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Appendices

A. Proof of Lemma 3.1

We have (W (t)) such that for all ¢, VQ(W(t)) = Xwv(t). Thus we get that for every finite time ¢, W(t) is the solution
of the minimization problem w(t) = argmin,, Q(w) s.t. X'w = X TWw(t). Since the square loss || X T Ww(t) — y||?
is minimized by gradient flow and therefore bounded for all time ¢, we get that the predictions are also bounded, i.e.

t : | XTw(t)|| < C for some finite C. Therefore, the solution w to the minimization problem above is of bounded
constraints and is therefore also of bounded norm, i.e. ||W(t)|| < C’ for some finite C’ for all ¢. Taking the limit ¢ — co we
therefore converge to a finite weight vector w (o).

Next, from the relation VQ(Ww(t)) = Xwv(t) we get that if the RHS is infinite at ¢ — oo then VQ(W(o0)) is infinite.
However, since we converge to a finite weight vector w(oc), we get a contradiction since VQ (W) is bounded for any finite
input. Therefore, lim;_, ., Xu(t) is finite.

Next, we decompose X to its singular value decomposition

X = E 55V

j:Sj >0
where s; are the singular values, and {v;} and {u;} are two sets of orthogonal vectors. We define
P T
v tlggo Z w;u,; v (t)
i:8; >0

and note that

tlggo Z Z s]vlu u;u; v (t)

j:sj>01:5;>0
@
lim E slvlu v(

t—o00
7:8;>0

= tlim Xv(t) =VQ (W (c0))
— 00
where in (1) we used the fact that ujTuz- = 0; ;. Therefore, v respects the KKT stationary condition
Xv =VQ (W ()) .
Lastly, we show that v is finite. Recall that

VQ (W (0)) = lim E slvzu v(
t—o0
j:s;>0

For any i such that s; > 0, if we multiply this equation by v, from the left, recalling v,/ v; = J; ;, we obtain
00 > 570 VQ (W (c0)) = tlim w; v (t)
—00
Therefore,

v] = < 0.

tlgglo Z wu; v ()

1:5;, >0
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B. Proof of Theorem 4.1

Proof. We examine a two-layer “diagonal linear network™ with untied weights
f(x;up,u_, vy, v_)=(uyovy —u_ov_

where
W=Uujovy—u_ov_. (17)

The gradient flow dynamics of the parameters is given by:

= = 04,4(t) (Z i ><t>>

dt - 8U+ﬂ'

dvg i oL N ) n
B~ = uyi(t) (in It ><t>>

dt B 8’[)_;'_71'

=1
dv_; oL N
dt _81)_71- = —u—i(?) Z

where we denote the residual
rM (1) £ 4™ —w T (1)x™ .

From Eq. 17 we can write:

d’d]l du.hi T d’U+,,‘ du_ﬂ- dU_,i
= Vit Uy i— " — Vi — U—
dt dat TR g dat Tt
N N N N
_ U-Qm Z xgn),r(n) + Ui,z‘ Z xgn)r(n) + vﬁ,i Z xE”)T(”) + “2—,i Z xz(-")r(”)
n=1 n=1 n=1 n=1
N
= (7ﬁH + vi’i + u%)i + v?i) Z xgn)r(”) .
n=1
Thus,
- N
uil + v_zm + uQ_Z + v37 dt T;xz T

We note that the quantity u4 ;u_ ; + vy ;v_ ; is conserved during training, since

d duy 4 du_,; dvoy, dv_ ;
= (Uit +0p v i) = %U—,z’ + u+7i7’l + d? V- + U+,z'7’Z

dt
N N N N
=U_ Uy, Z xl(.n)r(”) — Ug U 4 Z xEn)r(”) + Uy U Z xl(.")r(") — U U g Z xEn)r(”)
n=1 n=1 n=1 n=1

=0.

