
Appendix

A. Omitted Proofs
In this section we provide complete proofs of the results in the main text.

A.1. Proof of Theorem 1

Theorem. Consider a fully-connected neural network with NTK parametrization as introduced in Section 4.3, equipped
with a 1-homogeneous activation function (such as ReLU). Set every bias to zero (βi = 0) except for the output bias,
b(L) ∼ N (0, β2). Then it holds that both Θ(L) and Σ(L) are semi-homogeneous kernels with ζ = β.

Proof. We will prove this statement via induction over the depth of the network. We will first show that a network without
any bias is semi-homogeneous with parameter ζ = 0. Fix any α ∈ R+. Let us first consider the base case l = 1.

Base case: Σ(1)(x,x′) = Θ(1)(x,x′) = 1
d0
xTx′. We easily deduce that

Σ(1)(αx,x′) =
1

d0
(αx)Tx′ + β2 = αΣ(1)(x,x′)

The same thing holds for the NTK Θ(1). The base case thus holds.

Induction step: Assume that Σ(l) and Θ(l) are semi-homogeneous with ζ = 0. Let us first analyze the NNGP.

Σ(l+1)(αx,x′) = Ez∼N (0,Σ(l)|αx,x′ )

[
σ(z1)σ(z2)

]
=

1

2π
√

det(Σ(l)|αx,x′)

∫
R2

σ(z1)σ(z2)e
− 1

2z
TΣ(l)|−1

αx,x′zdz

Now observe that

det
(
Σ(l)|αx,x′

)
= Σ(l)(αx, αx)Σ(l)(x′,x′)− Σ(l)(αx,x′)2

= α2
(

Σ(l)(x,x)Σ(l)(x′,x′)− Σ(l)(x,x′)2
)

= α2 det
(
Σ(l)|x,x′

)
On the other hand we have that(

Σ(l)|αx,x′
)−1

=
1

det
(
Σ(l)|αx,x′

) ( Σ(l)(x′,x′) −Σ(l)(αx,x′)
−Σ(l)(αx,x′) Σ(l)(αx, αx)

)
=

1

α2

1

det
(
Σ(l)|x,x′

) ( Σ(l)(x′,x′) −αΣ(l)(x,x′)
−αΣ(l)(x,x′) α2Σ(l)(x,x)

)
We can hence write that

zT
(
Σ(l)|αx,x′

)−1

z =
1

det
(
Σ(l)|x,x′

) (z2
1

1

α2
Σ(l)(x′,x′)− 2z1z2

1

α
Σ(l)(x,x′) + z2

2Σ(l)(x,x)

)
Let us perform the substitution u1 = 1

αz1 and u2 = z2 with area element du = 1
αdz. Then we can write

zT
(
Σ(l)|αx,x′

)−1

z =
1

det
(
Σ(l)|x,x′

) (u2
1Σ(l)(x′,x′)− 2u1u2Σ(l)(x,x′) + u2

2Σ(l)(x,x)
)

= uT
(
Σ(l)|x,x′

)−1

u
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We can thus rewrite the integral as

Σ(l+1)(αx,x′) =
1

2π
√

det(Σ(l)|αx,x′)

∫
R2

σ(z1)σ(z2)e
− 1

2z
TΣ(l)|−1

αx,x′zdz

=
1

2πα
√

det
(
Σ(l)|x,x′

) ∫
R2

σ(αu1)σ(u2)e
− 1

2u
TΣ(l)|−1

αx,x′uαdu

= αΣ(l+1)(x,x′)

where we have used the 1-homogenity of σ. Next we analyze the NTK Θ(l+1). Here we have to control the additional term

Σ̇(l+1)(αx,x′) = Ez∼N(0,Σ(l)|αx,x′)
[σ̇(z1)σ̇(z2)]

Since σ is 1-homogeneous, we know that its derivative is 0-homogeneous. We can thus apply the exact same computation as
for Σ(l+1) to arrive at

Σ̇(l+1)(αx,x′) = Σ̇(l+1)(x,x′)

Using the previous result and the induction hypothesis, we obtain

Θ(l+1)(αx,x′) = Θ(l)(αx,x′)Σ̇(l+1)(αx,x′) + Σ(l+1)(αx,x′) = αΘ(l)(x,x′)Σ̇(l+1)(x,x′) + αΣ(l+1)(x,x′)

= αΘ(l+1)(x,x′)

Given this result, we can now consider the kernel with an output bias β added. Let K denote either the NTK or NNGP
kernel with an output bias and C the corresponding kernel without output bias. Then we obtain

K(αx,x′) = C(αx,x′) + β2 = αC(x,x′) + β2 = α
(
C(x,x′) + β2 − β2

)
+ β2

= αK(x,x′) + β2(1− α)

This concludes the proof.

