
Skill Discovery for Exploration and Planning using Deep Skill Graphs
Appendix

Akhil Bagaria Jason Senthil George Konidaris

A. Maintaining the Skill Graph
As options are executed, all three of their components
(Io, πo, βo) are updated. As a result, the relevant edges
of the skill graph need to be modified.

A.1. Setting edge weights

Recall that the edge weight wij represents the cost corre-
sponding to the edge eij in the graph. Now suppose that the
planner chooses to execute option i to reach node j in the
graph and that after executing option i, the agent lands in
state s. If i is successful, then the cost related to edge eij is
reduced, else it is increased:

f(s) =

{
1, if Io(s) = 1

−1, otherwise,

Wi,j = κf(s) ×Wi,j .

We used κ = 0.95 in all our experiments.

A.2. Deleting old edges

When the initiation set of one option (say o2) no longer
contains the effect set of another (say o1) (either because Io2
shrinks or the effect set Eo1 expands), the edge eo2→o1 must
be deleted from the graph; this is to ensure that all edges in
the graph maintain the property that Eoi ⊆ Ioj ,∀oi, oj ∈
O (Konidaris et al., 2018)1. To implement this logic, we
enumerate all the neighbors of an option o after it is executed
in the environment and check if those edges still satisfy the
aforementioned property.

A.3. Adding new edges

Of course, it is also possible that option o’s initiation classi-
fier Io expands so that it can be connected to more nodes
in the graph. To do this, we need to iterate over all nodes in
the graph and check if Eoi ⊆ Ioj ,∀oi, oj ∈ O. Given that
this is a computationally expensive operation, we perform
this operation once every 10 episodes.

1Recall that this property ensures that plans in the skill graph
correspond to feasible paths in the ground MDP M.

B. Discovering Goal Regions
Every N episodes, the DSG agent tries to expand the graph.
The pseudocode for this is shown in Algorithm 1.

Algorithm 1 Discovering New Goal Regions

Require: Skill-graph G
Require: Current episode number episode
Require: # permitted attempts max tries

1: if episode % N = 0 then
2: for num tries ∈ max tries do
3: Generate goal state srand ∼ S
4: Find vnn according to Section 3.2.2
5: Navigate to vnn according to Section 3.3.3
6: MPC using fξ andR(st, srand) for K steps
7: if not-reject(st) then
8: Define region εst as 1(s) : {||st − s|| < ε}
9: return Goal region εst

10: end if
11: end for
12: end if

B.1. Rejection Sampling

As described in Algorithm 1, εst is result of moving from
vnn in the direction of srand. Similar to RRT (LaValle,
1998), we ensure that Algorithm 1 results in graph expan-
sion, by rejecting εst (not-reject() in line 7) if st is
either inside any of the nodes in the current skill-graph (i.e,
reject(st): βo(st) = 1 or Io(st) = 1,∀o ∈ V).

B.2. Multiple Attempts

If we reject εst more than max tries= 10 times, we give
up on expanding the graph, and choose to consolidate it
instead (in our experiments, this only happened when the
skill graph had largely covered the state-space).

C. Discussion about Optimality
Suppose at test-time, the agent starts at state s0 and is re-
quired to reach state sg (or more specifically, εsg). DSG
requires that the agent first travels to the sg’s nearest node
in the graph vnn and then use deep skill chaining outside

Appendix: Deep Skill Graphs

the graph to reach sg . The path to vnn is obtained by using
Dijkstra’s algorithm (Dijkstra, 1959), which results in the
shortest path on the skill-graph, but does not, in general,
result in the shortest path in the ground MDPM. Further-
more, it is possible that there is a shorter path from s0 to
sg that does not involve going through vnn, but ther agent
foregoes that path to prioritize staying inside the graph over
finding optimal paths inM. The question of how the skill-
graph could be used to derive hierarchically optimal (Barto
& Mahadevan, 2003) solutions (or boundedly sub-optimal
solutions (Ames & Konidaris, 2019)) is an interesting av-
enue for future work.

D. Optimistic vs Pessimistic Classifiers
For simplicity, we have discussed option initiation regions to
be parameterized by a single binary classifier (Konidaris &
Barto, 2009; Bagaria & Konidaris, 2020). However, Bagaria
et al. (2021) showed that representing initiation sets using
two classifiers, one optimistic Iθo and the other pessimistic
Iφo , results in more stable option learning. The optimistic
classifier Iθo determines states from which the option can
be executed; the pessimistic classifier Iφo forms the subgoal
target for some other option targeting o.

To account for this dual parameterization of option initiation
regions, we can re-write Equation 1 from the main paper as:

O(s) = {o|Iθo (s) = 1, o ∈ O}. (1)

Using Equation 1, we can determine which options are
available for execution at some state s.

When checking if two options in the graph should have
an edge between them, we check if Eo1 ⊆ Iφo . In other
words, the effect set of option o1 must be contained inside
the pessimistic initiation classifier of option o2.