So
Uy U— + UV iV— 5 = U4 4 (0) U— (0) + Vi (0) Vi (0) £ C; . (18)

Combining Eq. 17 and Eq. 18 we can write:

7. — 2 2 2 2 2

Wi = Up (V40— U iV Wi = ug v Ul T = Uy Uy U U
— 2 2 2 2 _ 2

Uy Ui+ VUi = Ci uy uZ ;UL 0T 2Ug U U U =
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2 2,2 2 .2 -2 2 (19)

We also know that:

Vii — Uy = vi,i (0) - ’U’i,z (O) 2 6
ﬁﬂ. — u%l = vg,i (0) —u? , (0) &5
which can be easily shown since 4% ( L (02 —u? ) So using Eq. 19 we can write

2 2

v}, —u},;)=0and &
Up it (5-" it u+ l) (5—71' + u2—2) + ui—,i (64‘71' + Uil) tu (5— i+ 1) - ﬁ)zQ = sz

2 ~
= (W +ul )+ (i +0-) (ul; +ul ) + 04405 —wf — ¢ =0

(B 0o G + 600 — A (B0 — i — )
2
(B +0) + (0 — 500 + 42 + 47

— 5 : (20)

:>u+z+u i

Coming back to uﬁ_l + v_zhi + u2_7i + v%)i we have using Eq. 20 that:

ui ol bl el = 2(U+1+U )+5+L+5—Z

Therefore,

1 dw; n
cllu = in NCON
\/(5+7i —0_4)° + 4c2 + 42 n=1

We follow the IMD approach for deriving the implicit bias (presented in detail in Section 3 of the main paper) and try and
find a function g(w;) such that:
9 - 1
Vg (@(0) = 2 , e
Vs —0-0)% + 42 + a2

which will then give us that
or

Integrating the above, we get
N t
Va () - Va (@:(0) = > ol [0t
0

Denoting v/(™) = I (M) (t')dt’, and assuming q also satisfies V¢ (;(0)) = 0, will in turn give us the KKT stationarity
condition

N
Vg (wi(00)) = 3 M)
n=1

Namely, if we find a ¢ that satisfies the conditions above we will have that gradient flow (for each weight w;) satisfies the
KKT conditions for minimizing this q.
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We next turn to solving for this g, beginning with Eq. 21:
1 B 1
= —
\/(5+,i —o_)? A paa VR A

q// (’U)z) _

where k; S (6+,i — 6—71‘)2 + 4012.
Integrating the above, and using the constraint ¢’ (0) = 0 we get:

_ log (\/m + 27171-) —log (\/E)

2

q' (w;)
Simplifying the above we obtain:

_ V402 + k; + 2w; 1 4?2, 1 2w,
= =3 log 1+ + .

" (10;) ! lo arcsinh
W) = = = —arcsin
! 2 & V g ki \/ki 2 \/k’i

Finally, we integrate again to obtain the desired ¢:

1 [Wi 2 k; 2 20; 2
qr, (W;) = 5/0 arcsinh (\/%) dz = \4F 1— /14 ;::z n \/%arcsinh<\/%> 7

where

ki = (640 —0_3)" +4c? = (v1,(0) — w2, (0) —v2 , (0) +u? (0))2 + 4 (ug i (0) u— i (0) + 04 (0) v (0))% .

For the case u4 ; (0) = u_; (0),v4,; (0) = v_ (0) (unbiased initialization of w; (0) = 0) we get

ki =4 (u?,; (0)+ 07, (0))2

= VE =2 (u2; (0) + 2, (0))

1-— 512
Next, if we denote Qi (W) = Z?:l qx, (0;), we can write
N
VQi(W(00)) = (Vg (i1 (00)) , ..., V (Wa(00))) " = D> xMptn).
n=1

We note that ||VQy(W)|| < oo when ||W|| < oo, and thus by using Lemma 3.1 we get that v(™) < oo for all n. Therefore,
we get that gradient flow satisfies the KKT conditions for minimizing this ), which completes the proof. O

C. Proof of Theorem 6.1

Proof. We start by examining a general multi-neuron fully connected linear network of depth 2, reducing our claim at the
end to the case of a network with a single hidden neuron (m = 1).

