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Abstract

Meta-learning aims to perform fast adaptation
on a new task through learning a “prior” from
multiple existing tasks. A common practice in
meta-learning is to perform a train-validation split
(train-val method) where the prior adapts to the
task on one split of the data, and the resulting
predictor is evaluated on another split. Despite its
prevalence, the importance of the train-validation
split is not well understood either in theory or in
practice, particularly in comparison to the more
direct train-train method, which uses all the per-
task data for both training and evaluation.

We provide a detailed theoretical study on whether
and when the train-validation split is helpful in
the linear centroid meta-learning problem. In the
agnostic case, we show that the expected loss of
the train-val method is minimized at the optimal
prior for meta testing, and this is not the case for
the train-train method in general without struc-
tural assumptions on the data. In contrast, in the
realizable case where the data are generated from
linear models, we show that both the train-val
and train-train losses are minimized at the opti-
mal prior in expectation. Further, perhaps surpris-
ingly, our main result shows that the train-train
method achieves a strictly better excess loss in
this realizable case, even when the regularization
parameter and split ratio are optimally tuned for
both methods. Our results highlight that sample
splitting may not always be preferable, especially
when the data is realizable by the model. We
validate our theories by experimentally showing
that the train-train method can indeed outperform
the train-val method, on both simulations and real
meta-learning tasks.
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1. Introduction
Meta-learning, also known as “learning to learn”, has re-
cently emerged as a powerful paradigm for learning to
adapt to unseen tasks (Schmidhuber, 1987). The high-level
methodology in meta-learning is akin to how human beings
learn new skills, which is typically done by relating to cer-
tain prior experience that makes the learning process easier.
More concretely, meta-learning does not train one model
for each individual task, but rather learns a “prior” model
from multiple existing tasks so that it is able to quickly
adapt to unseen new tasks. Meta-learning has been suc-
cessfully applied to many real problems, including few-shot
image classification (Finn et al., 2017; Snell et al., 2017),
hyper-parameter optimization (Franceschi et al., 2018), low-
resource machine translation (Gu et al., 2018) and short
event sequence modeling (Xie et al., 2019).

A common practice in meta-learning algorithms is to per-
form a sample splitting, where the data within each task is
divided into a training split which the prior uses to adapt
to a task-specific predictor, and a validation split on which
we evaluate the performance of the task-specific predic-
tor (Vinyals et al., 2016; Nichol et al., 2018; Rajeswaran
et al., 2019; Fallah et al., 2020; Wang et al., 2020a). For
example, in a 5-way k-shot image classification task, stan-
dard meta-learning algorithms such as MAML (Finn et al.,
2017) use 5k examples within each task as training data,
and use additional examples (e.g. k images, one for each
class) as validation data. This sample splitting is believed to
be crucial as it matches the evaluation criterion at meta-test
time, where we perform adaptation on training data from a
new task but evaluate its performance on unseen data from
the same task.

Despite the aforementioned importance, performing the
train-validation split has a potential drawback from the data
efficiency perspective — Because of the split, neither the
training nor the evaluation stage is able to use all the avail-
able per-task data. In the few-shot image classification ex-
ample, each task has a total of 6k examples available, but the
train-validation split forces us to use these data separately in
the two stages. Meanwhile, performing the train-validation
split is also not the only option in practice: there exist al-
gorithms such as Reptile (Nichol & Schulman, 2018) and
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Meta-MinibatchProx (Zhou et al., 2019) that can instead
use all the per-task data for training the task-specific predic-
tor and also perform well empirically on benchmark tasks.
These algorithms modify the loss function in the outer loop
so that the training loss no longer matches the meta-test loss,
but may have the advantage in terms of data efficiency for
the overall problem of learning the best prior. So far it is the-
oretically unclear how these two approaches (with/without
train-validation split) compare with each other, which moti-
vates us to ask the following

Question: Is the train-validation split necessary
and optimal in meta-learning?

In this paper, we perform a detailed theoretical study on
the importance of the train-validation split. We consider
the linear centroid meta-learning problem (Denevi et al.,
2018b), where for each task we learn a linear predictor that
is close to a common centroid in the inner loop, and find the
best centroid in the outer loop (see Section 2 for the detailed
problem setup). We compare two meta-learning algorithms:
the train-val method which performs the standard train-
validation split, and the train-train method which uses all
the per-task data for both training and evaluation.

We summarize our contributions as follows:

• We show that the train-validation split is necessary in
the general agnostic setting (Section 3): The expected loss
of the train-val method equals the meta test-time loss. In
contrast, the train-train method has a different expected loss
and is not minimized at the best test-time centroid in general,
for which we construct a concrete counter-example.

• In the perhaps more interesting realizable setting, we
show the train-validation split is not necessary: When the
tasks are generated from noiseless linear models, the ex-
pected loss of both the train-val and train-train methods are
minimized at the best test-time centroid (Section 4.1).

• Our main theoretical contribution shows that the train-
validation split is non-optimal in the realizable setting:
The MSE (and test loss) of the two methods concen-
trates sharply around C{tr-val,tr-tr}/T when T (the num-
ber of tasks) is large, where the constants depend on the
{dimension, per-task sample size, regularization parame-
ter}. A precise comparison of constants further shows that
Ctr-tr < Ctr-val when we optimally tune the regularization
parameter in both methods (Section 4.2). Thus, in the real-
izable setting, the train-train method performs strictly better
than the train-val method, which is in stark contrast with the
agnostic case. This result provides a novel insight into the
effect of the train-validation split on the sample complexity
of meta-learning.

• We perform meta-learning experiments on simulations
and benchmark few-shot image classification tasks, show-
ing that the train-train method consistently outperforms the
train-val method (Section 5 & Appendix F). This validates
our theories and presents empirical evidence that sample-
splitting may not be crucial; methods that utilize the per-task
data more efficiently may be preferred.

• On the technical end, our main results in Section 4 build
on concentration analyses on a group of ridge-covariance
matrices, as well as tools from random matrix theory in the
proportional regime, which may be of broader interest. (See
Section 4.3 for an overview of techniques.)

1.1. Related work

Meta-learning and representation learning theory
Baxter (2000) provided the first theoretical analysis of meta-
learning via covering numbers, and Maurer et al. (2016)
improved the analysis via Gaussian complexity techniques.
Another recent line of theoretical work analyzed gradient-
based meta-learning methods (Denevi et al., 2018a; Finn
et al., 2019; Khodak et al., 2019; Ji et al., 2020) and showed
guarantees for convex losses by using tools from online con-
vex optimization. Saunshi et al. (2020) proved the success
of Reptile in a one-dimensional subspace setting. Wang
et al. (2020c) compared the performance of train-train and
train-val methods for learning the learning rate. Denevi
et al. (2018b) proposed the linear centroid model studied
in this paper, and provided generalization error bounds for
train-val method; the bounds proved also hold for train-
train method, so are not sharp enough to compare the two
algorithms. Wang et al. (2020b;a) studied the convergence
of gradient-based meta-learning by relating to the kernelized
approximation. Arnold et al. (2019) observe that MAML
adapts better with a deep model architecture both empiri-
cally and theoretically.

On the representation learning end, Du et al. (2020); Tripura-
neni et al. (2020a;b) showed that ERM can successfully pool
data across tasks to learn the representation. Yet the focus
is on the accurate estimation of the common representation,
not on the fast adaptation of the learned prior. Several recent
work compares MAML versus ERM style approches (Gao
& Sener, 2020; Collins et al., 2020); these comparisons cou-
ple the effect of sample splitting with other factors such as
whether the algorithm uses per-task adaptation. Lastly, we
remark that there are analyses for other representation learn-
ing schemes (McNamara & Balcan, 2017; Galanti et al.,
2016; Alquier et al., 2016).

Empirical understandings of meta-learning Raghu
et al. (2020) showed that MAML with a full finetuning
inner loop mostly learns the top-layer linear classifier and
does not change the representation layers much. This re-
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sult partly justifies the validity of our linear centroid meta-
learning problem in which the features (representations) are
fixed and only a linear classifier is learned. Goldblum et al.
(2020) investigated the difference of the neural representa-
tions learned by classical training (supervised learning) and
meta-learning, and showed that the meta-learned representa-
tion is better for downstream adaptation and makes classes
more separated. Additionally, Setlur et al. (2020); Yao et al.
(2020) investigated alternative ways of choosing the support
set (training split) in meta-learning.

Multi-task learning Multi-task learning also exploits
structures and similarities across multiple tasks. The earliest
idea dates back to Caruana (1997); Thrun & Pratt (1998);
Baxter (2000), initially in connections to neural network
models. They further motivated other approaches using ker-
nel methods (Evgeniou et al., 2005; Argyriou et al., 2007)
and multivariate linear regression models with structured
sparsity (Liu et al., 2009; 2015). More recent advances
on deep multi-task learning focus on learning shared inter-
mediate representations across tasks (Ruder, 2017). These
multi-task learning approaches usually minimize the joint
empirical risk over all tasks, and the models for different
tasks are enforced to share a large amount of parameters. In
contrast, meta-learning only requires the models to share the
same “prior”, and is more flexible than multi-task learning.

2. Preliminaries
In this paper, we consider the standard meta-learning setting,
in which we observe data from T ≥ 1 supervised learning
tasks, and the goal is to find a prior (or “initialization”) using
the combined data, such that the (T + 1)-th new task may
be solved sample-efficiently using the prior.

Linear centroid meta-learning We instantiate our study
on the linear centroid meta-learning problem (also known
as learning to learn around a common mean, Denevi et al.
(2018b)), where we wish to learn a task-specific linear pre-
dictor wt ∈ Rd in the inner loop for each task t, and learn a
“centroid” w0 in the outer loop that enables fast adaptation
to wt within each task:

Find the best centroid w0 ∈ Rd for adapting to a
linear predictor wt on each task t.

Formally, we assume that we observe training data from
T ≥ 1 tasks, where for each task index t, we sample a task
pt (a distribution over Rd × R) from some distribution of
tasks Π, and observe n examples (Xt,yt) ∈ Rn×d × Rn
that are drawn i.i.d. from pt:

pt ∼ Π, (Xt,yt) = {(xt,i, yt,i)}ni=1 where (xt,i, yt,i)
iid∼ pt.
(1)

We do not make further assumptions on (n, d); in particular,
we allow the underdetermined setting n ≤ d, in which there
exists (one or many) interpolators w̃t that perfectly fit the
data: Xtw̃t = yt.

Inner loop: Ridge solver with biased regularization to-
wards the centroid Our goal in the inner loop is to find
a linear predictor wt that fits the data in task t while be-
ing close to the given “centroid” w0 ∈ Rd. We instantiate
this through ridge regression (i.e. linear regression with L2

regularization) where the regularization biases wt towards
the centroid. Formally, for any w0 ∈ Rd and any dataset
(X,y), we consider the algorithm

Aλ(w0; X,y)

:= arg min
w

1

n
‖Xw − y‖22 + λ ‖w −w0‖22

= w0 +
(
X>X + nλId

)−1
X>(y −Xw0),

where λ > 0 is the regularization strength (typically a tun-
able hyper-parameter). As we regularize by ‖w −w0‖22,
this inner solver encourages the solution to be close to w0,
as we desire. Such a regularizer is widely used in prac-
tical meta-learning algorithms such as MetaOptNet (Lee
et al., 2019) and Meta-MinibatchProx (Zhou et al., 2019).
In addition, as λ→ 0, this solver recovers gradient descent
fine-tuning: we have

A0(w0; X,y) := lim
λ→0
Aλ(w0; X,y)

= w0 + X†(y −Xw0) = arg minXw=y ‖w −w0‖22 ,

where X† ∈ Rd×n denotes the pseudo-inverse of X. This
is the minimum-distance interpolator of (X,y) and also
the solution found by gradient descent 1 on ‖Xw − y‖22
initialized at w0. Therefore our ridge solver with λ > 0
can be seen as a generalized version of the gradient descent
solver used in MAML (Finn et al., 2017).

Outer loop: Learning the best centroid In the outer
loop, our goal is to find the best centroid w0. The standard
approach in meta-learning is to perform a train-validation
split, that is, (1) execute the inner solver on a first split of
the task-specific data, and (2) evaluate the loss on a second
split, yielding a function of w0 that we can optimize. This
two-stage procedure can be written as

Compute wt(w0) = Aλ(w0; Xtrain
t ,ytrain

t ), and

Evaluate
∥∥yval

t −Xval
t wt(w0)

∥∥2

2
.

where (Xtrain
t ,ytrain

t ) = {(xt,i, yt,i)}n1

i=1 and (Xval
t ,y

val
t ) =

{(xt,i, yt,i)}ni=n1+1 are two disjoint splits of the per-task

1with a small step-size, or gradient flow.
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data (Xt,yt) of size (n1, n2), with n1 + n2 = n. This
amounts to the

Train-val method: Output ŵtr-val
0,T that minimizes

L̂tr-val
T (w0) =

1

T

T∑

t=1

`tr-valt (w0)

:=
1

T

T∑

t=1

1

2n2

∥∥yval
t −Xval

t Aλ(w0; Xtrain
t ,ytrain

t )
∥∥2

2
.

(2)

We compare the train-val method to an alternative version,
where we do not perform the train-validation split, but in-
stead use all the per-task data for both training and evalua-
tion. Formally, this is to consider the

Train-train method: Output ŵtr-tr
0,T that minimizes

L̂tr-tr
T (w0) =

1

T

T∑

t=1

`tr-trt (w0)

:=
1

T

T∑

t=1

1

2n
‖yt −XtAλ(w0; Xt,yt)‖22 .

(3)

Let L{tr-val,tr-tr}(w0) = E
[
`
{tr-val,tr-tr}
t (w0)

]
denote the

corresponding expected losses. We remark that this ex-
pectation is equivalent to observing an infinite amount of
tasks, but still with a finite (n, d) within each task.

(Meta-)Test time The meta-test time performance of any
meta-learning algorithm is a joint function of the (learned)
centroid w0 and the inner algorithm Alg. Upon receiving
a new task pT+1 ∼ Π and training data (XT+1,yT+1) ∈
Rn×d×Rn, we run the inner loop Alg with prior w0 on the
training data, and evaluate it on an (unseen) test example
(x′, y′) ∼ pT+1:

Ltest(w0;Alg) := E
[

1

2

(
x′>Alg(w0; XT+1,yT+1)− y′

)2]
.