A.2. Proof of Lemma 2

Lemma. Fix a semi-homogeneous kernel K and two data points sampled according to the adversarial spheres measure,
x, z ∼ p. Consider the projection P(x). Denote r = ||x||2 and r̃ = ||P(x)||2. Then it holds that:

K(P(x), z) =
r̃

r
K(x, z) + ζ2(1− r̃

r
)

Proof. Realize that we can write the projection as

P(x) =
r̃

r
x = αx

Obviously, α > 0, thus we can apply the defining property of semi-homogeneous kernels to conclude

K(P(x), z) = K(αx, z) =
r̃

r
K(x, z) + ζ2(1− r̃

r
)

A.3. Proof of Corollary 2.1

Corollary. Fix a semi-homogeneous kernel K and a data point sampled according to the adversarial spheres measure,
x ∼ p. Consider the projection P(x). Denote r = ||x||2 and r̃ = ||P(x)||2. Then it holds that

fK (P(x)) =
r̃

r
fK(x) + ζ2

(
1− r̃

r

)
γK(n)

where we define γK(n) = 1TnK(X,X)−1y and 1n = (1, . . . , 1)
T ∈ Rn.
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Proof. We just need to apply the Lemma 2:

fK (P(x)) = K(P(x),X) (K(X,X))
−1
y

=

(
r̃

r
K(x,X) + ζ2

(
1− r̃

r

)
1n

)
(K(X,X))

−1
y

=
r̃

r
fK(x) + ζ2

(
1− r̃

r

)
1n (K(X,X))

−1
y

=
r̃

r
fK(x) + ζ2

(
1− r̃

r

)
γK(n)

A.4. Proof of Theorem 3

Theorem. Take a semi-homogeneous kernel K and consider a training set Strain
i.i.d.∼ Dn along with the corresponding

adversarial set Sadv. Then it holds that aadv is quantized to only three values:

aadv ∈
{

0, 1− q, 1
}

Moreover, we can characterize the phase transitions in sample size n as

aadv =


0 if γK(n) ≤ r1

ζ2(r2−r1)

1− q if r1
ζ2(r2−r1) ≤ γK(n) ≤ r2

ζ2(r2−r1)

1 if γK(n) ≥ r2
ζ2(r2−r1)

Proof. By an extension of Proposition 2 in Jacot et al. (2018), we know that the inverse of kernel matrix K(X,X) is
well-defined, implying that we have perfect training accuracy:

fK(X) = y

fK (P(x)) =
r̃

r
fK(x) + ζ2

(
1− r̃

r

)
γK(n)

=
r̃

r
y + ζ2

(
1− r̃

r

)
γK(n)

Assume first that y = 1, implying ||x||2 = r1. Thus we need that

r2

r1
+ ζ2

(
1− r2

r1

)
γK(n) < 0

⇐⇒ γK(n) >
r2

ζ2(r2 − r1)

The case y = −1 is similarly obtained. Notice that the inequality is entirely independent of the specific form of x. Thus this
inequality will hold for all x with label y = 1 simultaneously. Since r1 < r2, the part of the adversarial data with label
yadv = 1 (or clean label y = −1) will be learnt first. This corresponds to a fraction of 1− q of the entire training set, leading
to 1− q correctly classified adversarial examples.

A.5. Proof of Lemma 4

Lemma. Assume that K is of the above form and denote by C the corresponding homogeneous kernel. Then it holds that

γK(n) =
1

1 + β2s (C(X,X)−1)
γC(n)

where we define s(A) =
∑
i,j Aij .
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Proof. Using the Sherman–Morrison formula, we expand the inverse as follows:

γK(n) = 1TnK(X,X)−1y = 1Tn
(
C(X,X) + β21n1Tn

)−1
y = 1Tn

(
C(X,X)−1+

)
= 1TnC(X,X)−1y − 1n

(
β2C(X,X)−11n1TnC(X,X)−1

1 + β21TnC(X,X)−11n

)
y

= γC(n)−
β2s

(
C(X,X)−1

)
γC(n)

1 + β2s (C(X,X)−1)

=
γC(n)

1 + β2s (C(X,X)−1)

A.6. Proof of Theorem 5

Theorem. Consider the expected kernel K̃ = EX∼pn [K(X,X)]. We have that γK̃ is asymptotically given by

γK̃(n) ∝ C1 + ηn

C2 − β2C3n

for constants C1, C2, C3, η ∈ R and the limit is given by

γK̃(n)
n−→∞−−−−→ r1 + r2

β2(r2 − r1)

Proof. Define the quantities α = K(e1, e1) where e1 denotes the first unit vector. Notice that since K is a dot-product
kernel, it holds for any x ∈ Sd−1