E. Selecting Option Subgoal States
Given a goal vertex vg, the planner computes a plan
(o1, o2, ..., oL) that will take the agent from its current state
st to vg . Before executing option o1 in the environment (by
rolling out πo1), we must sample a specific goal state g1 for
πo1 to target. Our choice of g1 must ensure that reaching
g1 would permit the agent to execute the next option in the
plan o2, i.e, g1 must be inside Io2 . To implement this condi-
tion, we first compute the subset of o1’s effect set Eo1 that
is inside Iφo2 and then randomly sample from it:

g1 ∼ {s|Iφo2(s) = 1,∀s ∈ Eo1}

F. Finding the Nearest Subgraph
As illustrated in Figure 3 in the main paper, DSG picks
a node from the nearest unconnected subgraph as a target

during the graph consolidation phase. To find the nearest
unconnected subgraph, we first enumerate all unconnected
subgraphs. Then, we find the closest descendant-ancestor
pair (vd, va) for all such subgraphs. Finally, we compare
the distance between each (vd, va) pair we found, and pick
the one corresponding to the lowest distance between them.
This procedure minimizes the region over which we rely
on our distance metric (i.e, we only need the metric to be
locally valid) while selecting targets that will increase the
connectivity of the skill-graph.

Since enumerating all unconnected subgraphs can be an ex-
pensive operation, we only consider the ancestors of vertices
that correspond to goal regions and not options.

G. Model-Based Policies
Dynamics Model To learn a dynamics model, we adopt
the approach from Nagabandi et al. (2018). We parameterize
our learned dynamics function f̂θ(st, at) as a deep neural
network which take as input the current state st and action
at, and predicts the change in state st over the time step
duration of ∆t. The next predicted state is thus ŝt+1 = st +
f̂θ(st, at). The neural network 2 dense layers with hidden
sizes of 500, with LeakyRelu as the nonlinear activation
function.

Data Collection and Preprocessing: To train the dynamics
model, we use the transitions collected by the DSG agent.
Each trajectory is sliced into inputs of (st, at) with corre-
sponding output labels of st+1 − st. We then normalize the
data by subtracting the mean and dividing by the standard
deviation.

Training the model: Following Nagabandi et al. (2018),
we first collect 50 episodes of random transitions from the
environment Drand. At this point, the dynamics model is
trained for 50 epochs—meaning that we iterate over the
dataset Drand 50 times. Thereafter, the agent picks actions
according to the RL algorithm and stores the resulting tran-
sitions in dataset DRL. At the end of every episode of
training, we train the model for 5 epochs on the dataset
D = Drand ∪ DRL.

Model Predictive Control (MPC): Following Nagabandi
et al. (2018), we use the random-shooting method as our
black-box optimizer to approximately solve Equation 6 in
the main paper. We use M = 14000 randomly generated
action sequences of length K = 7.

H. Experiment Details
H.1. Test environments

We evaluated our algorithm in four tasks that exhibit a hi-
erarchical structure (Nachum et al., 2018; Fu et al., 2020;

Appendix: Deep Skill Graphs

Environment # Training Episodes

Ant Reacher 1000
Ant U-Maze 1000
Ant Medium Maze 1500
Ant Large Maze 2000

Table 1. Number of training episodes per environment. Each
episode comprises 1000 steps.

Brockman et al., 2016; Duan et al., 2016): (1) Ant Reacher,
(2) Ant U-Maze, (3) Ant Medium Maze, (4) Ant Large
Maze. In Ant Reacher, there is no maze, and the ant is
required to navigate an open area spanned by [−10, 10]2.
The other three mazes (2)-(4) are taken from the D4RL
repository2. In each task, the agent is reset back to its start
state (a small distribution around (0, 0)) after 1000 steps per
episode. All other environment specific configurations are
unchanged from D4RL. The number of training episodes
for each environment is given in Table 1.

Following D4RL (Fu et al., 2020) and other HRL algo-
rithms (Nachum et al., 2018; Sharma et al., 2020), we used
the negative distance from the goal as our reward function:
R(s, g) = −||s.CoM−g||, where s.CoM∈ R2 refers to the
x, y position of the Ant’s center-of-mass and g refers to a
target position. When s.CoM is sufficiently close to g, i.e,
||s.CoM−g|| < 0.6, thenR(s, g) = 0.

H.2. Baseline Implementation Details

H.2.1. MODEL-FREE BASELINE: TD3+HER

Parameter Value

Replay buffer size 1e6
Critic Learning rate 3 · 10−4

Actor Learning rate 3 · 10−4

Optimizer Adam
Target Update Rate τ 5 · 10−3

Batch size 100
Iterations per time step 1
Discount Factor 0.99
Output Normalization False

Table 2. TD3 + HER Hyperparameters

To compare against TD3 (Fujimoto et al., 2018), we used
the TD3 author’s open-source code base 3. We used the
default hyperparameters, which are listed in Table 2. The
use of Hindsight Experience Replay (HER) (Andrychowicz
et al., 2017) requires that we sample a goal state g at the start
of every episode; as is common, we sampled g uniformly

2github.com/rail-berkeley/d4rl
3github.com/sfujim/TD3

at random from the set of positions that were not inside
obstacles in the maze.