Additionally, for both train-val and train-train methods, we
need to ensure that the inner loop used for meta-test is ex-
actly the same as that used in meta-training. Therefore, the
meta-test performance for the train-val and train-train meth-
ods above should be evaluated as

Ltest
λ,n1

(ŵtr-val
0,T ) := Ltest(ŵtr-val

0,T ;Aλ,n1),

Ltest
λ,n(ŵtr-tr

0,T ) := Ltest(ŵtr-tr
0,T ;Aλ,n),

where Aλ,m denotes the ridge solver with regularization
strength λ > 0 on m ≤ n data points. Finally, we let

w0,?(λ;n) = arg min
w0

Ltest
λ,n(w0) (4)

denote the best centroid if the inner loop uses Aλ,n. The
performance of the train-val algorithm ŵtr-val

0,T should be
compared against w0,?(λ, n1), whereas the train-train algo-
rithm ŵtr-tr

0,T should be compared against w0,?(λ, n).

3. The importance of sample splitting
We begin by analyzing the train-train and train-val methods
defined in (2) and (3), in the agnostic setting where we do
not make structural assumptions on the data distribution pt.

In this case, we show that the importance of the sample split-
ting is clear even at the population level: the expected loss
of the train-val method matches the test-time loss, whereas
the expected loss of the train-train method does not match
the test-time in general and have a different minimizer.

Theorem 1 (Properties of expected losses in the agnostic
case). Suppose the task distributions satisfy Ex∼pt [xx>] �
0, Ex∼pt [‖x‖42] < ∞ and E(x,y)∼pt [‖xy‖2] < ∞ for al-
most surely all pt ∼ Π, but can be otherwise arbitrary.
Then, we have the following:

(a) (Unbiased loss for train-val method) For any λ > 0 and
any (n1, n2) such that n1 + n2 = n, the expected loss
of the train-val method is equal to the meta test-time
loss, and thus minimized at the best test-time centroid:

Ltr-val
λ,n1,n2

(w0) = Ltest
λ,n1

(w0).

(b) (Biased loss for train-train method) There exists a dis-
tribution of tasks Π on d = 1 satisfying the above
conditions, on which for any n ≥ 1 and λ > 0, the
expected loss of the train-train method is not equal to
the test-time loss, and the minimizers are not equal:

Ltr-tr
λ,n (·) 6= Ltest

λ,n(·), and

wtr-tr
0,? := arg min

w0

Ltr-tr(w0) 6= arg min
w0

Ltest
λ,n(w0).

Further, the excess test loss of wtr-tr
0,? is bounded away

from zero: Ltest
λ,n(wtr-tr

0,? )−minw0
Ltest
λ,n(w0) > 0.

Theorem 1 makes clear the advantage of the train-
val method when there is no structural assumption on the
data distributions: The expected version of the train-val loss
matches the meta test-time, whereas the expected version of
the train-train loss has a bias in general. By standard consis-
tency results (Van der Vaart, 2000), this advantage carries
on to the sampled versions as well for large T . In other
words, the train-val method is a “valid ERM” (empirical
risk minimization) procedure for the test-time loss, whereas
the train-train method is not a valid ERM.

Proof intuitions The proof of part (a) follows from direct
calculations, whereas the proof of part (b) is trickier as we
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need to construct a counter-example in which the expected
loss of the train-train method is not equal the test-time loss
for any λ, n. We provide such a construction in d = 1,
where the distribution pt has a certain asymmetry that re-
sults in a bias the train-train loss function for any λ and n.
However, we expect such a bias to be present in general for
any dimensions. The proof of Theorem 1 can be found in
Appendix A.

4. Is sample splitting always optimal?
Theorem 1 states a negative result for the train-train method,
showing that its expected loss and the meta test-time loss
does not have the same values and minimizers. However,
such a result does not preclude the possibility that there
exists a data distribution on which the minimizers coincide
(even though the loss values can still be different).

In this section, we construct a simple data distribution on
which train-train method is indeed unbiased in terms of the
minimizer of the expected loss, and compare its performance
against the train-val method more explicitly.

Realizable linear model We consider the following in-
stantiation of the (generic) meta-learning data distribution
assumption in (1): We assume that each task pt is specified
by a wt ∈ Rd sampled from some distribution Π (overload-
ing notation), and the observed data follows the noiseless
linear model with ground truth parameter wt:

yt = Xtwt. (5)

Note that when n ≥ d and inputs are in general position,
we are able to perfectly recover wt (by solving linear equa-
tions), therefore the problem in the inner loop is easy. How-
ever, even in this case the outer loop problem is still non-
trivial as we wish to learn the best centroid w0.

In this section, we make the following assumption on the
distributions of Xt and wt:

Assumption A (Data distributions for realizable linear
model). The inputs are standard Gaussian: xt,i

iid∼ N(0, Id).
The true coefficient wt is independent of Xt and satisfies

Cov(wt) = Ewt

[
(wt −w0,?)(wt −w0,?)

>] =
R2

d
Id,

(6)

for some fixed R2 > 0, and that the individual entries
{wt,i − w0,?,i}i∈[d],t∈[T ] are i.i.d. mean-zero and KR2/d-
sub-Gaussian for some absolute constant K = O(1).

The sub-Gaussian assumption on wt allows for a sharp con-
centration of the MSE to its expectation (over wt). The
Gaussian input assumption allows for a precise characteri-
zation of certain ridge covariance type random matrices.

4.1. Population minimizers

We first show that on the realizable linear model (5), the
test-time best centroids w0,?(λ, n) = arg minw0

Ltest
λ,n(w0)

is the same for any (λ, n), and both the train-train and train-
val methods are unbiased: Both expected losses are mini-
mized at w0,?.

Theorem 2 (Population minimizers on the realizable
model). On the realizable linear model (5), suppose As-
sumption A holds. Then the test-time meta loss for all λ > 0
and all n is minimized at the same point, that is, the mean
of the ground truth parameters:

w0,?(λ, n) = arg min
w0

Ltest
λ,n(w0)

= w0,? := Ewt∼Π[wt], for all λ > 0, n.

Furthermore, for both the train-val method and the train-
train method, the expected loss is minimized at w0,? for any
λ > 0, n, and (n1, n2):

arg min
w0

Ltr-val
λ,n1,n2

(w0) = arg min
w0

Ltr-tr
λ,n (w0) = w0,?.

Theorem 2 shows that both the train-val and train-train meth-
ods are in expectation minimized at the same optimal param-
eter w0,? which is the mean of wt. This is a consequence
of the good structure in our realizable linear model (5): at
a high level, w0,? is indeed the best centroid since it has
(on average) the closest distance to a randomly sampled wt.
The proof of Theorem 2 be found in Appendix B.

4.2. Precise comparison of rates

Theorem 2 suggests that we are now able to compare per-
formance of the two methods based on their parameter esti-
mation error (for estimating w0,?).

We are now ready to state our two main theorems, which pro-
vide a precise comparison of the MSEs of the train-train and
train-val methods under the realizable linear model.

Theorem 3 (Concentration of MSEs in the realizable linear
model). In the realizable linear model (5), suppose Assump-
tion A holds, T = Ω̃(d), d/n = Θ(1), n2/n = Θ(1), and
λ = Θ(1) > 0. Then with probability at least 1 − Td−10,
the MSE of the train-train and train-val methods has the
following concentrations, respectively:

∥∥ŵtr-tr
0 −w0,?

∥∥2

2
=
R2

T

(
Ctr-tr
d,n,λ + Õ

(√
d

T
+

1√
d

))
,

∥∥ŵtr-val
0 −w0,?

∥∥2

2
=
R2

T

(
Ctr-val
d,n1,n2,λ + Õ

(√
d

T
+

1√
d

))
,

where Õ(·) hides log(ndT ) factor. Further, the constants
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Ctr-tr, Ctr-val = Θ(1) and have explicit expressions:

Ctr-tr
d,n,λ =

1
dE
[
tr
(

(Σ̂n + λId)
−4Σ̂2

n

)]

(
1
dE
[
tr
(

(Σ̂n + λId)−2Σ̂n

)])2 ,

Ctr-val
d,n1,n2,λ =

1
dn2

E
[
tr
(

(Σ̂n1
+ λId)

−2
)2

+ (n2 + 1)tr
(

(Σ̂n1
+ λId)

−4
)]

(
1
dE
[
tr
(

(Σ̂n1
+ λId)−2

)])2 ,

where Σ̂n := X>t Xt/n denotes the empirical covariance
of a standard Gaussian random matrix Xt ∈ Rn×d.

Theorem 3 asserts that the MSEs of both methods concen-
trate around R2/T times a Θ(1) constant, when both T, d
are large and T = Ω̃(d) (so that the error terms vanish).
This allows us to compare the performances of the train-
train and train-val methods based on the constants. For a fair
comparison, we look at the constants with optimal choices
of λ and the split ratio, which we state in the following

Theorem 4 (Comparison of constants Ctr-tr and Ctr-val). In
the high-dimensional limiting regime d, n → ∞, d/n →
γ ∈ (0,∞), the optimal constant of the train-train method
obtained by tuning the regularization λ ∈ (0,∞) satisfies

inf
λ>0

lim
d,n→∞,d/n→γ

Ctr-tr
d,n,λ = inf

λ>0
ρλ,γ

(?)

≤ max

{
1 +

5

27
γ,

5

27
+ γ

}
,

where ρλ,γ := 4γ2
[
(γ − 1)2 + (γ + 1)λ

]
/(λ + γ + 1 −√

(λ+ γ + 1)2 − 4γ)2/
(
(λ+ γ + 1)2 − 4γ

)3/2
, and the

inequality becomes equality at γ = 1. In contrast, the opti-
mal rate of the train-val method by tuning the regularization
λ ∈ (0,∞) and split ratio s ∈ (0, 1) is

inf
λ>0,s∈(0,1)

lim
d,n→∞,d/n→γ

Ctr-val
d,ns,n(1−s),λ = (1 + γ).

As max {1 + 5γ/27, 5/27 + γ} < 1+γ for any γ > 0, the
train-train method has a strictly better constant than the
train-val method when λ and s are optimally tuned in both
methods.

Implications Theorem 4 shows that, perhaps surprisingly,
the train-train method achieves a strictly better MSE (in
terms of the constant) than the train-val method in the re-
alizable linear model2. (See Figure 1(a) for a visualization
of the exact optimal rates and the upper bound (?).) This
suggests that the train-validation split may not be crucial

2The same conclusion also holds for the excess test loss, as the
Hessian of the test loss is a rescaled identity, see Appendix C.2.

when the data has structural assumptions such as realizabil-
ity by the model. To the best of our knowledge, this is the
first theoretical result that offers a disentangled compari-
son of meta-learning algorithms with and without sample
splitting. Note that our result features an optimal tuning
of hyperparameters: we compare the rates at the (theoreti-
cally) optimal λ for the train-train method and the optimal
λ, n1 for the train-val method. A closely related existing
result is (Denevi et al., 2018b, Proposition 3) which proved
a sample complexity upper bound for the linear centroid
meta-learning problem; however, they only consider the
train-val method, and their upper bounds do not tell the
exact leading constants as in our Theorem 3.

We also remark that, while our theory considers the linear
centroid meta-learning problem, our real data experiments
in Section 5.2 suggests that the superiority of the train-
train method may also hold on real meta-learning tasks with
neural networks.

4.3. Overview of techniques

Here we provide an overview of the techniques in proving
Theorem 3 and Theorem 4. We defer the full proofs to
Appendix C and Appendix D respectively.

Closed-form expressions for ŵtr-tr
0,T and ŵtr-val

0,T Our first
step is to obtain the following closed-form expressions for
the estimation errors of both methods in the realizable linear
model (see Lemma C.1):

ŵtr-tr
0,T −w0,? =

(
T∑

t=1

At

)−1 T∑

t=1

At(wt −w0,?),

ŵtr-val
0,T −w0,? =

(
T∑

t=1

Bt

)−1 T∑

t=1

Bt(wt −w0,?),

where

At := λ2
(
X>t Xt/n+ λId

)−2
(X>t Xt/n),

Bt := λ2
(
Xtrain>
t Xtrain

t /n1 + λId
)−1(

Xval>
t Xval

t /n2

)

·
(
Xtrain>
t Xtrain

t /n1 + λId
)−1

.

These expressions simplify the estimation errors as the
“weighted averages” of the {wt −w0} with weighting ma-
trices At and Bt.

Sharp concentration to exact constants Our next step
is to establish the concentration

∥∥ŵtr-tr
0,T −w0,?

∥∥2

2

(i)≈ R2

d
· tr



(

T∑

t=1

At

)−2( T∑

t=1

A2
t

)

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Number of tasks d/n ratio with fixed n

tr-tr, ref. curve 

tr-val, n1 = 0, 
ref. curve 1+d/n

tr-val, n1 = 20, 
ref. curve 1+ 5d/4n

tr-tr, 
ref. curve 3/T

tr-val, n1 = 0, 
ref. curve 4/T

tr-val, n1 = 5, 
ref. curve 5/T

d/n ratio

tr-val,  n1 = 0,
optimal

tr-tr, optimaltr-tr, 
upper bound

tr-val, n1 = 5, 
optimal
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(c) MSE of bw{tr-tr, tr-val}
0,T v.s. d/n ratio

Figure 1. Panel (a) plots the exact constants in Theorem 4: The optimal train-train constant infλ Ctr-tr
d,n,λ (blue) and its upper bound (?)

(magenta), as well as the optimal train-val constant infλ Ctr-val
d,n1,n2,λ

with n1 = 0 (orange, optimal choice) and n1 = 5 (green). (Optimal
infλ C

tr-val
d,n1,n2,λ

at each n1 can be found in Lemma D.1.) Curves in panel (a) are used as reference curves in plots (b) and (c). Panel (b)
plots the MSE of ŵ

{tr-tr,tr-val}
0,T as the total number of tasks increases from 20 to 1000 with an increment of 20. We fix data dimension

d = 60 and per-task sample size n = 20. For the train-val method, we experiment on n1 = 0 and n1 = 5. Panel (c) shows the rescaled
MSE of ŵ

{tr-tr,tr-val}
0,T as the ratio d/n varies from 0 to 3 (with n = 100 and T = 300).

(ii)≈ R2

T
(tr(E[At])/d)

−2(
tr
(
E[A2

t ]
)
/d
)

=
R2

T
Ctr-tr
d,n,λ.

(and a similar result for ŵtr-val
0,T using Bt.) Above, (i) relies

on the concentration of a certain quadratic form involving
the (wt−w0)’s, following from the Hanson-Wright inequal-
ity (cf. Lemma C.5), and (ii) relies on the concentration
of the matrices

∑T
t=1 At/T and

∑T
t=1 A2

t/T , using stan-
dard sub-Gaussian matrix concentration and a truncation
argument (cf. Lemma C.4). Further calculating the expec-
tations E[At] and E[A2

t ] gives the exact formula of Ctr-tr
d,n,λ

(cf. Lemma C.2) and finishes the proof of Theorem 3.