The fully connected linear network of depth 2 is defined as
f(x;{a;}, {w;}) = Zaiw:x =w'x,
i=1

~ A ~ ~ A
where w = " w;, and w; £ a;w;.
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The parameter gradient flow dynamics are given by:

N

et (S00)
N

W; = —0w, L = a; (Z x(")r(")>
n=1

d
%Wl = a;w; + a;w; = (a1 +w;w (Zx(n) (n)) ,

where we denote the residual
rM () & ™ —w T (1)x™

Using Theorem 2.1 of Du et al. (2018) (stated in Section 6), we can write

%vm( t) = ((61- + ||Wi(t)||2) I+w;(t ) <Z (M) n)) : 22)
or also
((5:+ \\wi(t)ll2)1+Wi(t)wZ(t)) ' d (wa <n>)

where assuming ¢; > 0, a non-zero initialization w(0) = a(0)w(0) # 0 and that we converge to zero-loss solution, gives
i

us that the expression (((2 + ||w; (t)Hz) I+ w;(t)w ZT(t)) exists.

Using the Sherman-Morisson Lemma, we have

! wiwl (1) \d_ ) <n>>
0; w; I- —W; = x\"Mrp ,
(6 o) (6 + 2lwi(0))?) ) (Z

or

S

TN Y Wi (6w, (t) LI ( > X(n)r(n)>
(e olf) (6 + Iwaol?) (8 + 2 Iwa)*) ) 2 -

where we again employed Theorem 2.1 of Du et al. (2018).
Also, since

13 (6)II* = af () [[wi()]* = [lwi(t)]|” (&- + IIWi(t)II2) :

we can express w as a function of w:

—9; 62
Wi = 4/ 2 + )

Since ||w;(£)||> > 0 we choose the (+) sign and obtain

Iwi(t) | = ¢ .

62 - 2
RTe RG]
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Therefore, we can write Eq. 23 as:

- 2 - Wi ()W al
(5T o) oo OO = 3.
2 (% +/F + 1) VT + w0l =

We follow the “warped IMD” technique for deriving the implicit bias (presented in detail in Section 5 of the main text) and
multiply Eq. 24 by some function g (W;(t))

9 (5 (1) (i Yk ||v~vi<t>||2)

d .
@Wi(t)

( I 1) W )
=3 Xy (Ff) ).
n=1

Following the approach in Section 5, we then try and find ¢ (W;(t)) = ¢ (|[W;(#)||) + z" W, (t) and g (W;(t)) such that

d;

2 -1 o ()T
V2q (Wi(t)) = g (W;(t)) (2 + % + ||V'(7¢(t)|2> I— ( wi(t)w; (1)

FVF IO ) VE + 1500l

, (25)

so that then we’ll have,

V2 (Wi(t) Z (") g (%:(£)) r) (1
d N
& (Va (wi(1))) = 32 x g (w:(0) 1 (1)
n=1
N t
Va (§5(6) = Va (#:(0)) = S x [ (5(t) ) ()it
n=1 0

Requiring Vq (W;(0)) = 0, and denoting " = Io" 9 (W) r™(t')dt’, we get the condition:

N
Z (n)y, (n

n=1

To find g we note that:

Vq(Wi(t) =q ([[%:(t)]) [W; 8 i
and
Wi (D)W, (¢
V(R0 = [ IS0 = 000 iy | T+ 000 i

CUEOD [ [, ey @ UFOD] w0 ()
- [I O ) .01 ]

g () = LUEOD (‘5” L ||v~vz-<t>|2>
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and
~ W, t
| ROl (H'WM‘P
. 52 - 52 - i
2(% +VF + IO VE + 1500 ()1
1- % (1)
) Ftl ol ) T T
q" (1% (1)1l Sy i
= = —
& (I%:(0]) %: (0]
2
1 _ T
qw (x) <%+q/(sff2+z2>q/6f+4x2
= = .
i (v) z

Integrating that we get

1 82
logq”(x)2log< 2+ L — >+C’

4 2
2§
5! — 24 &t
=¢ (z)=C x% 4 )
(1‘2—621(61"' $2+65>) $2+ z_%
=q(z)=C +C
x
Therefore,
~ ) ) ~ 52 ~ &2 )
(o =5 (5 + iwor + 5) ) wor -5
q(Wi(t)=C 0l +z' ' Wi(t)+C.

