we can write:

$$f'(x) = \frac{1}{2\sqrt{x^2 + \frac{\delta^2}{4}}\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}} - \frac{\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}{x^2}$$

$$= \frac{1}{2\sqrt{x^2 + \frac{\delta^2}{4}}\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}} - \frac{\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}{\left(\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}\right)\left(\sqrt{x^2 + \frac{\delta^2}{4}} + \frac{\delta}{2}\right)}$$

$$= \frac{1}{2\sqrt{x^2 + \frac{\delta^2}{4}}\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}} - \frac{1}{\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}\left(\sqrt{x^2 + \frac{\delta^2}{4}} + \frac{\delta}{2}\right)}$$

$$= \frac{\left(\sqrt{x^2 + \frac{\delta^2}{4}} + \frac{\delta}{2}\right) - 2\sqrt{x^2 + \frac{\delta^2}{4}}}{2\sqrt{x^2 + \frac{\delta^2}{4}}\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}\left(\sqrt{x^2 + \frac{\delta^2}{4}} + \frac{\delta}{2}\right)}}$$

$$= -\frac{\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}{2\sqrt{x^2 + \frac{\delta^2}{4}}\left(\sqrt{x^2 + \frac{\delta^2}{4}} + \frac{\delta}{2}\right)}}$$

$$= -x \cdot h(x),$$

and so $g(\mathbf{w})\mathbf{H}(\mathbf{w})$ respects the Hessian-map condition.

D. Proof of Proposition 6.2

Proof. We recall that the fully connected linear network of depth 2 is defined as

$$f(\mathbf{x}; \{a_i\}, \{\mathbf{w}_i\}) = \sum_{i=1}^m a_i \mathbf{w}_i^{\top} \mathbf{x} = \tilde{\mathbf{w}}^{\top} \mathbf{x},$$

where $\tilde{\mathbf{w}} \triangleq \sum_{i=1}^{m} \tilde{\mathbf{w}}_i$, and $\tilde{\mathbf{w}}_i \triangleq a_i \mathbf{w}_i$.

Returning to the dynamics of model parameters (Eq. 22) we have

$$\frac{d}{dt}\tilde{\mathbf{w}}_i(t) = \dot{a}_i\mathbf{w}_i + a_i\dot{\mathbf{w}}_i = \left(a_i^2\mathbf{I} + \mathbf{w}_i\mathbf{w}_i^{\top}\right)\left(\sum_{n=1}^{N}\mathbf{x}^{(n)}r^{(n)}\right).$$

Therefore,

$$\frac{d}{dt}\tilde{\mathbf{w}}(t) = \left(\sum_{i=1}^{m} a_i^2 \mathbf{I} + \sum_{i=1}^{m} \mathbf{w}_i \mathbf{w}_i^{\top}\right) \left(\sum_{n=1}^{N} \mathbf{x}^{(n)} r^{(n)}\right)$$
$$\left(\sum_{i=1}^{m} a_i^2(t) \mathbf{I} + \sum_{i=1}^{m} \mathbf{w}_i(t) \mathbf{w}_i(t)^{\top}\right)^{-1} \frac{d}{dt}\tilde{\mathbf{w}}(t) = \left(\sum_{n=1}^{N} \mathbf{x}^{(n)} r^{(n)}\right).$$

We can notice that we can express

$$\sum_{i=1}^m a_i^2(t)\mathbf{I} + \sum_{i=1}^m \mathbf{w}_i(t)\mathbf{w}_i(t)^\top = \mathbf{A}(t) + \mathbf{U}(t)\mathbf{C}\mathbf{V}(t)$$

where

$$\mathbf{A}(t) = \left(\sum_{i=1}^{m} a_i^2(t)\right) \mathbf{I}_{d \times d}$$

$$\mathbf{C} = \mathbf{I}_{m \times m}$$

$$\mathbf{U}(t) = \mathbf{W}(t) \triangleq \left[\mathbf{w}_1(t), ..., \mathbf{w}_m(t)\right] \in \mathbb{R}^{d \times m}$$

$$\mathbf{V}(t) = \mathbf{W}(t)^{\top} = \left[\mathbf{w}_1(t)^{\top}; ...; \mathbf{w}_m(t)^{\top}\right] \in \mathbb{R}^{m \times d}.$$

By using the Woodbury matrix identity we can write

$$\left(\sum_{i=1}^{m} a_i^2(t)\mathbf{I} + \sum_{i=1}^{m} \mathbf{w}_i(t)\mathbf{w}_i(t)^{\top}\right)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}\left(\mathbf{I} + \mathbf{V}\mathbf{A}^{-1}\mathbf{U}\right)^{-1}\mathbf{V}\mathbf{A}^{-1} =$$

$$= \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}\left(\left(\sum_{i=1}^{m} a_i^2(t)\right)\mathbf{I} + \mathbf{V}\mathbf{U}\right)^{-1}\mathbf{V}.$$

From Theorem 2.2 of Du et al. (2018) (stated in Section 6) we get that

$$\mathbf{a}(t) \cdot \mathbf{a}(t)^{\top} = \mathbf{W}(t)^{\top} \mathbf{W}(t) + \boldsymbol{\Delta},$$

where $\Delta \in \mathbb{R}^{m \times m}$.