Optimizing and comparing Ctr-tr
d,n,λ and Ctr-val

d,n1,n2,λ
The

constants Ctr-tr
d,n,λ and Ctr-val

d,n1,n2,λ
involve tunable hyper-

parameters λ (for both methods) and n1 (for the train-
val method). We use the following strategies to optimize the
hyperparameters in each method, which combine to yield
Theorem 4.

• For the train-val method, we show that the optimal tunable
parameters for any (n, d) is taken at a special case λ =∞
and (n1, n2) = (0, n), at which the rate only depends on
1
n1

Xtrain>
t Xtrain

t through its rank (and thus has a simple
closed-form). We state this result in Lemma D.1. The
proof builds on algebraic manipulations of the quantity
Ctr-val
d,n,λ1,λ2

, and can be found in Appendix D.1.

• For the train-train method, we apply random matrix the-
ory to simplify the spectrum of 1

nX>t Xt in the propor-
tional limit where d, n→∞ and d/n stays as a constant
(Bai & Silverstein, 2010; Anderson et al., 2010), and ob-
tain a closed-form expression of the asymptotic MSE for

any λ > 0, which we can analytically optimize over λ.
We state this result in Theorem D.1. The proof builds on
the Stieltjes transform and its “derivative trick” (Dobriban
et al., 2018), and is deferred to Appendix D.2.

5. Experiments
5.1. Simulations

We experiment on the realizable linear model studied in
Section 4. Recall that the observed data of the t-th task are
generated as

yt = Xtwt, with xt,i
iid∼ N(0, Id).

We independently generate wt
iid∼ N(w0,?, Id/

√
d), where

w0,? is the linear centroid and the corresponding R2 = 1
here. The goal is to learn the linear centroid w0,? using
the train-train method and train-val method, i.e., minimiz-
ing L̂tr-tr

T and L̂tr-val
T , respectively. Recall that the optimal

closed-form solutions ŵ
{tr-tr,tr-val}
0,T are given in Section 4.3.

We measure the performance of the train-train and train-
val methods using the `2-error ‖w0,? − ŵ

{tr-tr,tr-val}
0,T ‖22.

Result Figure 1 shows the performance of the train-
train and train-val methods on simulated linear centroid
meta-learning problems. Across all simulations, we op-
timally tune the regularization coefficient λ in the train-
train method, and use a sufficiently large λ = 2000 in the
train-val method (according to Lemma D.1). Observe that
the MSEs of the two methods decay at rate O(1/T ) (Fig-
ure 1(b)). Further, the performance of the two methods
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Table 1. Comparison of train-train and train-val on few-shot image classification (accuracy in %).
m

in
iI

m
ag

e method 1-shot 5-way 5-shot 5-way 1-shot 20-way 5-shot 20-way

train-val 48.76 ± 0.87 63.56 ± 0.95 17.52 ± 0.49 21.32 ± 0.54

train-train 50.77 ± 0.90 67.43 ± 0.89 21.17 ± 0.38 34.30 ± 0.41

tie
re

dI
m

ag
e method 1-shot 5-way 5-shot 5-way 1-shot 10-way 5-shot 10-way

train-val 50.61 ± 1.12 67.30 ± 0.98 29.18 ± 0.57 43.15 ± 0.72

train-train 54.37 ± 0.93 71.45 ± 0.94 35.56 ± 0.60 54.50 ± 0.71

in our simulation closely matches the theoretical result in
Theorem 4, and the train-train method reliably outperforms
the train-val method at all d/n with a moderately large T
(Figure 1(c)). In Appendix G, we additionally investigate
the effect of averaging the loss over multiple splits in the
train-val method (a “cross-validation” type loss).

5.2. Few-shot image classification

We further compare train-train and train-val type methods on
the benchmark few-shot image classification tasks miniIma-
geNet (Ravi & Larochelle, 2017) and tieredImageNet (Ren
et al., 2018).

Methods We instantiate the train-train and train-
val method in the centroid meta-learning setting with a ridge
solver. The methods are almost exactly the same as in our
theoretical setting in (2) and (3), with the only differences
being that the parameters wt (and hence w0) parametrize
a deep neural network instead of a linear classifier, and
the loss function is the cross-entropy instead of squared
loss. Mathematically, we minimize the following two loss
functions:

Ltr-val
λ,n1

(w0) :=
1

T

∑

t=1

`tr-valt (w0)

=
1

T

T∑
t=1

`
(

arg min
wt

`(wt;X
train
t ,y

train
t ) + λ ‖wt −w0‖22 ;X

val
t ,y

val
t

)
,

Ltr-tr
λ (w0) :=

1

T

T∑

t=1

`tr-trt (w0)

=
1

T

T∑
t=1

`
(

arg min
wt

`(wt;Xt,yt) + λ ‖wt −w0‖22 ;Xt,yt

)
,

where (Xt,yt) is the data for task t of size n, and
(Xtrain

t ,ytrain
t ) and (Xval

t ,y
val
t ) is a split of the data of size

(n1, n2). We note that both loss functions above have been
considered in prior work (Ltr-val in iMAML (Rajeswaran
et al., 2019), and Ltr-tr in Meta-MinibatchProx (Zhou et al.,
2019)), though we use slightly different implementation
details from these prior work to make sure that the two
methods here are exactly the same except for whether the
split is used. Additional details about the implementation

can be found in Appendix F.

We experiment on miniImageNet (Ravi & Larochelle, 2017)
and tieredImageNet (Ren et al., 2018) datasets. Mini-
ImageNet consists of 100 classes of images from Ima-
geNet (Krizhevsky et al., 2012) and each class has 600
images of resolution 84 × 84 × 3. We use 64 classes for
training, 16 classes for validation, and the remaining 20
classes for testing (Ravi & Larochelle, 2017). TieredIm-
ageNet consists of 608 classes from the ILSVRC-12 data
set (Russakovsky et al., 2015) and each image is also of
resolution 84× 84× 3.

We adopt the episodic training procedure (Vinyals et al.,
2016; Finn et al., 2017; Zhou et al., 2019; Rajeswaran et al.,
2019) In each “N -way K-shot setting” (in Table 1), in
meta-test, each task provides an N -way K-shot dataset for
the model adaptation. In meta-training, for each task we
sample an N -way (K + 1)-shot dataset (and does not allow
the algorithm to tune the size of this dataset), so that each
task only has n = N(K + 1) examples, and we allow the
algorithm to tune n1 ∈ [0, n]3. Table 1 uses the default
choice of an even split n1 = n2 = n/2 following (Zhou
et al., 2019; Rajeswaran et al., 2019). For example, for
a 5-way 5-shot classification setting, each task contains
5 × (5 + 1) = 30 total images, and we set n1 = n2 = 15.
(We additionally investigate the optimality of this split ratio
in Appendix F.1.) We report the average accuracy over
2, 000 random test episodes with 95% confidence interval.

Results We find that the train-train method consistently
outperforms the train-val method (Table 1). Specifically, on
miniImageNet, train-train method outperforms train-val by
2.01% and 3.87% on the 1-shot 5-way and 5-shot 5-way
tasks respectively; On tieredImageNet, train-train on av-
erage improves by about 6.40% on the four testing cases.
These results show the advantages of train-train method over
train-val and support our theoretical findings in Theorem 4.

3This setting deviates slightly from our setting (in Section 2
& 3) that meta-train and meta-test needs to have exactly the same
(n1, n2), but allows a fair comparison of algorithms under the
realistic scenario of limited per-task data (fixed n) and fixed data
size at meta test time.
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6. Conclusion
We study the importance of train-validation split on the
linear-centroid meta-learning problem, and show that the
necessity and optimality of train-validation split depends
greatly on whether the tasks are structured: the sample split-
ting is necessary in general situations, and not necessary and
non-optimal when the tasks are nicely structured. It would
be of interest to study whether similar conclusions hold on
other meta-learning problems such as learning representa-
tions, or how our insights can guide the design of meta-
learning algorithms with better empirical performance.
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A. Proof of Theorem 1
A.1. Proof of part (a)

We need to show that

Ltr-val(w0) = E[`tr-valt (w0)] = Ltest
λ,n1

(w0)

for all w0, that is, the population meta-test loss is exactly the same as the expected loss of the train-val method. This is
straightforward: as the tasks are i.i.d. and Aλ(w0; Xtrain

t ,ytrain
t ) is independent of the test points (Xval

t ,y
val
t ), we have for

any w0 that

E[`tr-valt (w0)] = Ept∼Π,(Xt,yt)∼pt

[
1

2n2

∥∥yval
t −Xval

t Aλ(w0; Xtrain
t ,ytrain

t )
∥∥2

2

]

= Ept∼Π,(Xt,yt)∼pt

[
1

2

(
yvalt,1 − xval>

t,1 Aλ(w0; Xtrain
t ,ytrain

t )
)2]

= E
pT+1∼Π,(XT+1,yT+1),(x′,y′)

iid∼pt

[
1

2

(
y′ − x′>Aλ,n1

(w0; XT+1,yT+1)
)2]

= Ltest
λ,n1

(w0).

This finishes the proof of part (a).

We also calculate the minimizer of the test-time loss Ltest
λ,n (notice that here we use n instead of n1 training samples per task),

which will be useful for our proof of part (b). We have

Ltest
λ,n(w0) = E

pt∼Π,(Xt,yt),(x′,y′)
iid∼pt

[
1

2

(
y′ − x′>Aλ,n(w0; Xt,yt)

)2]

= E
pt∼Π,(Xt,yt),(x′,y′)

iid∼pt

[
1

2

(
y′ − x′>

[
w0 + (X>t Xt + nλId)

−1X>t (yt −Xtw0)
])2]

=
1

2
w>0 Mw0 −w>0 b + const,

where

M := E
pt∼Π,(Xt,yt),(x′,y′)

iid∼pt

[(
Id − (X>t Xt + nλId)

−1X>t Xt

)
x′x′>

(
Id − (X>t Xt + nλId)

−1X>t Xt

)]

= Ept,(Xt,yt)

[
λ2(X>t Xt/n+ λId)

−1Σt(X
>
t Xt/n+ λId)

−1
]
� 0,

(7)

where Σt := Ex∼pt [xx>] � 0, and

b := E
pt∼Π,(Xt,yt),(x′,y′)

iid∼pt

[(
Id − (X>t Xt + nλId)

−1
)
x′t
(
y′t − x′>t (X>t Xt + nλId)

−1X>t yt
)]

= E
pt∼Π,(Xt,yt),(x′,y′)

iid∼pt

[
λ
(
X>t Xt/n+ λId

)−1
x′t
(
y′t − x′>t (X>t Xt/n+ λId)

−1X>t yt/n
)]

= λE
[
(X>t Xt/n+ λId)

−1
]
Ept,(x′,y′)∼pt [x

′y′]− λE
[
(X>t Xt/n+ λId)

−1Σt(X
>
t Xt/n+ λId)

−1 1

n
X>t yt

]
.

(8)

Noticing that (Xtrain>

t Xtrain
t /n + λId)

−1 � λ−1Id and by the assumptions that E(x,y)∼pt [
∥∥xx>

∥∥
op

] < ∞,
E(x,y)∼pt [‖xy‖2] <∞, we have ‖M‖op <∞ and ‖bT ‖2 <∞. Therefore, the minimizer of Ltest

λ,n is

w0,?(λ, n) = arg min
w0

Ltest
λ,n(w0) = M−1b, (9)

where M ∈ Rd×d and b ∈ Rd are defined in (7) and (8).

A.2. Proof of part (b)

We construct a simple counter-example on which the minimizer of Ltr-tr is not equal to that of Ltest
λ,n for any λ > 0 and

n ≥ 1. We begin by simplifying the train-train loss. We have

`tr-trt (w0) =
1

2n
‖yt −XtAλ(w0; Xt,yt)‖22
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=
1

2n

∥∥yt −Xt

[
w0 + (X>t Xt + nλId)

−1X>t (yt −Xtw0)
]∥∥2

2

=
1

2
‖Atw0 − ct‖22 ,

where

At =
1√
n
nλXt(X

>
t Xt + nλId)

−1 and ct =
1√
n

(
In −Xt(X

>
t Xt + nλId)

−1X>t
)
yt.

Therefore, the minimizer of the expected loss Ltr-tr is

wtr-tr
0,? = arg min

w0

Ltr-tr(w0) =
(
E[A>t At]

)−1E[A>t ct]

= E
[
λ2(X>t Xt/n+ λId)

−2 X>t Xt

n

]−1

· E
[

1

n
λ(X>t Xt/n+ λId)

−1X>t (In −Xt(X
>
t Xt + nλId)

−1X>t )yt

]

= E
[
λ2(X>t Xt/n+ λId)

−2 X>t Xt

n

]−1

· E
[
λ2(X>t Xt/n+ λId)

−2 1

n
X>t yt

]
.

(10)

On the other hand, recall from (9) that the minimizer of the test-time loss Ltest
λ,n is

w0,?(λ, n) = arg min
w0

Ltest
λ,n(w0)

= E
[
λ2(X>t Xt/n+ λId)

−1Σt(X
>
t Xt/n+ λId)

−1
]−1 ·

{
λE
[
(X>t Xt/n+ λId)

−1
]
Ept,(x′,y′)∼pt [x

′y′]

− λE
[
(X>t Xt/n+ λId)

−1Σt(X
>
t Xt/n+ λId)

−1 1

n
X>t yt

]}
.

(11)

Construction of the counter-example We now construct a distribution for which (10) is not equal to (11). Let d = 1 and
let all pt be the following distribution:

pt : (xt,i, yt,i) =

{
(1, 3) with probability 1/2;

(3,−1) with probability 1/2.

Clearly, we have Σt = 5, st := X>t Xt/n ∈ [1, 9], and Ex′,y′∼pt [x′y′] = 0. Therefore we have

wtr-tr
0,? = E

[
(st + λ)−2st

]−1 · E
[

(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]
,

and

w0,?(λ, n) = −E
[
5λ2(st + λ)−2

]−1 · E
[

5λ(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]

= −E
[
λ(st + λ)−2

]−1 · E
[

(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]
.