1 that K(x,x) = α. Moreover, define ρ = Ex,x′∼p1 [K(x,x′)] and consider the expected
kernel K̃ = EX∼pn [K(X,X)]. Recall that we assume a balanced dataset, where the upperhalf ofX is sampled according
to pr1 and the second half according to pr2 . Denote the respective samples byX+ andX− Let us first focus on the bias-free
part γC(n). The bias-free kernel is given by the following block structure:

C(X,X) =

(
C(X+,X+) C(X+,X−)

C(X−,X+) C(X−,X−)

)
=

(
r2
1C(X̃+, X̃+) r1r2C(X̃+, X̃−)

r1r2C(X̃−, X̃+) r2
2C(X̃−, X̃−)

)

:=

(
r2
1C++ r1r2C+−

r1r2C−+ r2
2C−−

)

where X̃ denotes the projected data to the unit sphere Sd−1
1 . We will be interested in the blocks of the inverse C(X,X)−1:

C(X,X)−1 =

(
A B

B D

)
Due to the symmetry, we observe that

1TnC(X,X)−1y = s(A)− s(D)

By the inverse formula for block matrices, we can analyse the first inverse block to obtain that

A =
1

r2
1

C−1
++ +

1

r2
1

C−1
++r1r2C+−

(
r2
2C−− − r2

1r
2
2C−+

1

r2
1

C−1
++C+−

)−1

r1r2C−+
1

r2
1

C−1
++

=
1

r2
1

(
C−1

++ +C−1
++C+−

(
C−− −C−+C

−1
++C+−

)−1
C−+C

−1
++

)
Next we analyze the right bottom block of the inverse:

D =

(
r2
2C−− − r2

1r
2
2C−+

1

r2
1

C−1
++C+−

)−1

=
1

r2
2

(
C−− −C−+C

−1
++C+−

)−1
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Similarly, we simplify the off-diagonal blocks to

B = − 1

r2
2

(
C−− −C−+C

−1
++C+−

)−1
r1r2C−+

1

r2
1

C−1
++

=
1

r1r2

(
C−− −C−+C

−1
++C+−

)−1
C−+C

−1
++

By introducing the inverse of the projected kernel matrix

C(X̄, X̄)−1 =

(
Ā B̄

B̄ D̄

)

we quickly realize again through the inverse block matrix formula, that

C(X,X)−1 =

( 1
r21
Ā 1

r1r2
B̄

1
r1r2

B̄ 1
r22
D̄

)

Thus we can see that

1TnC(X,X)−1y =
1

r2
1

s(Ā)− 1

r2
2

s(D̄)

Let us now consider the expected kernel. Since both Ã and D̃ are the Gram matrix of the same kernel on the unit sphere,
their expected kernel agrees and thus we only need to calculate s(D̃). We define

G = (α− ρ)1m×m + ρ1m1Tm

as well as the expected off-diagonal part
H = ρ1m1Tm

Consider the matrix
D̃−1 = C−− −C−+C

−1
++C+−

In expectation, this reduces to

S := E
[
D̃−1

]
= G−HG−1H

Again, making use of Sherman-Morrison, we can find a closed form expression forG−1:

G−1 =
(
(α− ρ)1m×m + ρ1m1Tm

)−1
=

1

α− ρ
1m×m −

ρ

(α− ρ) (α+ ρ(m− 1))
1m1Tm

and thus we can simplify

HG−1H =
ρ2m

α− ρ
1m1Tm −

m2ρ3

(α− ρ) (α+ ρ(m− 1))
1m1Tm =

(α+ ρ(m− 1))ρ2m−m2ρ3

(α− ρ) (α+ ρ(m− 1))
1m1Tm

=
mρ2

α+ ρ(m− 1)
1m1Tm

We can now show that 1m is an eigenvector of S:

E
[
D̃−1

]
1m = (α− ρ)1m +mρ1m −

m2ρ2

α+ ρ(m− 1)
1m

=
(α+ ρ(m− 1))

2 −m2ρ2

(α+ ρ(m− 1))
1m

=
(α− ρ)2 + 2mρ(α− ρ)

(α+ ρ(m− 1))
1m
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Now we know that 1m is also an eigenvector of S−1 with inverse eigenvalue and thus

s
(
S−1

)
= 1TmS

−11m =
(α+ ρ(m− 1))

(α− ρ)2 + 2mρ(α− ρ)
1Tm1m =

ρm2 +m(α− ρ)

(α− ρ)2 + 2mρ(α− ρ)

Using the symmetry, we thus proved that

γC̃(m) =
r2
2 − r2

1

r2
1r

2
2

ρm2 +m(α− ρ)