Now, from the condition V¢ (W;(0)) = 0 we have

3, Wil0) ~ L2
T, on\/v i

We canset C' =1, C' = 0 and get
(5 +Viwor+ ) Yioor + 7 -4

(|v~vi<t>||2 oy

q (W;(t)) L A0]
_§ - 9 5z_é€vj(0)w
2\/ WO + - = 5 [%:(0)] )

Finally, for the case of a fully connected network with a single hidden neuron (m = 1), the condition

N
) = 3 X
n=1

can be written as

N
) =3 Xy
n=1
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in which (") has no dependency on the index i. Moreover, we note that | V¢(W)|| < co when ||W]|| < oo, and thus by
using Lemma 3.1 we get that v(") < oo for all n. And so we got a valid KKT stationarity condition for the ¢ we found
above. Therefore, the gradient flow satisfies the KKT conditions for minimizing the ¢ we have found. O
C.1. Validation of the use of the function g as a “Time-Warping”

First, we show that Eq. 24 cannot take the form suggested by Eq. 4 (as in the standard IMD approach described in Section 3):

H(vv(t))d%ft) = Xr(t)

where H(W(t)) = V2Q(W(t)) for some Q.
From Eq. 24 we get that H(w) takes the form

-1
0 02 ww
H(w) = <2+\/4+||w||2> I-
2 (54 InP) E+ 1P

2
Suppose H(w) is indeed the Hessian of some Q(w), then is must respect the Hessian-map condition (see Eq. 7) for any

0 > 0. Specifically, for 6 = 0 we get
1 ww
[[wll 2||w?

which does not satisfy the Hessian-map condition

OH; ;(w) Wy 3w SW; 4 . §w?wj ~ OH; j(w)
ow, WP " 2 w[? 2HWII3 2 [|w]|3 ow;

Therefore, Eq. 24 cannot be solved using the standard IMD approach, and requires our suggested “warped IMD” technique
(see Section 5).

Second, we write g (W, (t)) explicitly and show it is positive, monotone and bounded.

From Eq. 24 we have

Al 52 2
g(vvi<t>>q|(|'v'~vi(f)ﬁ')<‘; +||~<>||> w0 ||\/‘/”~ +o ‘;( ‘Z+|vvz—<t>n2>.

We can see that g (W;(t)) = g (||w;(t)]|) where

2, 9 9
. Traow e [,
9(x) = —+y\/ L +a?] .

2 4
We notice that §(z) is smooth and positive for V2 > 0, and since lim,_,o+ §(x) = 1/d; (see Lemma H.3) it is also bounded
for any finite x.

Also, using

20/ 22 + ——5

52 62 5.
2 iy 2 i _ %
4\/x+4 x + 5

we see that §'(z) > 0, Vz > 0 and so §(z) is monotonically increasing.

g'(x) =
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C.2. Verification of the Hessian map condition

Finally, we show that g(Ww(¢))H(w(t)) does satisfy the Hessian-map condition. We note that this is immediate from the
construction of g, but provide it here for completeness.