H.2.2. HIERARCHICAL BASELINE: HAC

We used the 3−layer HAC agent from the HAC author’s
open-source code base4. We used the same hyperparameters
that they used in domains involving the Ant.

H.2.3. HIERARCHICAL BASELINE: DADS

We used the author’s code base5 without modification.
Given that DSG’s dynamics model fξ was trained inside the
various mazes that we were testing on, we first tried to train
the DADS skills on environments in which they were going
to be tested. However, we found that the discovered skills
lacked diversity and tended to collapse to the region around
the start-state distribution—presumably because of the lack
of space (in the x, y direction) for the agent to discover max-
imally diverse skills. As a result, we trained the skills on the
Ant-Reacher domain (as Sharma et al. (2020) did in their
paper) and used the resulting skills in the various mazes.

I. Hyperparameters
I.1. DSG

As shown in Table 3, DSG introduced two new hyperparam-
eters; both their values were the same for all environments.

Parameter Value

#−steps of model extrapolation (K) 100
Goal region discovery frequency (N) 50

Table 3. DSG specific hyperparameters

Skill chaining requires three hyperparameters, whose values
are shown in Table 4; their values were also the same for all
environments.

Parameter Value

Gestation period 10
Option timeout 200
Buffer length 50

Table 4. DSC specific hyperparameters

I.2. Model-Based Baseline

The hyperparameters used to implement the model-based
algorithm from Nagabandi et al. (2018) is shown in Table 5.

4github.com/andrew-j-levy/
Hierarchical-Actor-Critc-HAC-

5github.com/google-research/dads

github.com/rail-berkeley/d4rl
github.com/sfujim/TD3
github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
github.com/google-research/dads

Appendix: Deep Skill Graphs

Parameter Value

Batch size 1024
Optimizer Adam
Controller horizon H 7
Number actions sampled K 14000

Table 5. Hyperparameters for learning dynamics model fξ

J. Computational Details
J.1. Initiation Classifiers

Following related work (Bagaria & Konidaris, 2020; Eysen-
bach et al., 2019; Sharma et al., 2020; Levy et al., 2019),
option initiation classifiers were defined over the x, y po-
sition of the agent. Following Bagaria et al. (2021), we
used a one-class SVM (Tax & Duin, 1999) to represent the
option’s pessimistic classifier and a two-class SVM (Cortes
& Vapnik, 1995) to represent its optimistic classifier.

J.2. Computational Resources

All experiments in this paper were performed on 2 NVIDIA
2080-Ti GPUs.

References
Ames, B. and Konidaris, G. Bounded-error lqr-trees. In

2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 144–150. IEEE, 2019.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, O. P., and
Zaremba, W. Hindsight experience replay. In Advances in
Neural Information Processing Systems, pp. 5048–5058,
2017.

Bagaria, A. and Konidaris, G. Option discovery using deep
skill chaining. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=B1gqipNYwH.

Bagaria, A., Senthil, J., Slivinski, M., and Konidaris, G.
Robustly learning composable options in deep reinforce-
ment learning. In 30th International Joint Conference on
Artificial Intelligence, 2021.

Barto, A. G. and Mahadevan, S. Recent advances in hier-
archical reinforcement learning. Discrete event dynamic
systems, 13(1-2):41–77, 2003.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Cortes, C. and Vapnik, V. Support-vector networks. Ma-
chine learning, 20(3):273–297, 1995.

Dijkstra, E. W. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329–1338, 2016.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=SJx63jRqFm.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1582–1591,
2018.

Konidaris, G. and Barto, A. Skill discovery in continuous
reinforcement learning domains using skill chaining. In
Advances in Neural Information Processing Systems, pp.
1015–1023, 2009.

Konidaris, G., Kaelbling, L. P., and Lozano-Perez, T. From
skills to symbols: Learning symbolic representations for
abstract high-level planning. Journal of Artificial Intelli-
gence Research, 61:215–289, 2018.

LaValle, S. M. Rapidly-exploring random trees: A new tool
for path planning. 1998.

Levy, A., Konidaris, G., Platt, R., and Saenko, K. Hi-
erarchical reinforcement learning with hindsight. In
International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=ryzECoAcY7.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances
in Neural Information Processing Systems, pp. 3303–
3313, 2018.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S.
Neural network dynamics for model-based deep reinforce-
ment learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 7559–7566. IEEE, 2018.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised discovery of skills. In
International Conference on Learning Representations
(ICLR), 2020.

Tax, D. M. and Duin, R. P. Support vector domain descrip-
tion. Pattern recognition letters, 1999.

https://openreview.net/forum?id=B1gqipNYwH
https://openreview.net/forum?id=B1gqipNYwH
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7