We now show that wtr-tr
0,? 6= w0,?(λ, n) by showing that

E

[
(st + λ)−2 1

n

n∑

i=1

xt,iyt,i

]
= E

[
xt,1yt,1

(st + λ)2

]
6= 0

for any λ > 0. Indeed, conditioning on (xt,1, yt,1) = (1, 3), we know that the sum-of-squares in st has one term that equals
1, and all others i.i.d. being 1 or 9 with probability one half. On the other hand, if we condition on (xt,1, yt,1) = (3,−1),
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then we know the sum in st has one term that equals 9 and all others i.i.d.. This means that the negative contribution in the
expectation is smaller than the positive contribution, in other words

E
[
xt,1yt,1

(st + λ)2

]
=

1

2
· 3E

[
1

(st + λ)2

∣∣∣∣(xt,1, yt,1) = (1, 3)

]

+
1

2
· −3E

[
1

(st + λ)2

∣∣∣∣(xt,1, yt,1) = (3,−1)

]
> 0.

This shows wtr-tr
0,? 6= w0,?(λ, n).

Finally, for this distribution, the test loss Ltest
λ,n(w0) is strongly convex (since it has a positive second derivative), this further

implies that the excess loss Ltest
λ,n(wtr-tr

0,? )− Ltest
λ,n(w0,?(λ, n)) is bounded away from zero.

B. Proof of Theorem 2
We first show that w0,? = Ewt∼Π[wt] is a global optimizer for Ltr-tr

λ,n and Ltr-val
λ,n1,n2

with any regularization coefficient λ > 0,
any n, and any split (n1, n2). To do this, it suffices to check that the gradient at w0,? is zero and the Hessian is positive
definite (PD).

Optimality of w0,? in both Ltr-tr
λ,n and Ltr-val

λ,n1,n2
. We first look at Ltr-tr: for any w0 ∈ Rd we have

Ltr-tr
λ,n (w0) = E[`tr-trt (w0)]

=
1

2n
E
[∥∥∥Xtwt −Xt

[(
X>t Xt + nλId

)−1
X>t (Xtwt −Xtw0) + w0

] ∥∥∥
2

2

]

=
1

2n
E
[∥∥∥Xt

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)
(wt −w0)

∥∥∥
2

2

]
. (12)

Similarly, Ltr-val
λ,n1,n2

can be written as

Ltr-val(w0) = E[`tr-valt (w0)]

=
1

2n2
E
[∥∥∥Xval

t wt −Xval
t

[(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>
(
Xtrain
t wt −Xtrain

t w0

)
+ w0

] ∥∥∥
2

2

]

=
1

2n2
E
[∥∥∥Xval

t

(
Id −

(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>Xtrain
t

)
(wt −w0)

∥∥∥
2

2

]
. (13)

We denote

Mtr-tr
t = Xt

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)
and

Mtr-val
t = Xval

t

(
Id −

(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>Xtrain
t

)

to simplify the notations in (12) and (13). We take gradient of Ltr-tr and Ltr-val with respect to w0:

∇w0L
tr-tr
λ,n (w0) = − 1

n
E
[
(Mtr-tr

t )>Mtr-tr
t (wt −w0)

]
, (14)

∇w0L
tr-val
λ,n1,n2

(w0) = − 1

n2
E
[
(Mtr-val

t )>Mtr-val
t (wt −w0)

]
. (15)

Substituting w0,? into (14) and taking expectation, we deduce

∇w0
Ltr-tr
λ,n (w0,?) = − 1

n
E
[
(Mtr-tr

t )>Mtr-tr
t (wt −w0,?)

]
= 0. (16)

To see this, observe that by definition E[wt −w0,?] = 0. Combining with wt being generated independently of Xt, we
obtain that the RHS of (16) vanish. Following the same argument, we can show

∇w0L
tr-val
λ,n1,n2

(w0,?) = 0,
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since Xval
t is also independent of wt. The reasoning above indicates that w0,? is a stationary point of both Ltr-tr

λ,n and
Ltr-val
λ,n1,n2

. The remaining step is to check ∇2
w0
Ltr-tr
λ,n (w0,?) and ∇2

w0
Ltr-val
λ,n1,n2

(w0,?) are positive definite. From (14) and
(15), we derive respectively the Hessian of Ltr-tr

λ,n and Ltr-val
λ,n1,n2

as

∇2
w0
Ltr-tr
λ,n (w0,?) =

1

n
E[(Mtr-tr

t )>Mtr-tr
t ] and

∇2
w0
Ltr-val
λ,n1,n2

(w0,?) =
1

n2
E[(Mtr-val

t )>Mtr-val
t ].

Let v ∈ Rd be any nonzero vector, our goal is to check v>∇2
w0
Ltr-tr
λ,n (w0,?)v > 0, and also v>∇2

w0
Ltr-val
λ,n1,n2

(w0,?)v > 0.
Consider v>∇2

w0
Ltr-tr
λ,n (w0,?)v first. By the isotropicity of Gaussian and some algebraic manipulation, we can show

v>∇2
w0
Ltr-tr
λ,n (w0,?)v =

1

n
E
[
v>
(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)
X>t Xt

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)
v
]
> 0.

See a detailed computation in the proof of Lemma C.2 (term E[At] in (25)). As a consequence, we have shown that w0,? is
a global optimum of Ltr-tr

λ,n . The same argument applies to Ltr-val
λ,n1,n2

(The Hessian∇2
w0
Ltr-val
λ,n1,n2

(w0,?) being positive definite
is also shown in Lemma C.2. See term E[Bt] in (28)). The proof is complete.

C. Proof of Theorem 3
The proof is organized as follows. We first derive the closed-form expressions of the train-train and train-val estimators
in terms of the matrices At, Bt in Section C.1. We compute the first and second moments of At and Bt in Section C.2,
present some concentration lemmas in Section C.3, and then prove the main theorem in Section C.4.

C.1. Closed-form expressions for the estimators

Lemma C.1 (Closed-form expressions for ŵtr-tr
0,T and ŵtr-val

0,T ). For the realizable linear model (5), the train-train method (3)
and the train-val method (2) have closed-form expressions

ŵtr-tr
0,T =

(
T∑

t=1

At

)−1 T∑

t=1

Atwt, (17)

ŵtr-val
0,T =

(
T∑

t=1

Bt

)−1 T∑

t=1

Btwt, (18)

where

At := λ2

(
X>t Xt

n
+ λId

)−2
X>t Xt

n
, (19)

Bt := λ2

(
Xtrain>
t Xtrain

t

n1
+ λId

)−1
Xval>
t Xval

t

n2

(
Xtrain>
t Xtrain

t

n1
+ λId

)−1

. (20)

Proof. We consider the train-train method first. SubstitutingAλ(w0; X,y) = w0 + (X>X +nλId)
−1X>(y−Xw0) into

(3) yields

ŵtr-tr
0,T = arg min

w0

1

T

T∑

t=1

1

2n

∥∥yt −Xt

(
w0 + (X>t Xt + nλId)

−1X>t (yt −Xtw0)
)∥∥2

2
.

The optimization problem above is quadratic in w0. Therefore, by setting the gradient with respect to w0 equal to zero, we
derive

ŵtr-tr
0,T = arg min

w0

1

T

T∑

t=1

1

2n

∥∥(Id −Xt(X
>
t Xt + nλId)

−1X>t
)
yt −Xt

(
Id − (X>t Xt + nλId)

−1X>t Xt

)
w0

∥∥2

2
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(i)
= arg min

w0

1

T

T∑

t=1

1

2n

∥∥Xt

(
Id − (X>t Xt + nλId)

−1X>t Xt

)
wt −Xt

(
Id − (X>t Xt + nλId)

−1X>t Xt

)
w0

∥∥2

2

(ii)
= arg min

w0

1

T

T∑

t=1

1

2n

∥∥∥λXt

(
X>t Xt/n+ λId

)−1
(wt −w0)

∥∥∥
2

2

=

(
T∑

t=1

λ2

(
X>t Xt

n
+ λId

)−1
X>t Xt

n

(
X>t Xt

n
+ λId

)−1
)−1

·
T∑

t=1

λ2

(
X>t Xt

n
+ λId

)−1
X>t Xt

n

(
X>t Xt

n
+ λId

)−1

wt

(iii)
=

(
T∑

t=1

At

)−1 T∑

t=1

Atwt,

where step (i) invokes the data generating assumption yt = Wtwt, step (ii) simplifies Id − (X>t Xt + nλId)
−1X>t Xt

as λn(X>t Xt + nλId) by writing Id = (X>t Xt + nλId)
−1(X>t Xt + nλId), and step (iii) follows from plugging in the

definition of At in (19) and the fact that (X>t Xt + nλId)
−1 and X>t Xt commute.

Next we consider the train-val method. The argument is analogous to the train-train method. In particular, we recall from
(2):

ŵtr-val
0,T = arg min

w0

1

T

T∑

t=1

1

2n2

∥∥yval
t −Xval

t

(
w0 + ((Xtrain

t )>Xtrain
t + n1λId)

−1(Xtrain
t )>(ytrain

t −Xtrain
t w0)

)∥∥2

2
.

The optimization problem above is still quadratic in w0. Using the same rearrangement technique for the train-train method,
we deduce

ŵtr-val
0,T = arg min

w0

1

T

T∑

t=1

1

2n2

∥∥∥λXval
t

(
(Xtrain

t )>Xtrain
t /n1 + λId

)−1
(wt −w0)

∥∥∥
2

2

=

(
T∑

t=1

λ2

(
(Xtrain

t )>Xtrain
t

n1
+ λId

)−1
(Xval

t )>Xval
t

n2

(
(Xtrain

t )>Xtrain
t

n1
+ λId

)−1
)−1

·
T∑

t=1

λ2

(
(Xtrain

t )>Xtrain
t

n1
+ λId

)−1
(Xval

t )>Xval
t

n2

(
(Xtrain

t )>Xtrain
t

n1
+ λId

)−1

wt

=

(
T∑

t=1

Bt

)−1 T∑

t=1

Btwt,

where the last equality follows by substituting the definition of matrix Bt in (20). The proof is complete.

C.2. Moments of At and Bt

Lemma C.2 (Moments of At and Bt). Suppose xt,i
iid∼ N(0, Id) and At, Bt are defined as in (19) and (20). Then, we have

E[At] = fA(n, d, λ) · Id, E
[
A2
t

]
= fA2(n, d, λ) · Id,

E[Bt] = fB(n1, n2, d, λ) · Id, E
[
B2
t

]
= fB2(n1, n2, d, λ) · Id,

where

fA(n, d, λ) :=
1

d
E
[
tr
(
λ2(Σ̂n + λId)

−2Σ̂n

)]
=

1

d
E

[
d∑

i=1

σ
(n)
i λ2/(σ

(n)
i + λ)2

]
,

fA2(n, d, λ) :=
1

d
E
[
tr
(
λ4(Σ̂n + λId)

−4Σ̂2
n

)]
=

1

d
E

[
d∑

i=1

(σ
(n)
i )2λ4/(σ

(n)
i + λ)4

]
,
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fB(n1, n2, d, λ) :=
1

d
E
[
tr
(
λ2(Σ̂n1

+ λId)
−2
)]

=
1

d
E

[
d∑

i=1

λ2/(σ
(n1)
i + λ)2

]
,

fB2(n1, n2, d, λ) :=
1

dn2
E
[
tr
(
λ2(Σ̂n1

+ λId)
−2
)2

+ (n2 + 1)tr
(
λ4(Σ̂n1

+ λId)
−4
)]

=
1

dn2
E



(

d∑

i=1

λ2/(σ
(n1)
i + λ)2

)2

+ (n2 + 1)

d∑

i=1

λ4/(σ
(n1)
i + λ)4


,

where Σ̂n denotes the empirical covariance matrix X>t Xt/n where Xt ∈ Rn×d has i.i.d. N(0, 1) entries, and σ(n)
1 ≥

· · · ≥ σ(n)
d ≥ 0 is its eigenvalues.

Proof. The proof manipulates the isotropicity of Xt. We begin with the first moment computation.

• First moment of At and Bt. We rewrite At in a symmetric form to ease the analysis:

E[At] = E
[(

Id −
(
X>t Xt + nλId

)−1
X>t Xt

)> X>t Xt

n

(
Id −

(
X>t Xt + nλId

)−1
X>t Xt

)]

(i)
=

1

n
E
[
Vt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)>
D>t Dt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)
V>t
]
, (21)

where the equality (i) is obtained by plugging in the SVD of Xt = UtDtV
>
t with Ut ∈ Rn×n, Dt ∈ Rn×d, and

Vt ∈ Rd×d. A key observation is that Ut and Vt are independent, since Xt is isotropic, i.e., homogeneous in each
orthogonal direction. To see this, for any orthogonal matrices Q ∈ Rn×n and P ∈ Rd×d, we know Xt and QXtP

>

share the same distribution. Moreover, we have QXtP
> = (QUt)Dt(PVt)

> as the SVD. This shows that the left and
right singular matrices are independent and both uniformly distributed on all the orthogonal matrices of the corresponding
dimensions (Rn×n and Rd×d, respectively).

Recall that we denote σ(n)
1 ≥ · · · ≥ σ(n)

d as the eigenvalues of 1
nX>t Xt. Thus, we have D>t Dt = Diag(nσ

(n)
1 , . . . , nσ

(n)
d ).

We can further simplify (21) as

1

n
E
[
Vt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)>
D>t Dt

(
Id − (D>t Dt + nλId)

−1D>t Dt

)
V>t
]

=
1

n
E

[
VtDiag

(
nλ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
nλ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t

]
(22)

= E

[
d∑

i=1

λ2σ
(n)
i

(σ
(n)
i + λ)2

vt,iv
>
t,i

]
. (23)

We will utilize the isotropicity of Xt to find (23). Recall that we have shown that Vt is uniform on all the orthogonal
matrices. Let P ∈ Rd×d be any permutation matrix, then VtP has the same distribution as Vt. For this permuted data
matrix VtP, (23) becomes

E

[
d∑

i=1

λ2σ
(n)
i

(σ
(n)
i + λ)2

vt,τp(i)v
>
t,τp(i)

]
with τp(i) denotes the permutation of the i-th element in P.

Summing over all the permutations P (and there are totally d! instances), we deduce

d!E[At] =
∑

all permutation τp

E

[
d∑

i=1

λ2σ
(n)
i

(σ
(n)
i + λ)2

vt,τp(i)v
>
t,τp(i)

]

= (d− 1)!E




d∑

j=1

[
d∑

i=1

λ2σ
(n)
i

(σ
(n)
i + λ)2

]
vt,jv

>
t,j



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= (d− 1)!E

[
VtDiag

(
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

, . . . ,

d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

)
V>t

]

= (d− 1)!E

[
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

VtV
>
t

]
. (24)

Dividing (d− 1)! on both sides of (24) yields

E[At] =
1

d
E

[
d∑

i=1

λ2σ
(n)
i

(λ+ σ
(n)
i )2

]
Id. (25)

Similar to the computation of At, we compute E[Bt] as follows.