(α− ρ)2 + 2mρ(α− ρ)
∝ r2

2 − r2
1

r2
1r

2
2

ρm2

(α− ρ)2 + 2mρ(α− ρ)

To finish the proof, we need to finally calculate s
(
C̃−1

)
. Luckily, since we already calculated the sum of the block diagonal,

we only need to find the sum of the off-diagonal blocks, in expectation:

W = S−1HG−1

Again we find the that 1m is an eigenvector:

W1m = −S−1H
1

α+ ρ(m− 1)
1m = −S−1 mρ

α+ ρ(m− 1)
1m = − mρ

α+ ρ(m− 1)

(α+ ρ(m− 1))

(α− ρ)2 + 2mρ(α− ρ)
1m

= − mρ

(α− ρ)2 + 2mρ(α− ρ)
1m

where we used that 1m is also an eigenvector ofG−1, as seen above. Thus the sum of the off-diagonal term is

s(W ) = − m2ρ

(α− ρ)2 + 2mρ(α− ρ)

Thus we can finally obtain that the sum of the inverse expected kernel C̃−1 = C(X,X)−1 is given by

s
(
C̃−1

)
=

(
1

r1
+

1

r2

)
s(D̃) +

2

r1r2
s(W ) =

1

(α− ρ)2 + 2mρ(α− ρ)

(
m2ρ

(r1 − r2)2

r2
1r
r
2

+
r2
1 + r2

2

r2
1r

2
2

m(α− ρ)

)

∝
m2ρ (r1−r2)2

r21r
r
2

(α− ρ)2 + 2mρ(α− ρ)

Now, we can put all the pieces together to obtain

γK̃(m) =
γC̃(m)

1 + β2s
(
C̃−1

) =

r22−r
2
1

r21r
2
2

(
ρm2 +m(α− ρ)

)
(α− ρ)2 + 2mρ(α− ρ) + β2m2ρ (r1−r2)2

r21r
r
2

+ β2 r
2
1+r22
r21r

2
2
m(α− ρ)

∝
mρ

r22−r
2
1

r21r
2
2

+ (α− ρ)
r22−r

2
1

r21r
2
2

mβ2ρ (r1−r2)2

r21r
r
2

+ β2 r
2
1+r22
r21r

2
2

(α− ρ)

=
C1 + ηm

C2 − β2C3m

Moreover, we can easily derive the limit

γK̃(m)
m−→∞−−−−→ r1 + r2

β2(r2 − r1)
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B. Additional Numerical Experiments
B.1. Adversarial Accuracy

Here we present more empirical evidence backing the theoretical findings in Theorem 3 for more kernels and architectures.
As demonstrated in 8, the phase transitions in the adversarial accuracy hold across different underlying architectures. We

Figure 8. Train, test and adversarial accuracy for 5 layer NNGP (left), 9 layer NNGP (middle) and 5 layer NTK (right), plotted against
sample size.

observe that the NTK in general is suffering more from the adversarial effect, compared to the NNGP. This is also visible in
Figure 9 where we see that γK(n) grows more slowly for the NTK, compared to the NNGP, making it hence also more
slowly approach the phase transitions.

B.2. Behaviour of γK

We study the behavour of γK and the corresponding expected version γK̃ for different architectures in Figure 9 We see that

Figure 9. We plot γK and γK̃ for a 3 layer NTK and NNGP (left), a 5 layer NTK and NNGP (middle) and a 7 layer NTK and NNGP
(right)

the expected kernel induces a very good approximation γK̃ , especially for large sample sizes n. Moreover, the qualitative
behaviour is also very well captured for smaller sample sizes. Transforming insights from γK̃ to γK is thus sensible,
especially for large sample sizes. Moreover, as anticipated in Theorem 5, all the kernels are converging to the same maximal
capacity

γK̃(m)
m−→∞−−−−→ r1 + r2

β2(r2 − r1)

B.3. Eigendecompositions

Here we study different decompositions, not just consisting of the dominant eigenfunction. In Figure 10 we verify that the
dominant eigenfunction indeed captures all the signal in the data, leaving the ensemble of eigenfunctions consisting of all
but the dominant one with no predictive power at all in terms of any accuracy. We then proceed to study if using the top 10
dominant eigenfunction brings any improvement in terms of the adversarial accuracy. Again this is not the case as visible in
Figure 10. We tested more ensembles of eigenfunctions but none can improve over random guessing on the adversarial
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Figure 10. Train, test and adversarial accuracy for the ensemble of eigenfunctions consisting of all but the dominant one (left) and for the
ensemble of the 10 most dominant eigenfunctions

dataset for small sample sizes. This renders any uniform convergence-based generalization bound still meaningless as it is
lower-bounded by 0.5, which corresponds to random guessing for a binary task.