For the case of strict balanced initialization we have $\Delta = 0$, and therefore

$$\left(\left(\sum_{i=1}^{m} a_i^2(t)\right) \mathbf{I} + \mathbf{V}(t)\mathbf{U}(t)\right)^{-1} = \left(\left(\sum_{i=1}^{m} a_i^2(t)\right) \mathbf{I} + \mathbf{W}(t)^{\top} \mathbf{W}(t)\right)^{-1} = \\
= \left(\left(\sum_{i=1}^{m} a_i^2(t)\right) \mathbf{I} + \mathbf{a}(t)\mathbf{a}(t)^{\top}\right)^{-1} \\
= \left(\sum_{i=1}^{m} a_i^2(t)\right)^{-1} \mathbf{I} - \frac{\mathbf{a}(t)\mathbf{a}(t)^{\top}}{2\left(\sum_{i=1}^{m} a_i^2(t)\right)^2},$$

where in the last transition we used the Sherman-Morrison lemma. It follows that

$$\left(\sum_{i=1}^{m} a_i^2(t)\mathbf{I} + \sum_{i=1}^{m} \mathbf{w}_i(t)\mathbf{w}_i(t)^{\top}\right)^{-1} = \\
= \left(\sum_{i=1}^{m} a_i^2(t)\right)^{-1} \left(\mathbf{I} - \mathbf{W}(t) \left(\left(\sum_{i=1}^{m} a_i^2(t)\right)^{-1} \mathbf{I} - \frac{\mathbf{a}(t)\mathbf{a}(t)^{\top}}{2\left(\sum_{i=1}^{m} a_i^2(t)\right)^{2}}\right) \mathbf{W}(t)^{\top}\right).$$

We continue and write

$$\begin{split} &\left(\sum_{i=1}^m a_i^2(t)\mathbf{I} + \sum_{i=1}^m \mathbf{w}_i(t)\mathbf{w}_i(t)^\top\right)^{-1} = \\ &= \left(\sum_{i=1}^m a_i^2(t)\right)^{-1} \left(\mathbf{I} - \left(\sum_{i=1}^m a_i^2(t)\right)^{-1} \mathbf{W}(t)\mathbf{W}(t)^\top + \frac{1}{2} \left(\sum_{i=1}^m a_i^2(t)\right)^{-2} \left(\mathbf{W}(t)\mathbf{W}(t)^\top\right)^2\right) \;. \end{split}$$

Using Theorem 2.1 of Du et al. (2018) (stated in Section 6), we know that

$$a_i(t)^2 = \|\mathbf{w}_i(t)\|^2.$$

Therefore,

$$\|\tilde{\mathbf{w}}_i(t)\| = |a_i(t)| \|\mathbf{w}_i(t)\| = a_i(t)^2$$

and

$$\sum_{i=1}^{m} a_i^2(t) = \sum_{i=1}^{m} \|\tilde{\mathbf{w}}_i(t)\|.$$

So, we can write

$$\left(\sum_{i=1}^{m} a_i^2(t)\mathbf{I} + \sum_{i=1}^{m} \mathbf{w}_i(t)\mathbf{w}_i(t)^{\top}\right)^{-1} = \\
= \left(\sum_{i=1}^{m} a_i^2(t)\right)^{-1} \left(\mathbf{I} - \left(\sum_{i=1}^{m} a_i^2(t)\right)^{-1} \left(\sum_{i=1}^{m} \mathbf{w}_i(t)\mathbf{w}_i(t)^{\top}\right) + \frac{1}{2} \left(\sum_{i=1}^{m} a_i^2(t)\right)^{-2} \left(\sum_{i=1}^{m} \mathbf{w}_i(t)\mathbf{w}_i(t)^{\top}\right)^2\right) = \\
= \left(\sum_{i=1}^{m} \|\tilde{\mathbf{w}}_i(t)\|\right)^{-1} \left(\mathbf{I} - \left(\sum_{i=1}^{m} \|\tilde{\mathbf{w}}_i(t)\|\right)^{-1} \left(\sum_{i=1}^{m} \frac{\tilde{\mathbf{w}}_i(t)\tilde{\mathbf{w}}_i(t)^{\top}}{\|\tilde{\mathbf{w}}_i(t)\|}\right) + \frac{1}{2} \left(\sum_{i=1}^{m} \|\tilde{\mathbf{w}}_i(t)\|\right)^{-2} \left(\sum_{i=1}^{m} \frac{\tilde{\mathbf{w}}_i(t)\tilde{\mathbf{w}}_i(t)^{\top}}{\|\tilde{\mathbf{w}}_i(t)\|}\right)^2\right).$$

Now, since

$$\mathbf{a}(t)\mathbf{a}(t)^{\top} = \mathbf{W}(t)^{\top}\mathbf{W}(t) ,$$

we can say that $\mathbf{W}(t)^{\top}\mathbf{W}(t)$ is a rank one matrix, and therefore also $\mathbf{W}(t)$, and also $\tilde{\mathbf{W}}(t)$. Therefore, all $\tilde{\mathbf{w}}_i$ are equal up to a multiplicative factor,

$$\tilde{\mathbf{w}}_i(t) = c_i(t)\tilde{\mathbf{w}}(t)$$

where from definition

$$\sum_{i=1}^{m} c_i(t) = 1.$$

Therefore,

$$\|\tilde{\mathbf{w}}_i(t)\| = |c_i(t)| \|\tilde{\mathbf{w}}(t)\|$$

$$\Rightarrow \sum_{i=1}^m \|\tilde{\mathbf{w}}_i(t)\| = \left(\sum_{i=1}^m |c_i(t)|\right) \|\tilde{\mathbf{w}}(t)\|$$

$$\Rightarrow \sum_{i=1}^{m} \frac{\tilde{\mathbf{w}}_{i}(t)\tilde{\mathbf{w}}_{i}(t)^{\top}}{\|\tilde{\mathbf{w}}_{i}(t)\|} = \left(\sum_{i=1}^{m} |c_{i}(t)|\right) \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\|\tilde{\mathbf{w}}(t)\|},$$