E[Bt] = E
[(

Id −
(
(Xtrain

t )>Xtrain
t + n1λId

)−1
(Xtrain

t )>Xtrain
t

)> (Xval
t )>Xval

t

n2

·
(
Id −

(
(Xtrain)>t Xtrain

t + n1λId
)−1

(Xtrain
t )>Xtrain

t

)]

(i)
= E

[(
Id −

(
(Xtrain

t )>Xtrain
t + n1λId

)−1
((Xtrain

t )>Xtrain
t

)>

·
(
Id −

(
(Xtrain)>t Xtrain

t + n1λId
)−1

(Xtrain
t )>Xtrain

t

)]

(ii)
= E

[
Vtrain
t

(
Id − ((Dtrain

t )>Dtrain
t + n1λId)

−1(Dtrain
t )>Dtrain

t

)2
(Vtrain

t )>
]
, (26)

where (i) uses the data generating assumption E[(Xval
t )>Xval

t ] = n2Id and the independence between Xtrain
t and Xval

t , and
(ii) follows from the SVD of Xtrain

t = Utrain
t Dtrain

t (Vtrain
t )>.

Here we denote σ(n1)
1 ≥ · · · ≥ σ

(n1)
d as the eigenvalues of 1

n1
(Xtrain

t )>Xtrain
t . Thus, we have (Dtrain

t )>Dtrain
t =

Diag(n1σ
(n1)
1 , . . . , n1σ

(n1)
d ). We can now further simplify (26) as

E
[
Vtrain
t

(
Id − ((Dtrain

t )>Dtrain
t + n1λId)

−1(Dtrain
t )>Dtrain

t

)2
(Vtrain

t )>
]

(i)
= E

[
Vtrain
t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>
]

(27)

(ii)
=

1

d
E

[
d∑

i=1

λ2

(λ+ σ
(n1)
i )2

]
Id. (28)

Step (i) follows from the same computation in (22), and step (ii) uses the permutation trick in (24).

• Second moment of At and Bt. Using the SVD of Xt and the computation in (22), we derive

E[A2
t ] = E

[
VtDiag

(
λ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
λ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t ·VtDiag

(
λ2σ

(n)
1

(σ
(n)
1 + λ)2

, . . . ,
λ2σ

(n)
d

(σ
(n)
d + λ)2

)
V>t

]

= E

[
VtDiag

(
λ4(σ

(n)
1 )2

(σ
(n)
1 + λ)4

, . . . ,
λ4(σ

(n)
d )2

(σ
(n)
d + λ)4

)
V>t

]

(i)
=

1

d
E

[
Diag

(
λ4(σ

(n)
1 )2

(σ
(n)
1 + λ)4

, . . . ,
λ4(σ

(n)
d )2

(σ
(n)
d + λ)4

)]
Id,

where step (i) applies the permutation trick in (24) to tackle E
[
VtDiag

(
λ4(σ

(n)
1 )2

(σ
(n)
1 +λ)4

, . . . ,
λ4(σ

(n)
d )2

(σ
(n)
d +λ)4

)
V>t

]
.
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For E[B2
t ], the computation is a bit more complex. Using the SVD of Xtrain

t as in (27), we obtain

E[B2
t ] =

1

n2
2

E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]
. (29)

We claim that E[B2
t ] is diagonal. To see this, we take expectation with respect to Xval

t first in (29). Since Vtrain
t is an

orthogonal matrix, Xval
t Vtrain

t has the same distribution as Xval
t and independent of Xt. We verify that any off-diagonal

element is zero in the following matrix

T := EXval
t

[
(Vtrain

t )>(Xval
t )>Xval

t Vtrain
t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)

· (Vtrain
t )>(Xval

t )>Xval
t Vtrain

t

]
.

We denote Xval
t Vtrain

t = [x1, . . . ,xn]> ∈ Rn2×d with xi
iid∼ N(0, Id). For k 6= `, the (k, `)-th entry Tk,` of T is

Tk,` = E


∑

j

(
λ2

(σ
(n1)
j + λ)2

(∑

i

xk,ixj,i

)(∑

i

xj,ix`,i

))


= E


∑

j

λ2

(σ
(n1)
j + λ)2

(∑

m,n

xk,mxj,mxj,nx`,n

)


(i)
= 0,

where xi,j denotes the j-th element of xi. Equality (i) holds, since either xk,m or x`,n only appears once in each summand.
Therefore, we can write T = Diag (T1,1, . . . , Td,d) with Tk,k being

Tk,k = E


∑

j

λ2

(σ
(n1)
j + λ)2

(∑

m,n

xk,mxj,mxj,nx`,n

)


= E

[
λ2

(σ
(n1)
k + λ)2

(∑

m,n

xk,mxk,mxk,nxk,n

)]
.

Observe that Tk,k only depends on σ(n1)
k . Plugging back into (29), we have

E[B2
t ] =

1

n2
2

E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]

=
1

n2
2

E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
Diag(T1,1, . . . , Td,d)
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·Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
]

=
1

n2
2

E
[
Vtrain
t Diag

(
λ2T1,1

(σ
(n1)
1 + λ)2

, . . . ,
λ2Td,d

(σ
(n1)
d + λ)2

)
(Vtrain

t )>
]

(i)
= cId, (30)

where equality (i) utilizes the permutation trick in (25). To this end, it suffices to find c as

c =
1

d
E[B2

t ]

=
1

dn2
2

tr

(
E
[
Vtrain
t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ

σ
(n1)
1 + λ

, . . . ,
λ

σ
(n1)
d + λ

)
(Vtrain

t )>
])

=
1

dn2
2

tr

(
E
[
Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

·Xval
t Vtrain

t Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
(Vtrain

t )>(Xval
t )>

])
. (31)

Observe again that Xval
t Vtrain

t ∈ Rn2×d is a Gaussian random matrix. We rewrite (31) as

c =
1

dn2
2

E







n2∑

i,j=1

v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vj




2

 , (32)

where vi
iid∼ N(0, Id) is i.i.d. Gaussian random vectors for i = 1, . . . , n2. To compute (32), we need the following result.

Claim C.1. Given any symmetric matrix T ∈ Rd×d and i.i.d. standard Gaussian random vectors v,u
iid∼ N(0, Id), we have

E
[
(v>Tv)2

]
= 2‖T‖2Fr + tr2(T) and (33)

E
[
(v>Tu)2

]
= ‖T‖2Fr. (34)

Proof of Claim C.1. We show (33) first. We denote Ti,j as the (i, j)-th element of T and vi as the i-th element of v.
Expanding the quadratic form, we have

E
[
(v>Tv)2

]
= E


 ∑

i,j,k,`≤d
vivjvkv`Ti,jTk,`




= E


∑

i≤d
v4
i T

2
i,i


+ E


∑

i 6=j
v2
i v

2
j (T 2

i,j + Ti,iTj,j + Ti,jTj,i)




= 3
∑

i≤d
T 2
i,i +

∑

i 6=j
(T 2
i,j + Ti,iTj,j + Ti,jTj,i)

= tr2(T) + 2
∑

i≤d
T 2
i,i +

∑

i 6=j
(T 2
i,j + Ti,jTj,i)

= tr2(T) + 2‖T‖2Fr.
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Next, we show (34) by the cyclic property of race.

E
[
(v>Tu)2

]
= tr

(
E
[
uu>Tvv>T

])
= tr(T2) = ‖T‖2Fr.

We back to the computation of (32) using Claim C.1.

c =
1

dn2
2

E




n2∑

i,j=1

(
v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vj

)2



=
1

dn2
2

E



n2∑

i=1

(
v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vi

)2



+
1

dn2
2

E


∑

i 6=j

(
v>i Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)
vj

)2



=
1

dn2
E

[
tr2

(
Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

))]

+
2

dn2
E



∥∥∥∥∥Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)∥∥∥∥∥

2

Fr




+
n2 − 1

dn2
E



∥∥∥∥∥Diag

(
λ2

(σ
(n1)
1 + λ)2

, . . . ,
λ2

(σ
(n1)
d + λ)2

)∥∥∥∥∥

2

Fr




=
1

dn2


E

[
d∑

i=1

λ2

(σ
(n1)
i + λ)2

]2

+ (n2 + 1)E

[
d∑

i=1

λ4

(σ
(n1)
i + λ)4

]
 . (35)

Substituting the value of c in (35) into (30), we derive the desired result

E[B2
t ] =

1

dn2


E

[
d∑

i=1

λ2

(σ
(n1)
i + λ)2

]2

+ (n2 + 1)E

[
d∑

i=1

λ4

(σ
(n1)
i + λ)4

]
 .

The proof is complete.

Lemma C.3 (Bounds on moments). Let f{A,A2}(n, d, λ) and f{B,B2}(n1, n2, d, λ) be defined as in Lemma C.2. Suppose
d/n = γ = Θ(1) and n1/n = s = Θ(1), λ = Θ(1) > 0. Then we have

cA ≤ fA(n, d, λ), fA2(n, d, λ) ≤ cA,

and

cB ≤ fB(n1, n2, d, λ), fB2(n1, n2, d, λ) ≤ cB ,

where cA, cA > 0 depend only on γ, λ but not d, and cB , cB > 0 depend only on γ, s, λ but not d.

Proof. The upper bounds follow straightforwardly from the closed-form expressions established in Lemma C.2: we have

fA(n, d, λ) =
1

d
E
[
tr

(
λ2
(
Σ̂n + λId

)−2

Σ̂n

)]
≤ 1

d
E
[
tr
(
Σ̂n

)]
= 1.

fA2(n, d, λ) =
1

d
E
[
tr

(
λ4
(
Σ̂n + λId

)−2

Σ̂2
n

)]
≤ 1

d
E
[
tr
(
Σ̂2
n

)]
(i)
=

1

d
·
(
d2 + (n+ 1)d

n

)
=
d+ n+ 1

n
≤ 2 + γ,
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where (i) used the fact that

E
[
tr
(
Σ̂2
n

)]
= E

[∥∥∥Σ̂n

∥∥∥
2

Fr

]
=

1

n2
· E




n∑

i,j=1

(x>i xj)
2


 =

1

n2
·
[
n(n− 1)d+ n(d2 + 2d)

]
=
d2 + (n+ 1)d

n
.

Therefore, we can take cA = 2 + γ. Similarly, we have

fB(n1, n2, d, λ) =
1

d
E

[
d∑

i=1

λ2/(σ
(n1)
i + λ)2

]
≤ 1,

fB2(n1, n2, d, λ) =
1

dn2
E



(

d∑

i=1

λ2/(σ
(n1)
i + λ)2

)2

+ (n2 + 1)

d∑

i=1

λ4/(σ
(n1)
i + λ)4




≤ 1

dn2

[
d2 + d(n2 + 1)

]
=
d+ n2 + 1

n2
=
d+ n(1− s) + 1

n(1− s) ≤ γ + 2− s
1− s .

Therefore we can take cB = (2 + γ − s)/(1− s).

For the lower bounds, it suffices to prove the lower bounds for fA(n, d, λ) and fB(n1, n2, d, λ) (as 1
d tr(M2) ≥ ( 1

d tr(M))2

always holds for any PSD matrix M ∈ Rd×d). For this we apply the same Stieltjes calculation as in the proof of Theorem D.1
to conclude that

lim
d,n→∞,d/n→γ

fA(n, d, λ) =
λ2

2γ

(
λ+ 1 + γ√

(λ+ 1 + γ)2 − 4γ
− 1

)
> 0.

Also note that fA(dd/γe , d, λ) > 0 for any d ≥ 1. Therefore, we have

inf
d≥1

fA(dd/γe , d, λ) := c̃A > 0.

Taking cA = min
{
c̃A, c̃

2
A

}
> 0 (which only depends on γ, we get min {fA(n, d, λ), fA2(n, d, λ)} ≥ cA, the desired result.

Similarly, for fB , we have

lim
d,n1→∞,d/n1→γ/s

1

d
E
[
tr
(
λ2(λId + Σ̂n1

)−2
)]

= λ2 ·
[
− d

dλ1
s(λ1, λ2)|λ1=λ,λ2=1

]
,

= λ2 · 1

4γ/s · λ2
√

(λ+ 1 + γ/s)2 − 4γ/s

[
2(γ − 1)

√
(λ+ 1 + γ/s)2 − 4γ/s+ 2λ(1 + γ) + 2(1− γ)2

]
> 0,

where s(λ1, λ2) is the generalized Stieltjes transform defined in (40). (The detailed calculation can be found in Section C.2.1.)
As this limit is strictly positive, ssing a similar argument as the above, we get that there exists some cB > 0 which only
depends on γ/s = Θ(1) > 0, such that min {fB(n1, n2, d, λ), fB2(n1, n2, d, λ)} ≥ cB .

C.2.1. CALCULATIONS OF d
dλ1

s(λ1, λ2)

Recall by (40) that

s(λ1, λ2) =
γ − 1− λ1/λ2 +

√
(λ1/λ2 + 1 + γ)2 − 4γ

2γλ1
.

At λ1 = λ and λ2 = 1, the above can be simplied as

s(λ, 1) =
γ − 1

2γλ
− 1

2γ
+

1

2γ

√
(1 + (1 + γ)/λ)2 − 4γ/λ2.

Differentiating with respect to λ, we get

− d

dλ1
s(λ1, λ2)|λ1=λ,λ2=1 = − d

dλ
s(λ, 1) =

γ − 1

2γλ2
+

(λ+ 1 + γ)(1 + γ)− 4γ

2γλ2
√

(λ+ 1 + γ)2 − 4γ
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=
1

2γλ2
√

(λ+ 1 + γ)2 − 4γ

[
(γ − 1)

√
(λ+ 1 + γ)2 − 4γ + λ(1 + γ) + (γ − 1)2

]
.

The above is clearly positive at γ ≥ 1. At γ < 1, we have

(1− γ)
√

(λ+ 1 + γ)2 − 4γ =
√
λ2 + 2λ(1 + γ) + (1− γ)2

< (1− γ)

(√
(λ(1 + γ)/(1− γ))

2
+ 2λ(1 + γ) + (1− γ)2

)
= (1− γ)(λ(1 + γ)/(1− γ) + 1− γ)

= λ(1 + γ) + (1− γ)2.

Therefore, the quantity inside the bracket in the preceding display is also strictly positive. This shows that
− d
dλ1

s(λ1, λ2)|λ1=λ,λ2=1 > 0 for all γ > 0.