1 02 4 ww
g(w)H(w) = W|\/\/ lwl* + 7 3 |I- :
2(§+ /5 + W) /5 + IwlP

3+ |

4

We denote f(z ZIWandhx = f(z) :

Without loss of generality it is enough to observe the following settings:

T OH, ;(w) OH; k(W)
H] W W w; H‘k W
1, = —w; ‘h/ = —w; h/ J — 2
1=7#k:
8HZZ(W) , WE 2 Wi
N F WK v
e = (Il ot — ()
8Hi,k(w) w; Wi
aw, — wehllwl) - wi?ﬂkh'(IIWII)m = —wih([|wl]) - w?h'(IIWII)m
K3
Therefore, if Vx| f/g(cm) = —h(z) we get that a}guiw) = aHai“f,Fw).
Using the derivative of f(x) we can write:
1 Y 2+ 5
fl(m) = - 2
W 2, 02 _ o r
o+ T T3
1 22+ 4 -3
s ifyerg -3 (Veri-g) (VErged)
1 1

=—z-h(z),

and so g(w)H(w) respects the Hessian-map condition.



On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent

D. Proof of Proposition 6.2

Proof. We recall that the fully connected linear network of depth 2 is defined as
f(xi{ait, {wi}) = Z aiWiTx =w'x,
i=1

where w = Z ", W;, and w; 2 a;w;.

Returning to the dynamics of model parameters (Eq. 22) we have

d_ . . ()

n=1

Therefore,

(Z a1 + Zw ) (Z <™y <n>>
(Z @O+ Zwi(t)wz‘(t)T> %"N"(t) - (Z X(”W(ﬂ)) .
=1 i=1 oyt

‘We can notice that we can express

i az ()T + Zm:wi(t)wi(t)T = A(t)+U(t)CV(t)

- (.

C= Im><m
U(t) = W(t) £ [wi(t),...,wp(t)] € RX™
V(i) =W =[wi(t) ;.. ;wn(t)'] e Rm*4,

By using the Woodbury matrix identity we can write

where

m m -1
(Z aZ(t)I + Z wi(t)wi(t)T> =A"'-ATU(I+ VA*1U)_1 VA~ =

—atanu (S >I+VU>‘1V.

From Theorem 2.2 of Du et al. (2018) (stated in Section 6) we get that
alt)-a(t)  =W(Et)'WEH)+A,
where A € R™*™,

For the case of strict balanced initialization we have A = 0, and therefore

((Za >I+V )U()) :<<§:af(t)>1+W(t)TW(t)> =

= ( Z(@(t)) I+ a(t)a(t)T>

i=1

A 0N
= a; (t I- ———
( : ”) 2(30, a?(t)”

1=
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where in the last transition we used the Sherman-Morrison lemma. It follows that

(Z a?(t)I + Z Wi(t)Wi(t)T> =
e o i o a(t)a(t)"
— (Z a?(t)) I—W(t) (Z a?(t)) I-— 2((:3(’2 wi(t)"

‘We continue and write

(Z a; ()1 + Z W,»(t)wi(t)T> =
p m Zii m -1
= <; a?(ﬂ) I- <; af(t)) WHOWH) T + % <

Using Theorem 2.1 of Du et al. (2018) (stated in Section 6), we know that

NE
NQN,
-~
~
S
.
s
=
=
~
=,
SN—

=1

a;(t)* = [lwi(t)] .

Therefore,
1w ()| = las(®)][|w:(1)]] = ai(t)?

Y ) = Z NAGIE

i=1

and

So, we can write

(Z a’z2 (t)I + E W; (t)Wl (t)T> —

i=1 i=1

<Za?(t)> I- (Zaf(t)) (Zwi(t)wi(t)—r> N %
=1 i=1

i=1

Now, since
a(t)a(t)" = W(t)"W(t)

we can say that W () T W (t) is a rank one matrix, and therefore also W (¢), and also W (t).
Therefore, all w; are equal up to a multiplicative factor,

w;(t) = ¢;(t)w(t)

where from definition

Therefore,
Wi () = [ei (O] W ()]l

=3Il = <Z cz-<t>|> ol

Siaon) (1= (S on)  (SoEOEOT) LSS g ay) (3o Ro]
Wl ) "2 |
i=1 = , i P :
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S wit)wi() T o w(t)w(t)"
=2 Tl <Z' *’”') K00
giving us
m m -1 d
<Z a; (t)I + Z Wz(t)wz(t)T> % W (t) =
_ 1 1 _WOWOT L WOROTN 4R
= @D Tl (I o 3 e ))dt =2
1 1 CAWOWOTY d NS ) )
© = TRl (- 1 eEr) ®=2

(v~v<t>v~v<t>T>2 W) WO wiw(nT
| .