giving us

$$\left(\sum_{i=1}^{m} a_i^2(t)\mathbf{I} + \sum_{i=1}^{m} \mathbf{w}_i(t)\mathbf{w}_i(t)^{\top}\right)^{-1} \frac{d}{dt}\tilde{\mathbf{w}}(t) =
= \frac{1}{\left(\sum_{i=1}^{m} |c_i(t)|\right)} \frac{1}{\left|\left|\left|\tilde{\mathbf{w}}(t)\right|\right|} \left(\mathbf{I} - \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\left|\left|\tilde{\mathbf{w}}(t)\right|\right|^2} + \frac{1}{2} \left(\frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\left|\left|\tilde{\mathbf{w}}(t)\right|\right|^2}\right)^2\right) \frac{d}{dt}\tilde{\mathbf{w}}(t) = \sum_{n=1}^{N} \mathbf{x}^{(n)} r^{(n)}
\Rightarrow \frac{1}{\left(\sum_{i=1}^{m} |c_i(t)|\right)} \frac{1}{\left|\left|\left|\tilde{\mathbf{w}}(t)\right|\right|} \left(\mathbf{I} - \frac{1}{2} \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\left|\left|\tilde{\mathbf{w}}(t)\right|\right|^2}\right) \frac{d}{dt}\tilde{\mathbf{w}}(t) = \sum_{n=1}^{N} \mathbf{x}^{(n)} r^{(n)} ,$$

where in the last transition we used

$$\left(\frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\|\tilde{\mathbf{w}}(t)\|^{2}}\right)^{2} = \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\|\tilde{\mathbf{w}}(t)\|^{4}} = \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\|\tilde{\mathbf{w}}(t)\|^{2}} .$$

We follow the "warped IMD" technique (presented in detail in Section 5) and multiply the equation by some function $g(\tilde{\mathbf{w}}_i(t))$

$$\frac{g\left(\tilde{\mathbf{w}}(t)\right)}{\left(\sum_{i=1}^{m}\left|c_{i}(t)\right|\right)}\frac{1}{\left|\left|\left|\tilde{\mathbf{w}}(t)\right|\right|}\left(\mathbf{I}-\frac{1}{2}\frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\left|\left|\tilde{\mathbf{w}}(t)\right|\right|^{2}}\right)\frac{d}{dt}\tilde{\mathbf{w}}(t) = \left(\sum_{n=1}^{N}\mathbf{x}^{(n)}g\left(\tilde{\mathbf{w}}(t)\right)r^{(n)}\right).$$

Following the approach in Section 5, we then try and find $q\left(\tilde{\mathbf{w}}_{i}(t)\right) = \hat{q}\left(\|\tilde{\mathbf{w}}_{i}(t)\|\right) + \mathbf{z}^{\top}\tilde{\mathbf{w}}_{i}(t)$ and $g\left(\tilde{\mathbf{w}}_{i}(t)\right)$ such that

$$\nabla^{2} q\left(\tilde{\mathbf{w}}(t)\right) = \frac{g\left(\tilde{\mathbf{w}}(t)\right)}{\left(\sum_{i=1}^{m} |c_{i}(t)|\right)} \frac{1}{\left|\left|\left|\tilde{\mathbf{w}}(t)\right|\right|} \left(\mathbf{I} - \frac{1}{2} \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}(t)^{\top}}{\left|\left|\tilde{\mathbf{w}}(t)\right|\right|^{2}}\right) , \tag{26}$$

so that then we'll have

$$\begin{split} \nabla^2 q\left(\tilde{\mathbf{w}}(t)\right) \frac{d}{dt} \tilde{\mathbf{w}}(t) &= \sum_{n=1}^N \mathbf{x}^{(n)} g\left(\tilde{\mathbf{w}}(t)\right) r^{(n)}(t) \\ \frac{d}{dt} \left(\nabla q\left(\tilde{\mathbf{w}}(t)\right)\right) &= \sum_{n=1}^N \mathbf{x}^{(n)} g\left(\tilde{\mathbf{w}}(t)\right) r^{(n)}(t) \\ \nabla q\left(\tilde{\mathbf{w}}(t)\right) - \nabla q\left(\tilde{\mathbf{w}}(0)\right) &= \sum_{n=1}^N \mathbf{x}^{(n)} \int_0^t g\left(\tilde{\mathbf{w}}(t')\right) r^{(n)}(t') dt' \;. \end{split}$$

Assuming $\nabla q\left(\tilde{\mathbf{w}}(0)\right)=0$, and denoting $\nu^{(n)}=\int_0^\infty g\left(\tilde{\mathbf{w}}(t')\right)r^{(n)}(t')dt'$, we get the condition

$$\nabla q\left(\tilde{\mathbf{w}}(\infty)\right) = \sum_{n=1}^{N} \mathbf{x}^{(n)} \nu^{(n)} .$$

To find q we note that

$$\nabla q\left(\tilde{\mathbf{w}}(t)\right) = \hat{q}'\left(\|\tilde{\mathbf{w}}(t)\|\right) \frac{\tilde{\mathbf{w}}(t)}{\|\tilde{\mathbf{w}}(t)\|} + \mathbf{z}$$

and

$$\begin{split} \nabla^{2}q\left(\tilde{\mathbf{w}}(t)\right) &= \left[\hat{q}''\left(\|\tilde{\mathbf{w}}(t)\|\right) - \hat{q}'\left(\|\tilde{\mathbf{w}}(t)\|\right) \frac{1}{\|\tilde{\mathbf{w}}(t)\|}\right] \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}^{\top}(t)}{\|\tilde{\mathbf{w}}(t)\|^{2}} + \hat{q}'\left(\|\tilde{\mathbf{w}}(t)\|\right) \frac{1}{\|\tilde{\mathbf{w}}(t)\|} \mathbf{I} \\ &= \frac{\hat{q}'\left(\|\tilde{\mathbf{w}}(t)\|\right)}{\|\tilde{\mathbf{w}}(t)\|} \left[\mathbf{I} - \left[1 - \|\tilde{\mathbf{w}}(t)\| \frac{\hat{q}''\left(\|\tilde{\mathbf{w}}(t)\|\right)}{\hat{q}'\left(\|\tilde{\mathbf{w}}(t)\|\right)}\right] \frac{\tilde{\mathbf{w}}(t)\tilde{\mathbf{w}}^{\top}(t)}{\|\tilde{\mathbf{w}}(t)\|^{2}}\right] \;. \end{split}$$

Comparing the form above with the Hessian in Eq. 26 we require

$$\frac{g\left(\mathbf{\tilde{w}}(t)\right)}{\left(\sum_{i=1}^{m}\left|c_{i}(t)\right|\right)} = \hat{q}'\left(\left\|\mathbf{\tilde{w}}(t)\right\|\right) ,$$

and

$$1 - \|\tilde{\mathbf{w}}(t)\| \frac{\hat{q}''\left(\|\tilde{\mathbf{w}}(t)\|\right)}{\hat{q}'\left(\|\tilde{\mathbf{w}}(t)\|\right)} = \frac{1}{2}$$

$$\Rightarrow \frac{\hat{q}''\left(x\right)}{\hat{q}'\left(x\right)} = \frac{1}{2x}$$

$$\log \hat{q}'\left(x\right) = \frac{1}{2}\ln x + C$$

$$\hat{q}'\left(x\right) = C\sqrt{x} .$$

Therefore,

$$q\left(\tilde{\mathbf{w}}(t)\right) = C \left\|\tilde{\mathbf{w}}(t)\right\|^{3/2} + \mathbf{z}^{\top}\tilde{\mathbf{w}}(t) + C'$$

and using the condition $\nabla q\left(\tilde{\mathbf{w}}(0)\right) = 0$ we get

$$q(\tilde{\mathbf{w}}(t)) = C \|\tilde{\mathbf{w}}(t)\|^{3/2} - C \frac{3}{2} \|\tilde{\mathbf{w}}(0)\|^{-1/2} \tilde{\mathbf{w}}(0)^{\top} \tilde{\mathbf{w}}(t) + C'.$$

We can set C = 1, C' = 0 and get

$$q\left(\tilde{\mathbf{w}}(t)\right) = \left\|\tilde{\mathbf{w}}(t)\right\|^{3/2} - \frac{3}{2} \left\|\tilde{\mathbf{w}}(0)\right\|^{-1/2} \tilde{\mathbf{w}}(0)^{\top} \tilde{\mathbf{w}}(t) .$$

We note that $\|\nabla q(\tilde{\mathbf{w}})\| < \infty$ when $\|\tilde{\mathbf{w}}\| < \infty$, and thus by using Lemma 3.1 we get that $\hat{\nu}^{(n)} < \infty$ for all n. Therefore, gradient flow satisfies the KKT conditions for minimizing this q.

E. Proof of Theorem 6.3

We recall the proof of Theorem 6.1 given in Appendix C.

The form of the q function described in the proof is $q(\tilde{\mathbf{w}}_i(t)) = \hat{q}(\|\tilde{\mathbf{w}}_i(t)\|) + \mathbf{z}^{\top}\tilde{\mathbf{w}}_i(t)$, where

$$\mathbf{z} = -\frac{3}{2} \sqrt{\sqrt{\|\tilde{\mathbf{w}}(0)\|^2 + \frac{\delta^2}{4} - \frac{\delta}{2}} \frac{\tilde{\mathbf{w}}(0)}{\|\tilde{\mathbf{w}}(0)\|}} .$$

Under the limit $\|\tilde{\mathbf{w}}_i(0)\| \to 0$ we can see that $\|\mathbf{z}\| \to 0$.

When the linear term captured by z in the q function is equal to zero, we have

$$\nabla q\left(\tilde{\mathbf{w}}_{i}(\infty)\right) = \hat{q}'\left(\|\tilde{\mathbf{w}}_{i}(\infty)\|\right) \frac{\tilde{\mathbf{w}}_{i}(\infty)}{\|\tilde{\mathbf{w}}_{i}(\infty)\|} = \sum_{n} \mathbf{x}^{(n)} \nu_{i}^{(n)}.$$

Defining $\hat{\nu}_i^{(n)}=\frac{\nu_i^{(n)}\|\tilde{\mathbf{w}}_i(\infty)\|}{\hat{q}'(\|\tilde{\mathbf{w}}_i(\infty)\|)}$ we get

$$\tilde{\mathbf{w}}_i(\infty) = \sum_n \mathbf{x}^{(n)} \hat{\nu}_i^{(n)} .$$

We notice that

$$\hat{q}'(x) = \sqrt{\sqrt{x^2 + \frac{\delta_i^2}{4}} - \frac{\delta_i}{2}}$$

Using the linear predictor definition of $\tilde{\mathbf{w}}(\infty) = \sum_i \tilde{\mathbf{w}}_i(\infty)$, denoting $\hat{\nu}^{(n)} = \sum_i \hat{\nu}_i^{(n)}$ and summing over i gives

$$\tilde{\mathbf{w}}(\infty) = \sum_{n} \mathbf{x}^{(n)} \hat{\nu}^{(n)}$$

We note that $\|\nabla q(\tilde{\mathbf{w}})\| < \infty$ when $\|\tilde{\mathbf{w}}\| < \infty$, and thus by using Lemma 3.1 we get that $\hat{\nu}^{(n)} < \infty$ for all n. Therefore, the above is a valid KKT stationarity condition of the form $\nabla q(\tilde{\mathbf{w}}(\infty)) = \sum_n \mathbf{x}^{(n)} \hat{\nu}^{(n)}$ with $\nabla q(\mathbf{w}) = \mathbf{w}$. Hence, gradient flow satisfies the KKT conditions for minimizing this q.

It follows that for a multi-neuron fully connected network with non-zero infinitesimal initialization,

$$\tilde{\mathbf{w}}(\infty) = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{w}\|^2 \text{ s.t. } \mathbf{X}^{\top} \mathbf{w} = \mathbf{y}$$

which is equivalent to

$$\tilde{\mathbf{w}}(\infty) = \operatorname{argmin}_{\mathbf{w}} \|\mathbf{w}\| \text{ s.t. } \mathbf{X}^{\top} \mathbf{w} = \mathbf{y} .$$

F. Characterization of the Implicit Bias Captured in Theorem 4.1

In this Appendix we provide a detailed characterization of the implicit bias for a diagonal linear network as described in Theorem 4.1,

$$\tilde{\mathbf{w}}(\infty) = \arg\min_{\mathbf{w}} Q_{\mathbf{k}}(\mathbf{w}) \quad \text{s.t. } \mathbf{X}^{\top} \mathbf{w} = \mathbf{y}$$

where

$$Q_{\mathbf{k}}\left(\mathbf{w}\right) = \sum_{i=1}^{d} q_{k_i}\left(w_i\right) ,$$

$$q_k(x) = \frac{\sqrt{k}}{4} \left[1 - \sqrt{1 + \frac{4x^2}{k}} + \frac{2x}{\sqrt{k}} \operatorname{arcsinh}\left(\frac{2x}{\sqrt{k}}\right) \right]$$

and

$$\sqrt{k_i} = \frac{4\alpha_i \left(1 + s_i^2\right)}{1 - s_i^2} \ .$$

For simplicity, we next assume $\alpha_i = \alpha$, $s_i = s \ \forall i \in [d]$.

We can notice that for $k \to \infty$, i.e. $\frac{\alpha}{1-s^2} \to \infty$ we get that:

$$q_{k}(w_{i}) \xrightarrow{k \to \infty} \frac{w_{i}^{2}}{\sqrt{k}} = \frac{1}{2(u_{+,i}^{2}(0) + v_{+,i}^{2}(0))} w_{i}^{2}$$

$$\Rightarrow Q_{k}(\mathbf{w}) = \sum_{i=1}^{d} q_{k}(w_{i}) = \sum_{i=1}^{d} \frac{1}{2(u_{+,i}^{2}(0) + v_{+,i}^{2}(0))} w_{i}^{2}.$$

Calculating the tangent kernel at the initialization we get

$$\begin{split} K(\mathbf{x}_{1},\mathbf{x}_{2}) = & \langle \nabla f\left(\mathbf{x}_{1}\right), \nabla f\left(\mathbf{x}_{2}\right) \rangle \\ = & \langle \left[\mathbf{x}_{1} \circ \mathbf{u}_{+}\left(0\right), \mathbf{x}_{1} \circ \mathbf{v}_{+}\left(0\right), -\mathbf{x}_{1} \circ \mathbf{u}_{-}\left(0\right), -\mathbf{x}_{1} \circ \mathbf{v}_{-}\left(0\right)\right], \\ \left[\mathbf{x}_{2} \circ \mathbf{u}_{+}\left(0\right), \mathbf{x}_{2} \circ \mathbf{v}_{+}\left(0\right), -\mathbf{x}_{2} \circ \mathbf{u}_{-}\left(0\right), -\mathbf{x}_{2} \circ \mathbf{v}_{-}\left(0\right)\right] \rangle \\ = & \mathbf{x}_{1}^{\top} \operatorname{diag}\left(\mathbf{u}_{+}^{2}\left(0\right) + \mathbf{v}_{+}^{2}\left(0\right) + \mathbf{u}_{-}^{2}\left(0\right) + \mathbf{v}_{-}^{2}\left(0\right)\right) \mathbf{x}_{2} \;. \end{split}$$

For the case of unbiased initialization $\left(u_{+,i}\left(0\right)=u_{-,i}\left(0\right),v_{+,i}\left(0\right)=v_{-,i}\left(0\right)\right)$ we have

$$K(\mathbf{x}_1, \mathbf{x}_2) = 2\mathbf{x}_1^{\top} \operatorname{diag} \left(\mathbf{u}_+^2(0) + \mathbf{v}_+^2(0) \right) \mathbf{x}_2$$
.

Therefore, using Lemma H.4, we can see that $Q_k(\mathbf{w})$ is the RKHS norm with respect to the NTK at initialization. Therefore, $k \to \infty$ indeed describes the NTK regime.

For $k \to 0$, i.e. $\frac{\alpha}{1-s^2} \to 0$ we get that:

$$\begin{split} q_k\left(w_i\right) &= \frac{\sqrt{k}}{4} \left[1 - \sqrt{1 + \frac{4w_i^2}{k}} + \frac{2w_i}{\sqrt{k}} \mathrm{arcsinh}\left(\frac{2w_i}{\sqrt{k}}\right)\right] \\ &= \frac{\sqrt{k}}{4} - \sqrt{\frac{k}{16} + \frac{w_i^2}{4}} + \frac{w_i}{2} \mathrm{arcsinh}\left(\frac{2w_i}{\sqrt{k}}\right) \\ &\xrightarrow{k \to 0} \frac{|w_i|}{2} + \frac{|w_i|}{2} \log\left(\frac{4|w_i|}{\sqrt{k}}\right) \\ &= \frac{1}{2} \left[-|w_i| + |w_i| \log\left(\frac{4|w_i|}{\sqrt{k}}\right)\right] \\ &= \frac{1}{2} \left[|w_i| \log\left(\frac{1}{\sqrt{k}}\right) + |w_i| \left(\log\left(4|w_i|\right) - 1\right)\right] \end{split}$$

$$\Rightarrow \frac{q_k(w_i)}{\frac{1}{2}\log\left(\frac{1}{\sqrt{k}}\right)} \to |w_i| + \frac{|w_i|\left(\log\left(4|w_i|\right) - 1\right)}{\log\left(\frac{1}{\sqrt{k}}\right)}$$
$$= |w_i| + O\left(\frac{1}{\log\left(\frac{1}{\sqrt{k}}\right)}\right) \to |w_i|$$

Therefore,

$$Q_{k}(\mathbf{w}) = \sum_{i=1}^{d} |w_{i}| = \|\mathbf{w}\|_{1}$$

and $k \to 0$ describes the rich regime (Woodworth et al., 2020).

G. Characterization of the Implicit Bias Captured in Theorem 6.1

In this Appendix we provide a detailed characterization of the implicit bias for a two-layer fully connected neural network with a single hidden neuron (m = 1) described in Theorem 6.1,

$$\tilde{\mathbf{w}}(\infty) = \underset{\mathbf{w}}{\operatorname{arg \, min}} q(\mathbf{w}) \quad \text{s.t. } \mathbf{X}^{\top} \mathbf{w} = \mathbf{y}$$

$$q(\tilde{\mathbf{w}}) = \hat{q}(\|\tilde{\mathbf{w}}\|) + \mathbf{z}^{\top} \tilde{\mathbf{w}},$$

where

$$\hat{q}\left(x\right) = \frac{\left(x^2 - \frac{\delta}{2}\left(\frac{\delta}{2} + \sqrt{x^2 + \frac{\delta^2}{4}}\right)\right)\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}{x}$$

$$\mathbf{z} = -\frac{3}{2}\sqrt{\sqrt{\left\|\tilde{\mathbf{w}}\left(0\right)\right\|^2 + \frac{\delta^2}{4} - \frac{\delta}{2}}\frac{\tilde{\mathbf{w}}\left(0\right)}{\left\|\tilde{\mathbf{w}}\left(0\right)\right\|}}.$$

Note that for the sake of simplicity the notations above are an abbreviated version of those found Theorem 6.1.

We will employ the initialization orientation, defined as $\mathbf{u} = \frac{\mathbf{w}(0)}{\|\mathbf{w}(0)\|}$, and the initialization scale, $\|\tilde{\mathbf{w}}(0)\| = \alpha$.

G.1. The case $\alpha \to 0$ for any $0 \le s < 1$

Note that from Lemma H.2 (part 2) we have

$$\|\mathbf{z}\| = \frac{3}{2}\sqrt{\sqrt{\left\|\tilde{\mathbf{w}}\left(0\right)\right\|^{2} + \frac{\delta^{2}}{4} - \frac{\delta}{2}}} = \frac{3}{2}\sqrt{\sqrt{\alpha^{2} + \frac{\delta^{2}}{4} - \frac{\delta}{2}}} = \frac{3}{2}\sqrt{\alpha\frac{1-s}{1+s}} ,$$

and thus for any $0 \le s < 1$ when $\alpha \to 0$ we get that $\|\mathbf{z}\| \to 0$. It follows that $q_{\delta}(\tilde{\mathbf{w}}) = \hat{q}(\|\tilde{\mathbf{w}}\|)$ and since $\hat{q}(x)$ is a monotonically increasing function (for any δ) we get the ℓ_2 implicit bias,

$$\tilde{\mathbf{w}}\left(\infty\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\left(q_{\delta}\left(\tilde{\mathbf{w}}\right)\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\left(\hat{q}\left(\|\tilde{\mathbf{w}}\|\right)\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\|\tilde{\mathbf{w}}\| \ .$$

We call this regime the Anti-NTK regime.

G.2. Other special cases

Here we analyze the Taylor expansion of $q(\tilde{\mathbf{w}})$ around $\tilde{\mathbf{w}}(0)$. To this end, we know that

$$\nabla^{2} q\left(\tilde{\mathbf{w}}\right) = \frac{\hat{q}'\left(\|\tilde{\mathbf{w}}\|\right)}{\|\tilde{\mathbf{w}}\|} \left(\mathbf{I} - \frac{\tilde{\mathbf{w}}\tilde{\mathbf{w}}^{\top}}{2\left(\frac{\delta}{2} + \sqrt{\frac{\delta^{2}}{4} + \|\tilde{\mathbf{w}}\|^{2}}\right)\sqrt{\frac{\delta^{2}}{4} + \|\tilde{\mathbf{w}}\|^{2}}}\right),$$

and thus the third-order term is order of $\frac{d}{dx}\frac{\hat{q}'(x)}{x}(\|\mathbf{\tilde{w}}(0)\|)$. Since we know that $\nabla q(\mathbf{\tilde{w}}(0)) = 0$ we can write the Taylor expansion as follows

$$q\left(\tilde{\mathbf{w}}\right) = q\left(\tilde{\mathbf{w}}\left(0\right)\right) + \frac{1}{2}\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)^{\top} \nabla^{2} q\left(\tilde{\mathbf{w}}\left(0\right)\right) \left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right) + O\left(\frac{d}{dx} \frac{\hat{q}'\left(x\right)}{x} \left(\|\tilde{\mathbf{w}}\left(0\right)\|\right)\right).$$

By using Lemma H.2 and

$$\hat{q}'(x) = \sqrt{\sqrt{x^2 + \frac{\delta^2}{4} - \frac{\delta}{2}}}$$

we calculate

$$\nabla^{2}q\left(\tilde{\mathbf{w}}\left(0\right)\right) = \frac{\hat{q}'\left(\left\|\tilde{\mathbf{w}}\left(0\right)\right\|\right)}{\left\|\tilde{\mathbf{w}}\left(0\right)\right\|} \left(\mathbf{I} - \frac{\tilde{\mathbf{w}}\left(0\right)\tilde{\mathbf{w}}\left(0\right)^{\top}}{\left(\frac{\delta}{2} + \sqrt{\frac{\delta^{2}}{4} + \left\|\tilde{\mathbf{w}}\left(0\right)\right\|^{2}}\right)\sqrt{\delta^{2} + 4\left\|\tilde{\mathbf{w}}\left(0\right)\right\|^{2}}}\right)$$

$$= \frac{\sqrt{\sqrt{\left\|\tilde{\mathbf{w}}\left(0\right)\right\|^{2} + \frac{\delta^{2}}{4} - \frac{\delta}{2}}}}{\left\|\tilde{\mathbf{w}}\left(0\right)\right\|} \left(\mathbf{I} - \frac{\tilde{\mathbf{w}}\left(0\right)\tilde{\mathbf{w}}\left(0\right)^{\top}}{2\left(\frac{\delta}{2} + \sqrt{\frac{\delta^{2}}{4} + \left\|\tilde{\mathbf{w}}\left(0\right)\right\|^{2}}\right)\sqrt{\frac{\delta^{2}}{4} + \left\|\tilde{\mathbf{w}}\left(0\right)\right\|^{2}}}\right)$$

$$= \frac{\sqrt{\sqrt{\alpha^{2} + \frac{\delta^{2}}{4} - \frac{\delta}{2}}}}{\alpha} \left(\mathbf{I} - \frac{\alpha^{2}\mathbf{u}\mathbf{u}^{\top}}{2\left(\frac{\delta}{2} + \sqrt{\frac{\delta^{2}}{4} + \alpha^{2}}\right)\sqrt{\frac{\delta^{2}}{4} + \alpha^{2}}}\right)$$

$$= \sqrt{\frac{1 - s}{\alpha}}\sqrt{\frac{1}{1 + s}} \left(\mathbf{I} - \frac{(1 - s)^{2}}{2\left(1 + s^{2}\right)}\mathbf{u}\mathbf{u}^{\top}\right).$$

Also, by using

$$\hat{q}''(x) = \frac{x}{2\sqrt{x^2 + \frac{\delta^2}{4}}\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}$$

we have that

$$\begin{split} \frac{d}{dx} \frac{\hat{q}'(x)}{x} &= \frac{\hat{q}''(x) x - \hat{q}'(x)}{x^2} \\ &= \frac{\frac{x^2}{2\sqrt{x^2 + \frac{\delta^2}{4}} \sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}}{x^2} \\ &= \frac{1}{2\sqrt{x^2 + \frac{\delta^2}{4}} \sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}} - \frac{\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}}{x^2}, \end{split}$$

and thus, using Lemma H.2 we get

$$\frac{d}{dx}\frac{\hat{q}'(x)}{x}(\|\tilde{\mathbf{w}}(0)\|) = \frac{1}{2\sqrt{\alpha^2 + \frac{\delta^2}{4}}\sqrt{\sqrt{\alpha^2 + \frac{\delta^2}{4} - \frac{\delta}{2}}}} - \frac{\sqrt{\sqrt{\alpha^2 + \frac{\delta^2}{4} - \frac{\delta}{2}}}}{\alpha^2}$$

$$= -\frac{(1-s)^{2.5}}{\alpha^{1.5}} \left(\frac{1}{2(1+s^2)\sqrt{1+s}}\right).$$

Therefore, the Taylor expansion is

$$q\left(\tilde{\mathbf{w}}\right) = q\left(\tilde{\mathbf{w}}\left(0\right)\right) + \frac{1}{2}\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)^{\intercal} \left[\sqrt{\frac{1-s}{\alpha}}\sqrt{\frac{1}{1+s}}\left(\mathbf{I} - \frac{\left(1-s\right)^{2}}{2\left(1+s^{2}\right)}\mathbf{u}\mathbf{u}^{\intercal}\right)\right] \left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right) + O\left(\frac{\left(1-s\right)^{2.5}}{\alpha^{1.5}}\left(\frac{1}{2\left(1+s^{2}\right)\sqrt{1+s}}\right)\right).$$

We are interested in cases where the higher order terms vanish. Since $0 \le s < 1$, we only need to require

$$\frac{(1-s)^{2.5}}{\alpha^{1.5}} \ll \sqrt{\frac{1-s}{\alpha}}$$

$$\Rightarrow \frac{(1-s)^2}{\alpha} \ll 1. \tag{27}$$

In follows that when $\frac{(1-s)^2}{\alpha} \ll 1$ we can approximate

$$q\left(\tilde{\mathbf{w}}\right) \approx q\left(\tilde{\mathbf{w}}\left(0\right)\right) + \frac{1}{2}\sqrt{\frac{1-s}{\alpha}}\sqrt{\frac{1}{1+s}}\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)^{\top} \left(\mathbf{I} - \frac{(1-s)^{2}}{2\left(1+s^{2}\right)}\mathbf{u}\mathbf{u}^{\top}\right)\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right) \ .$$

In this case, minimizing $q(\tilde{\mathbf{w}})$ boils down to minimizing the squared Mahalanobis norm

$$\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)^{\top} \mathbf{B} \left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)$$

where

$$\mathbf{B} = \mathbf{I} - \frac{(1-s)^2}{2(1+s^2)} \mathbf{u} \mathbf{u}^{\top}.$$
 (28)

Note that ${\bf B}^{-1}$ is related to the NTK at initialization, since it is easy to verify that

$$\mathbf{B}^{-1} = \frac{1}{a(0)^2} \left(a(0)^2 \mathbf{I} + \mathbf{w}(0) \mathbf{w}(0)^\top \right) ,$$

and the NTK at initialization is given by

$$K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \left(a(0)^{2} \mathbf{I} + \mathbf{w}(0) \mathbf{w}(0)^{\top} \right) \mathbf{x}' = a(0)^{2} \left(\mathbf{x}^{\top} \mathbf{B}^{-1} \mathbf{x}' \right).$$

More specifically, using Lemma H.4, we can see that $q(\tilde{\mathbf{w}})$ is the RKHS norm with respect to the NTK at initialization.

Next, we discuss the cases when condition (27) holds.

G.2.1. The case $\alpha \to \infty$ for any $0 \le s < 1$

In this case (27) holds and thus the implicit bias is given by

$$\tilde{\mathbf{w}}\left(\infty\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\left(q_{\delta}\left(\tilde{\mathbf{w}}\right)\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\left(\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)^{\top} \mathbf{B}\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)\right) ,$$

where \mathbf{B} defined in (28).