C.3. Concentration lemmas

Lemma C.4 (Concentration of At and Bt). Let At and Bt be defined as in (19) and (20). Then with probability at least
1− Td−10, we have the following bounds: 0 � At � Õ(Ca)Id and 0 � Bt � Õ(Cb)Id, and

∥∥∥∥∥
1

T

T∑

t=1

At − E[At]

∥∥∥∥∥
op

≤ Õ
(
Ca

√
d

T
+ d−4

)
and

∥∥∥∥∥
1

T

T∑

t=1

A2
t − E

[
A2
t

]
∥∥∥∥∥

op

≤ Õ
(
C2
a

√
d

T
+ d−4

)
,

∥∥∥∥∥
1

T

T∑

t=1

Bt − E[Bt]

∥∥∥∥∥
op

≤ Õ
(
Cb

√
d

T
+ d−4

)
and

∥∥∥∥∥
1

T

T∑

t=1

B2
t − E

[
B2
t

]
∥∥∥∥∥

op

≤ Õ
(
C2
b

√
d

T
+ d−4

)
,

where Ca := 1 + max
{
d/n,

√
d/n

}
, Cb := 1 + max

{
d/n2,

√
d/n2

}
, and Õ(·) hides the logarithmic factor log(ndT ).

Proof. We first prove the result for Bt. We use a truncation argument. Recall that by definition of Bt we have

0 � Bt �
Xval>
t Xval

t

n2
.

Since xt,i ∼ N(0, Id), applying the standard sub-Gaussian covariance concentration (Vershynin, 2018, Exercise 4.7.3), we
have with probability at least 1− d−10 that

Bt �
1

n2
Xval>
t Xval

t � Id +

∥∥∥∥
1

n2
Xval>
t Xval

t − Id

∥∥∥∥
op

Id �
(

1 + C

√
d+ log d

n2
+ C

d+ log d

n2

)
Id � KCbId,

where Cb := 1 + max
{
d/n2,

√
d/n2

}
and K = O(1) is an absolute constant. Let Et := {Bt � KCbId} denote this

event. We have P(Et) ≥ 1− d−10. Let E :=
⋃T
t=1 Et denote the union event. Note that on the event E we have

1

T

T∑

t=1

Bt =
1

T

T∑

t=1

Bt1 {Et} .

Concentration of Bt1 {Et} On the event Et, Bt are bounded matrices:

0 � Bt1 {Et} � CbId.

In particular, this means that for any v ∈ Rd with unit norm ‖v‖2 = 1, the random variable

v>Bt1 {Et}v − v>E[Bt1 {Et}]v

is mean-zero and C2-sub-Gaussian. Therefore by the standard sub-Gaussian concentration, we get

P

(∣∣∣∣∣v
>
(

1

T

T∑

t=1

Bt1 {Et}
)

v − v>E[Bt1 {Et}]v
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−Tt2/C2

b

)
.
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Using the fact that for any symmetric matrix M,

‖M‖op ≤ 2 sup
v∈N1/4(Sd−1)

∣∣v>Mv
∣∣,

where N1/4(Sd−1) is a 1/4-covering set of the unit sphere with |N1/4(Sd−1)| ≤ 9d (Vershynin, 2018, Exercise 4.4.3), we
get

P



∥∥∥∥∥

1

T

T∑

t=1

Bt1 {Et} − E[Bt1 {Et}]
∥∥∥∥∥

op

≥ t


 ≤

∣∣N1/4(Sd−1)
∣∣ · sup
‖v‖2=1

P

(∣∣∣∣∣v
>
(

1

T

T∑

t=1

Bt1 {Et}
)

v − v>E[Bt1 {Et}]v
∣∣∣∣∣ ≥ t

)

≤ exp
(
−Tt2/C2

b + 3d
)
.

Taking t = O(Cb

√
d+log(1/d10)

T ) = Õ(Cb
√
d/T ), the above probability is upper bounded by d−10/2. In other words, with

probability at least 1− d−10/2, we get

∥∥∥∥∥
1

T

T∑

t=1

Bt1 {Et} − E[Bt1 {Et}]
∥∥∥∥∥

op

≤ Õ
(
Cb

√
d

T

)
.

Bounding difference betwen E[Bt] and E[Bt1 {Et}] We have

‖E[Bt]− E[Bt1 {Et}]‖op ≤ E
[
‖Bt‖op 1 {Ec

t}
]
≤
(
E
[
‖Bt‖2op

]
· P(Ec

t)
)1/2

≤
√

E
[
max
i
‖xt,i‖22

]
· d−10 ≤

√
(d+ C log n2) · d−10 = Õ(d−4.5).

where the last inequality is by standard Gaussian norm concentration (e.g. (Bai & Lee, 2019, Appendix A.3)).

Concentration of Bt Combining the preceding two parts, we get that with probability at least 1− Td−10 that
∥∥∥∥∥∥

1

T

∑

t≤T
Bt − E[Bt]

∥∥∥∥∥∥
op

≤

∥∥∥∥∥∥
1

T

∑

t≤T
Bt1 {Et} − E[Bt1 {Et}]

∥∥∥∥∥∥
op

+ ‖E[Bt]− E[Bt1 {Et}]‖op ≤ Õ
(
Cb
√
d/T + d−4.5

)
.

Concentration for B2
t , At, and A2

t For B2
t , using a similar analysis as the above, we get

∥∥∥∥∥
1

T

T∑

t=1

B2
t − E

[
B2
t

]
∥∥∥∥∥

op

≤ Õ
(
C2
b

√
d

T
+ d−4

)
.

For At, we note that the bound

0 � At � CaId, where Ca = 1 +O
(

max
{
d/n,

√
d/n

})

holds. Therefore using the same argument as above, we get the desired concentration bounds for At.

We also need the following Hanson-Wright inequality.

Lemma C.5 (Restatement of Theorem 6.2.1, (Vershynin, 2018)). Let z ∈ RD be a random vector with independent,
mean-zero, and O(K2)-sub-Gaussian entries, and let C ∈ RD×D be a fixed matrix. Then we have with probability at least
1− δ that

∣∣z>Cz− E
[
z>Cz

]∣∣ ≤ O
(
K2 max

{
‖C‖Fr

√
log(2/δ), ‖C‖op log(2/δ)

})
≤ O

(
K2 ‖C‖Fr log(2/δ)

)
.
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C.4. Proof of main theorem

We are now ready to prove Theorem 3. We first prove the result for ŵtr-tr
0,T . Define the matrix

ΣT :=

(
T∑

t=1

At

)−2 T∑

t=1

A2
t =

1

T
·
(∑T

t=1 At

T

)−2∑T
t=1 A2

t

T
,

which will be key to our analysis. Observe that

ŵtr-tr
0,T −w0,? =

(
T∑

t=1

At

)−1 T∑

t=1

At(wt −w0,?),

Therefore, conditioned on At (and only looking at the randomness of wt), we have

Ewt

[
MSE(ŵtr-tr

0,T )
]

= Ewt

[∥∥ŵtr-tr
0,T −w0,?

∥∥2

2

]

=

T∑

t=1

tr



(

T∑

t=1

At

)−1

At · Cov(wt)A
>
t

(
T∑

t=1

At

)−1

 =

R2

d
tr



(

T∑

t=1

At

)−2 T∑

t=1

A2
t


 =

R2

d
tr(ΣT ).

Concentration of At By Lemma C.3 and Lemma C.4, we have with probability at least 1− Td−10 that

cAId � E[At] � cAId and

∥∥∥∥∥
1

T

T∑

t=1

At − E[At]

∥∥∥∥∥
op

≤ Õ
(
Ca
√
d/T + d−4

)
,

where cA, cA, Ca > 0 are Θ(1) constants that depend only on γ. Therefore, taking d = Ω̃(max
{
c
−1/2
A , 1

}
) and

T ≥ Ω̃(max
{

4C2
a/c

2
Ad, 4C

2
a/d
}

) = Ω̃(d), we get that
∥∥∥ 1
T

∑T
t=1 At − E[At]

∥∥∥
op
≤ min {cA/2, 1/2} ≤ 1/2 and

λmin( 1
T

∑T
t=1 At) ≥ cA/2 > 0. On the similar concentration event for A2

t (in Lemma C.4), for T ≥ Ω̃(d) we also

have
∥∥∥ 1
T

∑T
t=1 A2

t − E[A2
t ]
∥∥∥

op
≤ 1/2 and λmin( 1

T

∑T
t=1 A2

t ) ≥ cA/2 > 0.

Concentration of MSE around expectation We first bound the concentration between the MSE and its expectation
R2/d · tr(ΣT ). Define

z =




w1 −w0,?

...
wT −w0,?


 ∈ RdT and U =




(∑
t≤T At

)−1

A1

...(∑
t≤T At

)−1

AT


 ∈ RdT×d.

Then we have ŵtr-tr
0,T −w0,? = U>z and thus

∥∥ŵtr-tr
0,T −w0,?

∥∥2

2
= z>(UU>)z. By Assumption A, z ∈ RdT has i.i.d. mean-

zero O(R2/d)-sub-Gaussian entries. Therefore, applying the Hanson-Wright inequality (Lemma C.5) with C = UU>, we
get that with probability at least 1− δ we have

∣∣∣∣
∥∥ŵtr-tr

0,T −w0,?

∥∥2

2
− R2

d
tr(ΣT )

∣∣∣∣ =
∣∣z>Cz− E

[
z>Cz

]∣∣

≤ Õ
(
R2

d
‖C‖Fr

)
= Õ

(
R2

d

∥∥U>U
∥∥
Fr

)

= Õ


R

2

d

∥∥∥∥∥∥∥


∑

t≤T
At



−2
∑

t≤T
A2
t

∥∥∥∥∥∥∥
Fr




= Õ


R

2

dT
λmin


 1

T

∑

t≤T
At



−2

·
√
d

∥∥∥∥∥∥
1

T

∑

t≤T
A2
t

∥∥∥∥∥∥
op


 = Õ

(
R2

T
· 1√

d

)
.

(36)
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Concentration of tr(ΣT ) Recall that At are i.i.d. PSD matrices in Rd×d. We have

R2

d
· tr(ΣT ) =

R2

Td

〈(∑T
t=1 At

T

)−2

,

∑T
t=1 A2

t

T

〉

=
R2

T

{
1

d

〈
E[A1]−2,E[A2

1]
〉

︸ ︷︷ ︸
I

+
1

d

〈(∑T
t=1 At

T

)−2

− E[A1]−2,E[A2
1]

〉

︸ ︷︷ ︸
II

+
1

d

〈(∑T
t=1 At

T

)−2

,

∑T
t=1 A2

t

T
− E[A2

1]

〉

︸ ︷︷ ︸
III

}
.

By Lemma C.2 and C.3, term I is the main Θ(1) term:

I =
1

d

〈
fA(n, d, λ)−2Id, fA2(n, d, λ)Id

〉
= fA2(n, d, λ)/fA(n, d, λ)2

=

1
dE
[
tr
(
λ4(Σ̂n + λId)

−4Σ̂2
n

)]

(
1
dE
[
tr
(
λ2(Σ̂n + λId)−2Σ̂n

)])2 =: Ctr-tr
d,n,λ = Θ(1).

For term II we have

|II| ≤

∥∥∥∥∥∥

(
T∑

t=1

At/T

)−2

− E[A1]−2

∥∥∥∥∥∥
op

·
∥∥E[A2

1]
∥∥

op

≤ λmin

(
T∑

t=1

At/T

)−2
∥∥∥∥∥∥

(
T∑

t=1

At/T

)2

− E[A1]2

∥∥∥∥∥∥
op

λmin(E[A1])
−2 ·

∥∥E[A2
1]
∥∥

op

≤ Õ



∥∥∥∥∥∥

(
T∑

t=1

At/T

)2

− E[A1]2

∥∥∥∥∥∥
op




≤ Õ


max





∥∥∥∥∥
T∑

t=1

At/T

∥∥∥∥∥
op

, ‖E[A1]‖op



 ·

∥∥∥∥∥

(
T∑

t=1

At/T

)
− E[A1]

∥∥∥∥∥
op


 ≤ Õ

(√
d/T + d−4

)
.

Similarly we also have |III| ≤ Õ(
√
d/T ). Combining terms I, II, III, we get that (on the concentration event)

R2

d
tr(ΣT ) =

R2

T

(
Ctr-tr
d,n,λ + Õ

(√
d/T + d−4

))
.

This further combined with (36) gives

∥∥ŵtr-tr
0,T −w0,?

∥∥2

2
=
R2

d
tr(ΣT ) +

R2

T
· Õ(1/

√
d) =

R2

T

(
Ctr-tr
d,n,λ + Õ

(√
d/T

)
+ Õ

(
1/
√
d
))
.

This proves the desired result for the train-train method.

For the train-val method, observe that all the above analysis still holds if we replace At with Bt (and using the concentration
for Bt guaranteed in Lemma C.4), we obtain a similar conclusion

∥∥ŵtr-val
0,T −w0,?

∥∥2

2
=
R2

T

(
Ctr-val
d,n1,n2,λ + Õ

(√
d/T

)
+ Õ

(
1/
√
d
))
,

where

Ctr-val
d,n1,n2,λ

:= fB2(d, n1, n2, λ)/fB(d, n1, n2, λ)2

=

1
dn2

E
[
tr
(
λ2(Σ̂n1

+ λId)
−2
)2

+ (n2 + 1)tr
(
λ4(Σ̂n1

+ λId)
−4
)]

(
1
dE
[
tr
(
λ2(Σ̂n1 + λId)−2

)])2 .

This is the desired result.
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D. Proof of Theorem 4
The proof is organized as follows. We optimize the hyperparameter (λ, n1) for the train-val method in Section D.1. We
derive the exact limit of the Ctr-tr

d,n,λ in the proportional limit d, n→∞, d/n→ γ and optimize over λ in Section D.2. We
prove the main theorem in Section D.3.

D.1. Optimizing the hyperparameters for the train-val method

Lemma D.1 (Optimal constant of the train-val method). For any (n, d) and any split ratio (n1, n2) = (n1, n− n1), the
optimal constant (by tuning the regularization λ > 0) of the train-val method is achieved at

inf
λ>0

Ctr-val
d,n1,n2,λ = lim

λ→∞
Ctr-val
d,n1,n2,λ =

d+ n2 + 1

n2
.

Further optimizing the rate over n2, the best rate is taken at (n1, n2) = (0, n), in which the rate is

inf
λ>0, n2∈[n]

Ctr-val
d,n1,n2,λ =

(d+ n+ 1)R2

n
.

Discussion: Using all data as validation Lemma D.1 suggests that the optimal constant of the train-val method is
obtained at λ =∞ and (n1, n2) = (0, n). In other words, the optimal choice for the train-val method is to use all the data as
validation. In this case, since there is no training data, the inner solver reduces to the identity map: A∞,0(w0; Xt,yt) = w0,
and the outer loop reduces to learning a single linear model w0 on all the tasks combined. We remark that while the
optimality of such a split ratio is likely an artifact of the data distribution we assumed (noiseless realizable linear model) and
may not generalize to other meta-learning problems, we do find experimentally that using more data as validation (than
training) can also improve the performance on real meta-learning tasks (see Table 2).