W @)]*

We follow the "warped IMD” technique (presented in detail in Section 5) and multiply the equation by some function
g (Wi(t))

g(W(0) 1 (0 IWOWO T d (S e )
ST 3 2 ) @0 = (2 A
Following the approach in Section 5, we then try and find ¢ (W;(t)) = § (|[W;(¢)||) + z" W, (t) and g (¥;(t)) such that

e OGH) 1( Tww(nT
Via (W) = m @) Tl (I 2 TP ) 29

so that then we’ll have

N
Vg (F (1) L) = > x g (1) (1)

N
Va (W(t) = Vg (%(0)) = Y x™ / g (w(t))r™ (et

1
Assuming V¢ (%(0)) = 0, and denoting v/(") = IS g (w(t)) (") (¢')dt', we get the condition

To find ¢ we note that

RS O
Va(#(0) = ¢ (W) T +
and
w(t)w !’
VR (0) = 1" (K1) = 7 1501 Ty | T+ U0 g
A USOD [, [ ey £ IFOD] FOFT
= Wl lI 1 o ) ||v~v<t>||2]
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Comparing the form above with the Hessian in Eq. 26 we require

g (w(t))

e ~ U@
and -
-58-2
log ' (x) = 5 Inw + C
q'(z) = CVa
Therefore,

q (W(t) = C W ()| +2"w(t) + O,

and using the condition Vg (w(0)) = 0 we get
0 (¥(1)) = C ()2 — €2 [(0)| /2 %(0) () + "
We canset C' =1, C’ = 0 and get
 (%(1)) = [ (1) ]2 = 5 I(0)| /2 9(0) T ()

We note that ||Vq(W)|| < co when ||W|| < oo, and thus by using Lemma 3.1 we get that #(") < oo for all n. Therefore,
gradient flow satisfies the KKT conditions for minimizing this q. O

E. Proof of Theorem 6.3

We recall the proof of Theorem 6.1 given in Appendix C.
The form of the ¢ function described in the proof is q (W;(t)) = ¢ (||W:(t)||) + z T W (t), where

Under the limit || W;(0)|] — 0 we can see that ||z|| — 0.

When the linear term captured by z in the ¢ function is equal to zero, we have

Vg (#i(00)) = & ([[F:(00) ) Wgzi = S Xy

(n) _ v|wi(o0)|

Defining ;™" = Zreooyy

we get

‘We notice that

Using the linear predictor definition of W(c0) = °, W;(c0), denoting (™) = 3~ Di(n) and summing over ¢ gives
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w(o0) = Z x(™pn)

We note that ||Vg(W)|| < oo when ||W|| < oo, and thus by using Lemma 3.1 we get that (™) < oo for all n. Therefore, the
above is a valid KKT stationarity condition of the form Vg (W (o)) = >, x™ 2™ with V¢ (w) = w. Hence, gradient
flow satisfies the KKT conditions for minimizing this q.

It follows that for a multi-neuron fully connected network with non-zero infinitesimal initialization,

\W||2 st. X'w=y

w(oc0) = argmin,, |

which is equivalent to
W(oo) = argming, |[w| st. X 'w=1y.
F. Characterization of the Implicit Bias Captured in Theorem 4.1