G.2.2. The case $s \to 1$ for any $\alpha > 0$

In this case (27) also holds and thus the implicit bias is given by

$$\tilde{\mathbf{w}}\left(\infty\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\left(q_{\delta}\left(\tilde{\mathbf{w}}\right)\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\left(\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)^{\top} \mathbf{B}\left(\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right)\right) ,$$

where **B** defined in (28). Since $s \to 1$ we get that $\mathbf{B} \to \mathbf{I}$ and thus

$$\tilde{\mathbf{w}}\left(\infty\right) = \operatorname*{arg\,min}_{\tilde{\mathbf{w}}}\left(\left\|\tilde{\mathbf{w}} - \tilde{\mathbf{w}}\left(0\right)\right\|\right) \ .$$

H. Auxiliary Lemmas

Lemma H.1.
$$\delta = a^2(0) - \|\mathbf{w}(0)\|^2 = \frac{4\alpha s}{1-s^2}$$
.

Proof. By the notation

$$\alpha = |a(0)| \cdot ||\mathbf{w}(0)||$$

$$s = \frac{|a(0)| - ||\mathbf{w}(0)||}{|a(0)| + ||\mathbf{w}(0)||}$$

we get

$$1 - s^2 = \frac{4|a(0)| \|\mathbf{w}(0)\|}{(|a(0)| + \|\mathbf{w}(0)\|)^2}$$

and

$$\frac{4\alpha s}{1 - s^2} = 4\alpha \frac{|a(0)| - ||\mathbf{w}(0)||}{|a(0)| + ||\mathbf{w}(0)||} \frac{(|a(0)| + ||\mathbf{w}(0)||)^2}{4\alpha}$$
$$= a^2 (0) - ||\mathbf{w}(0)||^2 = \delta.$$

Lemma H.2. The initialization scale α , initialization shape s and the balancedness factor δ satisfy:

1.

$$\sqrt{\alpha^2 + \frac{\delta^2}{4}} = \frac{\alpha \left(1 + s^2\right)}{1 - s^2}$$

2.

$$\sqrt{\alpha^2 + \frac{\delta^2}{4}} - \frac{\delta}{2} = \alpha \frac{1-s}{1+s}$$

3.

$$\sqrt{\alpha^2 + \frac{\delta^2}{4}} + \frac{\delta}{2} = \alpha \frac{1+s}{1-s}$$

Proof. 1. Using Lemma H.1 we get

$$\sqrt{\alpha^2 + \frac{\delta^2}{4}} = \sqrt{\alpha^2 + \frac{4\alpha^2 s^2}{(1 - s^2)^2}} = \frac{\alpha}{1 - s^2} \sqrt{(1 - s^2)^2 + 4s^2} = \frac{\alpha \left(1 + s^2\right)}{1 - s^2} \; .$$

2. Using part 1 and Lemma H.1 we get

$$\sqrt{\alpha^2 + \frac{\delta^2}{4}} - \frac{\delta}{2} = \frac{\alpha \left(1 + s^2\right)}{1 - s^2} - \frac{2\alpha s}{1 - s^2} = \alpha \frac{\left(1 - s\right)^2}{1 - s^2} = \alpha \frac{1 - s}{1 + s} \ .$$

3. Using part 1 and Lemma H.1 we get

$$\sqrt{\alpha^2 + \frac{\delta^2}{4}} + \frac{\delta}{2} = \frac{\alpha \left(1 + s^2\right)}{1 - s^2} + \frac{2\alpha s}{1 - s^2} = \alpha \frac{\left(1 + s\right)^2}{1 - s^2} = \alpha \frac{1 + s}{1 - s} \; .$$

Lemma H.3. Let

$$\hat{g}(x) = \frac{\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}{x} \left(\frac{\delta}{2} + \sqrt{\frac{\delta^2}{4} + x^2}\right)$$

be defined $\forall x > 0$, and $\forall \delta \geq 0$. Then:

$$\lim_{x \to 0^+} \hat{g}(x) = 0 .$$

Proof.

$$\lim_{x \to 0^+} \hat{g}(x) = \lim_{x \to 0^+} \delta \frac{\sqrt{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}}{x} = \lim_{x \to 0^+} \delta \sqrt{\frac{\sqrt{x^2 + \frac{\delta^2}{4}} - \frac{\delta}{2}}{x^2}} \;.$$

Using L'Hopital's rule we have

$$\lim_{x \to 0^+} \frac{\sqrt{x^2 + \frac{\delta^2}{4} - \frac{\delta}{2}}}{x^2} = \lim_{x \to 0^+} \frac{\frac{x}{\sqrt{x^2 + \frac{\delta^2}{4}}}}{2x} = \lim_{x \to 0^+} \frac{1}{2\sqrt{x^2 + \frac{\delta^2}{4}}} = \frac{1}{\delta} ,$$

and so

$$\lim_{x \to 0^+} \hat{g}(x) = \lim_{x \to 0^+} \delta \sqrt{\frac{1}{\delta}} = \sqrt{\delta} .$$

Lemma H.4. Let **A** be a positive definite matrix and $f(\mathbf{x})$ a kernel predictor corresponding to a linear kernel $K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}'$. Then

$$||f||_K^2 = \mathbf{w}^\top \mathbf{A}^{-1} \mathbf{w} ,$$

where $f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x}$.

Proof. Write $K(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}' = \mathbf{x}^{\top} \mathbf{A}^{\frac{1}{2}} \mathbf{A}^{\frac{1}{2}} \mathbf{x}'$, then $\phi(\mathbf{x}) = \mathbf{A}^{\frac{1}{2}} \mathbf{x}$ is the corresponding feature mapping and

$$f(\mathbf{x}) = \tilde{\mathbf{w}}^{\top} \phi(\mathbf{x}) = \tilde{\mathbf{w}}^{\top} \mathbf{A}^{\frac{1}{2}} \mathbf{x} = \mathbf{w}^{\top} \mathbf{x}$$

for $\mathbf{w} = \mathbf{A}^{\frac{1}{2}} \tilde{\mathbf{w}}$. Therefore

$$\|f\|_K^2 = \|\tilde{\mathbf{w}}\|^2 = \|\mathbf{A}^{-\frac{1}{2}}\mathbf{w}\|^2 = \mathbf{w}^{\top}\mathbf{A}^{-1}\mathbf{w}$$
.