Proof of Lemma D.1 Fix n1 ∈ [n] and n2 = n− n1. Recall from Theorem 3 (with the eigenvalue-based expressions in
Lemma C.2) that

Ctr-val
d,n1,n2,λ =

d

n2
·
E
[(∑d

i=1 λ
2/(σ

(n1)
i + λ)2

)2

+ (n2 + 1)
∑d
i=1 λ

4/(σ
(n1)
i + λ)4

]

(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2 .

Clearly, as λ→∞, we have

lim
λ→∞

Ctr-val
d,n1,n2,λ =

d

n2
· d

2 + (n2 + 1)d

d2
=

(d+ n2 + 1)

n2
.

It remains to show that the above quantity is a lower bound for Ctr-val
d,n1,n2,λ

for any λ > 0, which is equivalent to

E
[(∑d

i=1 λ
2/(σ

(n1)
i + λ)2

)2

+ (n2 + 1)
∑d
i=1 λ

4/(σ
(n1)
i + λ)4

]

(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2 ≥ d+ n2 + 1

d
, for all λ > 0. (37)

We now prove (37). For i ∈ [n1], define random variables

Xi :=
λ2

(σ
(n1)
i + λ)2

∈ [0, 1] and Yi := 1−Xi ∈ [0, 1].

Then the left-hand side of (37) can be rewritten as

E
[
(d− n1 +

∑n1

i=1Xi)
2

+ (n2 + 1)
(
d− n1 +

∑n1

i=1X
2
i

)]

(E[d− n1 +
∑n
i=1Xi])

2
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=
E
[
(d−∑n1

i=1 Yi)
2

+ (n2 + 1)
(
d− 2

∑n1

i=1 Yi +
∑n1

i=1 Y
2
i

)]

(E[d−∑n1

i=1 Yi])
2

=
d2 + (n2 + 1)d− 2(d+ n2 + 1)E[

∑
Yi] + E

[
(
∑
Yi)

2
]

+ (n2 + 1)E
[∑

Y 2
i

]

d2 − 2dE[
∑
Yi] + (E[

∑
Yi])

2

By algebraic manipulation, inequality (37) is equivalent to showing that

E
[
(
∑
Yi)

2
]

+ (n2 + 1)E
[∑

Y 2
i

]

(E[
∑
Yi])

2 ≥ d+ n2 + 1

d
. (38)

Clearly, E[(
∑
Yi)

2] ≥ (E[
∑
Yi])

2. By Cauchy-Schwarz we also have

E
[∑

Y 2
i

]
≥ 1

n1
E
[(∑

Yi

)2
]
≥ 1

n1

(
E
[∑

Yi

])2

.

Therefore we have

E
[
(
∑
Yi)

2
]

+ (n2 + 1)E
[∑

Y 2
i

]

(E[
∑
Yi])

2 ≥ 1 +
n2 + 1

n1
≥ 1 +

n2 + 1

d
=
d+ n2 + 1

d
,

where we have used that n1 ≤ n ≤ d. This shows (38) and consequently (37).

D.2. Optimizing the hyperparameters for the train-train method (in the proportional limit)

Theorem D.1 (Exact constant of the train-train method in the proportional limit). In the high-dimensional limiting regime
d, n→∞, d/n→ γ where γ ∈ (0,∞) is a fixed shape parameter, for any λ > 0

limd,n→∞,d/n=γ C
tr-tr
d,n,λ = ρλ,γ .

where ρλ,γ = 4γ2
[
(γ − 1)2 + (γ + 1)λ

]
/(λ+ 1 + γ −

√
(λ+ γ + 1)2 − 4γ)2/

(
(λ+ γ + 1)2 − 4γ

)3/2
.

Proof of Theorem D.1 Let Σ̂n := 1
nXtX

>
t denote the sample covariance matrix of the inputs in a single task (t). By

Theorem 3 (with the eigenvalue-based expressions in Lemma C.2), we have

Ctr-tr
d,n,λ =

1
dE
[∑d

i=1 σi(Σ̂n)2/(σi(Σ̂n) + λ)4
]

(
1
dE
[∑d

i=1 σi(Σ̂n)/(σi(Σ̂n) + λ)2
])2

=
1

d
E
[
tr
(

(Σ̂n + λId)
−4Σ̂2

n

)]

︸ ︷︷ ︸
In,d

/{ 1

d
E
[
tr
(

(Σ̂n + λId)
−2Σ̂n

)]

︸ ︷︷ ︸
IIn,d

}2

.

(39)

We now evaluate quantities In,d and IIn,d in the high-dimensional limit of d, n → ∞, d/n → γ ∈ (0,∞). Consider the
(slightly generalized) Stieltjes transform of Σ̂n defined for all λ1, λ2 > 0:

s(λ1, λ2) := lim
d,n→∞, d/n→γ

1

d
E
[
tr
(

(λ1Id + λ2Σ̂n)−1
)]
. (40)

As the entries of Xt are i.i.d. N(0, 1), the above limiting Stieltjes transform is the Stieltjes form of the Marchenko-Pastur
law, which has a closed form (see, e.g. (Dobriban et al., 2018, Equation (7)))

s(λ1, λ2) = λ−1
2 s(λ1/λ2, 1) =

1

λ2
· γ − 1− λ1/λ2 +

√
(λ1/λ2 + 1 + γ)2 − 4γ

2γλ1/λ2

=
γ − 1− λ1/λ2 +

√
(λ1/λ2 + 1 + γ)2 − 4γ

2γλ1
.

(41)
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Now observe that differentiating s(λ1, λ2) yields quantity II (known as the derivative trick of Stieltjes transforms). Indeed,
we have

− d

dλ2
s(λ1, λ2) = − d

dλ2
lim

d,n→∞, d/n→γ
1

d
E
[
tr
(

(λ1Id + λ2Σ̂n)−1
)]

= lim
d,n→∞, d/n→γ

1

d
E
[
− d

dλ2
tr
(

(λ1Id + λ2Σ̂n)−1
)]

= lim
d,n→∞, d/n→γ

1

d
E
[
tr
(

(λ1Id + λ2Σ̂n)−2Σ̂n

)]
.

(42)

(Above, the exchange of differentiation and limit is due to the uniform convergence of the derivatives, which holds at any
λ1, λ2 > 0. See Section D.2.1 for a detailed justification.) Taking λ1 = λ and λ2 = 1, we get

lim
d,n→∞, d/n→γ

IIn,d = lim
d,n→∞, d/n→γ

1

d
E
[
tr
(

(λId + Σ̂n)−2Σ̂n

)]
= − d

dλ2
s(λ1, λ2)|λ1=λ,λ2=1.

Similarly we have

lim
d,n→∞, d/n→γ

In,d = lim
d,n→∞,d/n→γ

1

d
E
[
tr
(

(λId + Σ̂n)−4Σ̂2
n

)]
= −1

6

d

dλ1

d2

dλ2
2

s(λ1, λ2)|λ1=λ,λ2=1.

Evaluating the right-hand sides from differentiating the closed-form expression (41), we get

lim
d,n→∞, d/n→γ

IIn,d =
1

2γ
· λ+ 1 + γ√

(λ+ 1 + γ)2 − 4γ
− 1

2γ
,

lim
d,n→∞, d/n→γ

In,d =
(γ − 1)2 + (γ + 1)λ

((λ+ 1 + γ)2 − 4γ)
5/2

.

Substituting back to (39) yields that

lim
d,n→∞, d/n→γ

Ctr-tr
d,n,λ = lim

d,n→∞, d/n→γ
·In,d/II2

n,d

=
4γ2
[
(γ − 1)2 + (γ + 1)λ

]

((λ+ 1 + γ)2 − 4γ)5/2 ·
(

λ+1+γ√
(λ+1+γ)2−4γ

− 1

)2

=
4γ2
[
(γ − 1)2 + (γ + 1)λ

]

((λ+ 1 + γ)2 − 4γ)3/2 ·
(
λ+ 1 + γ −

√
(λ+ 1 + γ)2 − 4γ

)2 .

This proves the desired result.

D.2.1. EXCHANGING DERIVATIVE AND EXPECTATION / LIMIT

Here we rigorously establish the exchange of the derivative and the expectation / limit used in (42). For convenience of
notation let Σ = Σ̂n = X>t Xt/n denote the empirical covariance matrix of Xt. We wish to show that

d

dλ2
lim

d,n→∞,d/n→γ
1

d
E
[
tr
(
(λ1Id + λ2Σ)−1

)]
= lim
d,n→∞,d/n→γ

1

d
E
[
d

dλ2
tr
(
(λ1Id + λ2Σ)−1

)]
.

This involves the exchange of derivative and limit, and then the exchange of derivative and expectation.

Exchange of derivative and expectation First, we show that for any fixed (d, n),

d

dλ2
E
[
tr
(
(λ1Id + λ2Σ)−1

)]
= E

[
d

dλ2
tr
(
(λ1Id + λ2Σ)−1

)]
.
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By definition of the derivative, we have

d

dλ2
E
[
tr
(
(λ1Id + λ2Σ)−1

)]
= lim
t→0

E

[
tr
(
(λ1Id + λ2Σ + tΣ)−1

)
− tr

(
(λ1Id + λ2Σ)−1

)

t

]
.

For any A � 0, the function t 7→ tr((A + tB)−1) is continuously differentiable at t = 0 with derivative −tr(A−2B), and
thus locally Lipschitz around t = 0 with Lipschitz constant |tr(A−2B)|+ 1. Applying this in the above expectation with
A = λ1Id + λ2Σ � λ1Id and B = Σ, we get that for sufficiently small |t|, the fraction inside the expectation is upper
bounded by |tr(λ−2

1 Σ)|+ 1 <∞ uniformly over t. Thus by the Dominated Convergence Theorem, the limit can be passed
into the expectation, which yields the expectation of the derivative.

Exchange of derivative and limit Define fn,d(λ2) := 1
dE
[
tr
(
(λ1Id + λ2Σ)−1

)]
. It suffices to show that

d

dλ2
lim

d,n→∞,d/n→γ
fn,d(λ2) = lim

d,n→∞,d/n→γ
f ′n,d(λ2),

where

f ′n,d(λ2) = E
[
d

dλ2

1

d
tr
(
(λ1Id + λ2Σ)−1

)]
= −1

d
E
[
tr
(
(λ1Id + λ2Σ)−2Σ

)]

by the result of the preceding part.

As fn,d(λ2)→ s(λ1, λ2) pointwise over λ2 by properties of the Wishart matrix (Bai & Silverstein, 2010) and each individual
fn,d is differentiable, it suffices to show that the derivatives f ′n,d(λ̃2) converges uniformly for λ̃2 in a neighborhood of λ2.
Observe that can rewrite f ′n,d as

f ′n,d(λ̃2) = −Eµ̂n,d

[
Eλ∼µ̂n,d

[
gλ̃2

(λ)
]]
,

where µ̂n,d is the empirical distribution of the eigenvalues of Σ, and

gλ̃2
(λ) :=

λ

(λ1 + λ̃2λ)2
≤ 1

λ1λ̃2

for all λ ≥ 0.

Therefore, as µ̂n,d converges weakly to the Marchenko-Pastur distribution with probability one and gλ̃2
is uniformly bounded

for λ̃2 in a small neighborhood of λ2, we get that f ′n,d(λ̃2) does converge uniformly to the expectation of gλ̃2
(λ) under the

Marchenko-Pastur distribution. This shows the desired exchange of derivative and limit.

D.3. Proof of main theorem

We are now ready to prove the main theorem (Theorem 4).

Part I: Optimal constant for Ltr-tr By Theorem D.1, we have

inf
λ>0

lim
d,n→∞,d/n=γ

Ctr-tr
d,n,λ

= inf
λ>0

4γ2
[
(γ − 1)2 + (γ + 1)λ

]

(λ+ 1 + γ −
√

(λ+ γ + 1)2 − 4γ)2 · ((λ+ γ + 1)2 − 4γ)
3/2

︸ ︷︷ ︸
:=f(λ,γ)

.

In order to bound infλ>0 f(λ, γ), picking any λ = λ(γ) gives f(λ(γ), γ) as a valid upper bound, and our goal is to choose
λ that yields a bound as tight as possible. Here we consider the choice

λ = λ(γ) = max {1− γ/2, γ − 1/2} = (1− γ/2)1 {γ ≤ 1}+ (γ − 1/2)1 {γ > 1}

which we now show yields the claimed upper bound.
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Case 1: γ ≤ 1 Substituting λ = 1− γ/2 into f(λ, γ) and simplifying, we get

f(1− γ/2, γ) =
2(γ2 − 3γ + 4)

(2− γ/2)3
=: g1(γ).

Clearly, g1(0) = 1 and g1(1) = 32/27. Further differentiating g1 twice gives

g′′1 (γ) =
γ2 + 7γ + 4

(2− γ/2)5
> 0 for all γ ∈ [0, 1].

Thus g1 is convex on [0, 1], from which we conclude that

g1(γ) ≤ (1− γ) · g1(0) + γ · g1(1) = 1 +
5

27
γ.

Case 2: γ > 1 Substituting λ = γ − 1/2 into f(λ, γ) and simplifying, we get

f(γ − 1/2, γ) =
2γ2(4γ2 − 3γ + 1)

(2γ − 1/2)3
=: g2(γ).

We have g2(1) = g1(1) = 32/27. Further differentiating g2 gives

g′2(γ) = − 1

(4γ − 1)2
− 6

(4γ − 1)3
− 6

(4γ − 1)4
+ 1 < 1 for all γ > 1.

Therefore we have for all γ > 1 that

g2(γ) = g2(1) +

∫ γ

1

g′2(t)dt ≤ g2(1) + γ − 1 = γ +
5

27
.

Combining Case 1 and 2, we get

inf
λ>0

f(λ, γ) ≤ g1(γ)

≤ 1 {γ ≤ 1}+ g2(γ)1 {γ > 1} ≤
(

1 +
5

27
γ

)
1 {γ ≤ 1}+

(
5

27
+ γ

)
1 {γ > 1}

= max

{
1 +

5

27
γ,

5

27
+ γ

}
.

This is the desired upper bound for Ltr-tr.

Equality at γ = 1 We finally show that the above upper bound becomes an equality when γ = 1. At γ = 1, we have

f(λ, 1) =
8λ

(λ+ 2−
√
λ2 + 4λ)2(λ2 + 4λ)3/2

=
8λ−4

(1 + 2/λ−
√

1 + 4/λ)2(1 + 4/λ)3/2
.