In this Appendix we provide a detailed characterization of the implicit bias for a diagonal linear network as described in
Theorem 4.1,
W(oo) = argmin Qi (w) s.t. X'w=y

where
d
Qr (W) = ar, (wi)
i=1
Vk 422 2 2z
g () = — |1 — 1—|——|—arcsinh<>
L= ko Vk vk
and
40{i (1 =+ S?)
ki = 5
1—s;
For simplicity, we next assume «; = «, $; = s Vi € [d].
We can notice that for &k — oo, i.e. 17"7 — 0o we get that:
2
k—oo Wy 1
g, (wi) = = w}

d
= Qu(w) = Y () =Y 5o

Calculating the tangent kernel at the initialization we get

K(x1,%2) =(V[ (x1), V[ (x2))
(1 0w (0),3x1 0¥+ (0), —x1 01 (0),—x1 0v_ (0)],
[x2 0uy (0),x20vy (0),—x20u_ (0), —x2 0 v_ (0)])
=x/ diag (u? (0) +v3 (0) +u? (0) +v2 (0)) x> .

For the case of unbiased initialization (u4 ; (0) = u—; (0),v4; (0) = v_ ; (0)) we have

K (x1,%2) = 2x{ diag (u? (0) + v2 (0)) x2 .
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Therefore, using Lemma H.4, we can see that Qg (w) is the RKHS norm with respect to the NTK at initialization. Therefore,
k — oo indeed describes the NTK regime.

For k — 0,i.e. %57 — 0 we get that:

gk (wi

[ )
()
)
()

o (72 ) + s g (4 i)~ )

= %\%

2
16T

— + +
k—0 ‘wv |wz| (
=

N~ N~

) 1 (log (4 lw:]) — 1
= 1Qk(w11) —>‘wi‘+ |wl|(0g( |1UL|) )
310z () tog (7 )
1
= |w;| + O (1 — |wy]
Therefore,
d
Qi (W) = |wi| = wl,
i=1

and k£ — 0 describes the rich regime (Woodworth et al., 2020).

G. Characterization of the Implicit Bias Captured in Theorem 6.1

In this Appendix we provide a detailed characterization of the implicit bias for a two-layer fully connected neural network
with a single hidden neuron (m = 1) described in Theorem 6.1,

w(00) = argming(w) st. X'w=y

where

z——§ W 2 f_ém
- M WO+ T~ 2w

Note that for the sake of simplicity the notations above are an abbreviated version of those found Theorem 6.1.

We will employ the initialization orientation, defined as u = HVWVES;” , and the initialization scale, ||W (0)| = a.
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G.1.Thecase o — Oforany 0 < s < 1

Note that from Lemma H.2 (part 2) we have

_3 _ e, 02 ,, 02 3\/ﬁ
||z||—2\/ Hw(O)H—kZ—f \/T e

and thus for any 0 < s < 1 when o — 0 we get that ||z|| — 0. It follows that g5 (W) = ¢ (||W]||) and since ¢ (z) is a
monotonically increasing function (for any §) we get the ¢5 implicit bias,

W (00) = arg nin (g5 (W)) = arg nin (G (Iwll)) = arg nin [l -

We call this regime the Anti-NTK regime.
G.2. Other special cases
Here we analyze the Taylor expansion of ¢ (W) around W (0). To this end, we know that

G W

%] TN
2(3+/5 +1W17) /5 + 11wl

and thus the third-order term is order of - q (H (0)|). Since we know that V¢ (W (0)) = 0 we can write the Taylor
expansion as follows

(= (0) P2 (3 (0) (%= 5 0) +0 (£ T o)

By using Lemma H.2 and

we calculate

BN 20200 W (0)% (0)
Vi (W (0) = T I-
RO (34T 1m0 Ve raw o
w +7 % = 5
:\/ - (v*v)<o>| - OO
2§45+ IWOF) F w0

Also, by using

8

o
(V]
+
ol
[\v]
+
NI
|
RIS,
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we have that

dx =z x?
z? 24,02 _ ¢
— x + £ Z
Vot By a2 - b
62 _ &
22+ 7 3
= = )
ey
and thus, using Lemma H.2 we get
A 2 + 82 _ 9
d q (x) , - a 4 2
- (% (O)ll) = 5

de =« 2\/a2 \/ + % «

St ;55)25 (2(1+821)\/m) |

Therefore, the Taylor expansion is

(W =% (0 [\/7\/: ( 1118322) uT)] (=% (0)+0 ((1 ;1%52-5 (2 (1+ 321) m)) '

We are interested in cases where the higher order terms vanish. Since 0 < s < 1, we only need to require

DN | =

q(w) = q(w(0))+

(1—s)*° 1-—s
alb < a

<1. 27

In follows that when % < 1 we can approximate

0(®) ~a(w (0) + 51/ [ @ w o) <1_2<(11+22)MT> (% W (0)

In this case, minimizing ¢ (W) boils down to minimizing the squared Mahalanobis norm

(W — W (0))' B (W% — W (0))

where

_ (- 5)2 T

Note that B~ is related to the NTK at initialization, since it is easy to verify that

B = e (00 wOw()T)

a(0)?
and the NTK at initialization is given by

K(x,x') =x" (a(0)’ I+ w(0)w(0)") x' = a(0)* (x"B~'x/) .
More specifically, using Lemma H.4, we can see that ¢ (W) is the RKHS norm with respect to the NTK at initialization.

Next, we discuss the cases when condition (27) holds.
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G.2.1. THECASEa — 00 FORANY 0 < s < 1
In this case (27) holds and thus the implicit bias is given by

W (00) = arg min (g5 (W) = arg min (% — W (0)) " B (% — % (0))) ,

w w

where B defined in (28).

G.2.2. THE CASE s — 1 FOR ANY o > 0

In this case (27) also holds and thus the implicit bias is given by

W (00) = arg min (g5 (W)) = argmin (% — % (0)) " B (%~ (0))) .

w

where B defined in (28). Since s — 1 we get that B — I and thus

W (00) = argénin(HW —wO)) -

H. Auxiliary Lemmas
Lemma H.1. § = a2 (0) — ||w (0)||> = 25, .

Proof. By the notation

[2(0)| — [[w (O]
[a(0)] + [w(O)|
we get
1 — g2 = _AHaO)llw(O)]
(la(0)] + [Iw(0)[])>
and
das _, 1a(0)] — [[w(O)] (Ja(0)] + [[w(0)[))*
1-s? |a(0)| + [|w (0)] da

=a®(0) = |w(0)]* = 6.

Lemma H.2. The initialization scale «, initialization shape s and the balancedness factor 0 satisfy:

1.
82 1+ s
P ()
4 1— 52
2.
a2+i2_§— l-s
V 4 2 145
3.

Proof. 1. Using Lemma H.1 we get

/ 52 40252 a o (1+s%)
CY2+Z: 0[2+(1_82)2:1_ 2\/(1782)2+482:W.
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2. Using part 1 and Lemma H.1 we get

3. Using part 1 and Lemma H.1 we get

Lemma H.3. Let

be definedVx > 0, and Vo > 0. Then:

Proof.

and so

, . 02 0 a(l+s?)  2as (1-5° 1-s
4 2 1—-s2 1-s2 1—s? L+s
,, 0% 0 o (14 s?) 2aus (1+4s)° 1+s
o+ —+ - = =a = :
4 2 1— 52 1— 52 1— 52 1—s
. Vet S -4 5 rp )
9@) = g\ T2
lim g(z)=0
62
lim § lim & ik
have
2 s =
) \/m— 3 . I2+% 1 1
lim 5 = lim = lim ==,
r—0+ x r—0+ 2x z—0t 2 2 + 92 d
li = lim §y/= =0
A5 90 = 1 Oy

O

Lemma H.4. Let A be a positive definite matrix and f (x) a kernel predictor corresponding to a linear kernel K (x,x') =

x " Ax'. Then

where f (x) = w'x.

Proof. Write K (x,x') =x"TAx’ = x' A2 Azx/, then ¢ (x) = Azx is the corresponding feature mapping and

for w = A3 w. Therefore

2 _
Hf“K = WTA 1W7

f(x)=wTo¢(x)= wiAZx =w'x

2
2 ~ 112 -1 —
71 = 11 = A~ bw ] = wT At