Make the change of variable t =
√

1 + 4/λ so that λ−1 = (t2 − 1)/4, minimizing the above expression is equivalent to
minimizing

(t2 − 1)4/32

(t2/2− t+ 1/2)2t3
=

(t+ 1)4

8t3

over t > 1. It is straightforward to check (by computing the first and second derivatives) that the above quantity is minimized
at t = 3 with value 32/27. In other words, we have shown

inf
λ>0

f(λ, 1) =
32

27
= max

{
1 +

5

27
γ,

5

27
+ γ

}∣∣∣∣
γ=1

,

that is, the equality holds at γ = 1.
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Part II: Optimal constant for Ltr-val We now prove the result on Ltr-val, that is,

inf
λ>0,s∈(0,1)

lim
d,n→∞,d/n=γ

Ctr-val
d,ns,n(1−s),λ

(i)
= lim

d,n→∞,d/n=γ
inf

λ>0,n1+n2=n
Ctr-val
d,n1,n2,λ

︸ ︷︷ ︸
d+n+1

n

(ii)
= 1 + γ.

First, equality (ii) follows from Lemma D.1 and the fact that (d+ n+ 1)/n→ 1 + γ. Second, the “≥” direction of equality
(i) is trivial (since we always have “inf lim ≥ lim inf”). Therefore we get the “≥” direction of the overall equality, and it
remains to prove the “≤” direction.

For the “≤” direction, we fix any λ > 0, and bound Ctr-val
d,n1,n2,λ

(and consequently its limit as d, n → ∞.) We have by
Theorem 3 (with the eigenvalue-based expressions in Lemma C.2) that

Ctr-val
d,n1,n2,λ =

d

n2
·
E
[(∑d

i=1 λ
2/(σ

(n1)
i + λ)2

)2

+ (n2 + 1)
∑d
i=1 λ

4/(σ
(n1)
i + λ)4

]

(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2

≤ d

n2
· d2 + (n2 + 1)d
(
E
[∑d

i=1 λ
2/(σ

(n1)
i + λ)2

])2

=
d+ n2 + 1

n2
· 1
(
E
[

1
d

∑d
i=1 λ

2/(σ
(n1)
i + λ)2

])2

Observe that

E

[
1

d

d∑

i=1

λ2

(σ
(n1)
i + λ)2

]
(i)

≥ E


 λ2

(∑d
i=1 σ

(n1)
i /d+ λ

)2




(ii)

≥ λ2

(
E
[∑d

i=1 σ
(n1)
i /d

]
+ λ
)2

(iii)
=

λ2

(1 + λ)2
,

where (i) follows from the convexity of t 7→ λ2/(t + λ)2 on t ≥ 0; (ii) follows from the same convexity and Jensen’s
inequality, and (iii) is since E

[∑d
i=1 σ

(n1)
i

]
= E

[
tr( 1

n1
X>t Xt)

]
= E

[
‖Xt‖2Fr /n1

]
= d. Applying this in the preceeding

bound yields

Ctr-val
d,n1,n2,λ ≤

d+ n2 + 1

n2
· (1 + λ)2

λ2
.

Further plugging in n1 = ns and n2 = n(1− s) for any s ∈ (0, 1) yields

lim
d,n→∞,d/n→γ

Ctr-val
d,ns,n(1−s),λ ≤

γ + 1− s
1− s · (1 + λ)2

λ2
.

Finally, the right-hand side is minimized at λ→∞ and s = 0, from which we conclude that

inf
λ>0,s∈(0,1)

lim
d,n→∞, d/n→γ

Ctr-val
d,ns,n(1−s),λ ≤ 1 + γ,

which is the desired “≤” direction.
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E. Connections to Bayesian estimator
Here we discuss the relationship between our train-train meta-learining estimator using ridge regression solvers and a
Bayesian estimator under a somewhat natural hierarchical generative model for the realizable setting in Section 4. We show
that these two estimators are not equal in general, albeit they have some similarities in their expressions.

We consider the following hierarchical probabilitistic model:

w0,? ∼ N

(
0,
σ2
w

d
Id

)
, wt|w0,?

iid∼ N

(
w0,?,

R2

d
Id

)
, yt = Xtwt + σzt where zt

iid∼ N(0, In).

This model is similar to our realizable linear model (5), except that w0 has a prior and that there is observation noise in the
data (such that data likelihoods and posteriors are well-defined). We also note that the Gaussian distribution assumption
(with R2/d variance) for wt is consistent with our Assumption A.

Bayesian estimator We now derive the Bayesian posterior mean estimator of w0,?, which requires us to compute the
posterior distribution of w0,? given the data {(Xt,yt)}Tt=1

4.

We begin by computing the likelihood of one task by marginalizing over wt:

p(Xt,yt|w0,?) ∝
∫
p(wt|w0,?) · p(yt|Xt,wt)dwt

∝
∫

exp

(
−‖wt −w0,?‖22

2R2/d

)
· exp

(
−‖yt −Xtwt‖22

2σ2

)
dwt

(i)∝ exp

(
−‖w0,?‖22

2R2/d
+

1

2

(
w0,?

R2/d
+

X>t yt
σ2

)>(
X>t Xt

σ2
+

Id
R2/d

)−1(
w0,?

R2/d
+

X>t yt
σ2

))

∝ exp

(
−1

2
w>0,?

((
X>t Xt +

dσ2

R2
Id

)−1
X>t Xt

R2/d

)
w0,? + w>0,?

(
X>t Xt +

dσ2

R2
Id

)−1
X>t yt
R2/d

)
,

where (i) is obtained by integrating a multivariate Gaussian density over wt, and “∝” drops all the terms that do not depend
on w0,?. Therefore, by the Bayes rule, the overall posterior distribution of w0,? is given by

p
(
w0,?|{(Xt,yt)}Tt=1

)
∝ p(w0,?) ·

T∏

t=1

p(Xt,yt|w0,?)

∝ exp

(
−‖w0,?‖22

2σ2
w/d

)
·

T∏

t=1

exp

(
−1

2
w>0,?

((
X>t Xt +

dσ2

R2
Id

)−1
X>t Xt

R2/d

)
w0,? + w>0,?

(
X>t Xt +

dσ2

R2
Id

)−1
X>t yt
R2/d

)
.

This means that the posterior distribution of w0,? is Gaussian, with mean , i.e. the Bayesian estimator, equal to5

ŵBayes
0,T := E

[
w0,? | {(Xt,yt)}Tt=1

]
= (ABayes

T )−1cBayesT ,

where

ABayes
T :=

d

σ2
w

Id +

T∑

t=1

(
X>t Xt +

dσ2

R2
Id

)−1
X>t Xt

R2/d
,

cBayesT :=

T∑

t=1

(
X>t Xt +

dσ2

R2
Id

)−1
X>t yt
R2/d

.

4Hereafter we treat Xt as fixed, as the density of Xt won’t affect the Bayesian calculation.
5Any density p(w) ∝ exp(−w>Aw/2 + w>c) specifies a Gaussian distreibution N(µ,Σ), where A = Σ−1 and c = Σ−1µ, so

that µ = A−1c.
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We note that ŵBayes
0,T has a similar form as our train-train estimator, but is not exactly the same. Indeed, recall the closed form

of our train-train estimator is (cf. (10))

ŵtr-tr
0,T = (Atr-tr

T )−1ctr-trT ,

where

Atr-tr
T =

T∑

t=1

(
X>t Xt + nλId

)−2
X>t Xt,

ctr-trT =

T∑

t=1

(
X>t Xt + nλId

)−2
X>t yt.

As ŵBayes
0,T uses the inverse and ŵtr-tr

0,T uses the squared inverse, these two sets of estimators are not the same in general, no
matter how we tune the λ in the train-train estimator. This is true even if we set σw =∞ so that the prior of w0,? becomes
degenerate (and the Bayesian estimator reduces to the MLE).

F. Details on the few-shot image classification experiment
Here we provide additional details of the few-shot image classification experiment in Section 5.2.

Optimization and architecture For both methods, we run a few gradient steps on the inner argmin problem to obtain
(an approximation of) wt, and plug wt into the ∇w0

`
{tr-val,tr-tr}
t (w0) (which involves wt through implicit function

differentiation) for optimizing w0 in the outer loop.

For both train-train and train-val methods, we use the standard 4-layer convolutional network in (Finn et al., 2017; Zhou
et al., 2019) as the backbone (i.e. the architecture for wt). We further tune their hyper-parameters, such as the regularization
constant λ, the learning rate (initial learning rate and its decay strategy), and the gradient clipping threshold.

Dataset and evaluation MiniImageNet consists of 100 classes of images from ImageNet (Krizhevsky et al., 2012) and
each class has 600 images of resolution 84 × 84 × 3. We use 64 classes for training, 16 classes for validation, and the
remaining 20 classes for testing (Ravi & Larochelle, 2017). TieredImageNet consists of 608 classes from the ILSVRC-12
data set (Russakovsky et al., 2015) and each image is also of resolution 84× 84× 3. TieredImageNet groups classes into
broader hierarchy categories corresponding to higher-level nodes in the ImageNet. Specifically, its top hierarchy has 20
training categories (351 classes), 6 validation categories (97 classes) and 8 test categories (160 classes). This structure
ensures that all training classes are distinct from the testing classes, providing a more realistic few-shot learning scenario.

We evaluate both methods under the transduction setting where the information is shared between the test data via batch
normalization.

F.1. Effect of the split ratio for the train-val method

We further tune the split (n1, n2) in the train-val method and report the results in Table 2. As can be seen, as the number
of test samples n2 increases, the percent classification accuracy on both the miniImageNet and tieredImageNet datasets
becomes higher. This testifies our theoretical affirmation in Lemma D.1. However, note that even if we take the best split
(n1, n2) = (5, 25) (and compare again with Table 1), the train-val method still performs worse than the train-train method.

We remark that our theoretical results on train-train performing better than train-val (in Section 4) rely on the assumptions
that the data can be exactly realized by the representation and contains no label noise. Our experimental results here
may suggest that the miniImageNet and tieredImageNet few-shot tasks may have a similar structure (there exists a NN
representation that almost perfectly realizes the label with no noise) that allows the train-train method to perform better than
the train-val method.

G. Comparison with Cross-Validation on Synthetic Data
We test the effect of using cross-validation for the train-val method on the same synthetic data (realizable linear centroid
meta-learning) as in Section 5.1.
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Table 2. Investigation of the effects of training/validation splitting ratio in the train-val method (iMAML) to the few-shot classification
accuracy (%) on miniImageNet and tieredImageNet.

datasets n1 = 25, n2 = 5 n1 = 15, n2 = 15 n1 = 5, n2 = 25

miniImageNet 62.09 ± 0.97 63.56 ± 0.95 63.92 ± 1.04
tieredImageNet 66.45 ± 1.05 67.30 ± 0.98 67.50 ± 0.94

Method We fix the number of per-task data n = 20, and use 4-fold cross validation in the following two settings:
(n1, n2) = (5, 15), and (n1, n2) = (15, 5). In both cases, we partition the data into 4 parts each with 5 data points, and we
roulette over 4 possible partitions of which one as train and which one as validation. The estimated optimal ŵcv

0 is obtained
by minimize the averaged train-val loss over the 4 partitions:

`cv
t (w0) :=

1

4

4∑

j=1

1

2nval

∥∥∥yval,j
t −Xval,j

t Aλ(w0; Xtrain,j
t ,ytrain,j

t )
∥∥∥

2

2
,

ŵcv
0 = arg min

w0

1

T

T∑

t=1

`cv
t (w0),

where superscript j denotes the index of the cross-validation. The performance is depicted in Figure 2.

tr-val, n1 = 15, 
ref. curve 1+ 4d/n

tr-val, n1 = 5,
ref. curve 1+4d/3n

tr-tr, ref. curve 

tr-val + cross-validation, 
n1=15 

tr-val + cross-validation, 
n1=5 

<latexit sha1_base64="/j/B0g/wUZpxCYZLQ2Xhg+21US0="></latexit>

`2 error of bw{tr-tr, tr-val, cv}
0,T v.s. d/n ratio

<latexit sha1_base64="01+xqNqiDN8pldDVApjrKgV/kEU="></latexit> T
� � �w

0
,?
�
b w

{t
r-

tr
,
tr

-v
a
l,

c
v
}

0
,T

� � �2 2

Figure 2. The scaled (by T ) `2-error of ŵ
{tr-tr,tr-val,cv}
0,T as the ratio d/n varies from 0 to 3 (n = 20 and T = 1000 are fixed). For the

cross-validation method, the regularization coefficient λ = 0.5 is tuned.

Result As showin in Figure 2, for both (n1, n2) = (15, 5) and (n1, n2) = (5, 15), using cross-validation consistently
beats the performance of the train-val method. This demonstrates the variance-reduction effect of cross-validation. Note
that the best performance (among the cross-validation methods) is still achieved at n1 = 5, similar as for the vanilla
train-val method. However, numerically, the best cross-validation performance is still not as good as the train-train method.

Leave-one-out cross-validation Figure 3 left further tests with an increased number of per-task samples n = 40, and
incorporates the train-val method with the leave-one-out cross-validation, i.e., (n1, n2) = (39, 1) and (n1, n2) = (1, 39).
We repeat the experiment 10 times for plotting the error bar (shaded area). We see that the train-train method still outperforms
the train-val method with leave-one-out validation.

We further increase the per-task sample size n to 200, and test the leave-one-out method with a sample split of (n1, n2) =

(1, 199). We adopt a matrix inverse trick to mitigate the computational overhead of finding Aλ(w0; Xtrain,j
t ,ytrain,j

t ). To
ease the computation, we also vary d from 0 to 400 on a coarse grid (with an increment of 80). From Figure 3 right, we
see that the leave-one-out method can slightly beat the train-train method for some d/n values. Compared to n = 20 and
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n = 40 experiments, this is the first time of seeing leave-one-out method outperforms the train-train method. We suspect
that the per-task sample size n plays a vital role in the power of the leave-one-out method: a large n tends to have a strong
variance reduction effect in the leave-one-out method, so that the performance can be improved. Yet using the leave-one-out
method with a large n invokes a high computational burden.
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Figure 3. The scaled (by T ) `2-error of ŵ
{tr-tr,cv}
0,T as the ratio d/n varies from 0 to 3 (n ∈ {40, 200} and T = 1000 are fixed). For

the cross-validation method, the regularization coefficient λ = 0.5. Left: n = 40. Leave-out-out CV performs worse than the
train-train method. Right: n = 200. Leave-one-out CV appears better than the train-train method for d/n ∈ {1.2, 1.6}.


