
Accelerating Equilibrium Models by Stabilizing Their Jacobians
Supplementary Material

A. Dataset Information, Experimental
Settings and Hyperparameters

We provide below a detailed description of all tasks and
settings for experiments reported in Section 5, as well as
some training specifics of the deep equilibrium network
(DEQs) we use.

A.1. 1D Synthetic Dataset

To visualize the effect of the proposed Jacobian regular-
ization on DEQ models (see Section 5), we generated a
synthetic dataset with 5096 pairs (x, y) from the target func-
tion:

y = h(x) =
3

2
x3 + x2 + 5x+ 2 sin(x)− 3 + δ

where δ ∈ N (0, 0.05) are i.i.d. noise variables added to

h(�1)

h(0.5)

h(1.9)

Target function h(x)

Figure 9. Target
function y = h(x).

each sample in the dataset. Specifi-
cally, we split the generated data into
4096 training samples and 1000 val-
idation samples.

Figure 9 shows the target function.
In the context of deep equilibrium
networks, we aim to learn a func-
tion z?(x) such that z? = fθ(z

?;x)
and z?(x) ≈ h(x). At a high level,
we should expect the intersection be-
tween the zout = fθ(z;x) surface and
the zout = z plane to be exactly like
the gray curve in Figure 9.

The learned DEQ equilibria z?(x)
are empirically demonstrated in Figure 5 in red dashed lines
for different choices of γ. As expected, all γ fit the tar-
get function perfectly, but the introduction of the Jacobian
regularization makes the surface more flat around the fixed
point.

A.2. WikiText-103 Word-level Language Modeling

Word-level language modeling tasks aim to predict the next
word of a textual sequence by integrating the semantics and
information of current and past tokens. Formally, given an
input sequence x1:T ∈ RT×p (where xi ∈ Rp and T is
the sequence length), an autoregressive sequence model G
produces output G(x1:T) = y1:T ∈ RT×q that satisfies the

causality constraint: yt depends only on x1:t and not on the
future information xt+1:T . When each xi represents a word
(i.e., a word embedding), the task is essentially a word-level
language modeling task. This is a widely-studied problem
in the NLP community (e.g., (Merity et al., 2017; 2018; Dai
et al., 2019)), and has seen practical advancement in the last
few years with development of GPT-3 (Brown et al., 2020;
Radford et al., 2019).

A commonly used large-scale corpus for this task is the
WikiText-103 (Merity et al., 2017) dataset, which contains
103M/217K/246K words at train/validation/test time, re-
spectively. The entire corpus has a vocabulary size of 267K
(i.e., the number of rows in the word embedding). Unlike
other well-processed, much smaller datasets like Penn Tree-
bank (Marcus et al., 1993), WikiText-103 is much more
challenging as it contains many rare words and retains
punctuations, numbers, upper- and lower-cases from the
source Wikipedia articles; it has been the standard bench-
mark for many high-capacity language models in recent
literature (Merity et al., 2018; Bradbury et al., 2017; Dai
et al., 2019). We provide a shell script in our submitted code
to download this dataset.1

A.3. CIFAR-10 & ImageNet Image Classification

The CIFAR-10 (Krizhevsky & Hinton, 2009) dataset con-
tains 60,000 color images of resolution 32×32 that fall into
10 object classes (with uniformly 6,000 images per class).
We use the standard setting where 50K of these images are
used for training and the rest 10K for validation purpose.

The ImageNet (Krizhevsky et al., 2012) dataset, on the other
hand, contains over 1.28M training images and 150K test
images, distributed over 1,000 classes. All images are re-
scaled to 224× 244 resolution before they are fed into the
models (as the original images are of variable resolutions
and scales). This is a frequently used dataset for evalu-
ating large-scale vision networks, and has been used for
also pretraining many image feature extractor for use on
downstream tasks.

For both CIFAR-10 and ImageNet, each training image goes
through a canonical data augmentation process before they
are fed into the model, where we perform random cropping
and random horizontal flipping.

1Officially, this dataset can be downloaded at this link.

https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/

Stabilizing Equilibrium Models by Jacobian Regularization

Table 4. Hyperparameters, optimizer choices, and model details (at training time) for all tasks reported in Section 5. The arrows in the
Jacobian regularization strength (e.g., A → B) mean that we dynamically increase from A to B over the course of DEQ training.

Synthetic Dataset WikiText-103 language modeling CIFAR-10 classification ImageNet classification

Architecture of fθ
2-Layer ReLU block Transformer layer Multiscale DEQ layer Multiscale DEQ layer

(see Section 5) (Pre- and Post-LN) (residual block + fusion) (residual block + fusion)
of Epochs 50 23 200 120
Batch Size 64 60 96 112
Optimizer Adam Adam Adam SGD

Start Learning rate 0.001 0.00025 0.001 0.05
Learning rate warmup No Yes, 1 epoch No No
Learning rate schedule Cosine Cosine Cosine Cosine

Weight Decay 0 0 0 5 · 10−5
Hidden dimensionality 50 700 (embedding size) [28,56,112,224] (4 scales) [32,64,128,256]
Input Sequence Length N/A 150 N/A N/A

Input Image Size N/A N/A 32× 32 224× 224

Normalization None LayerNorm (Ba et al., 2016) GroupNorm (Wu & He, 2018) GroupNorm
Recurrent Droput N/A 0.06 0.25 0.02

Weight Normalization No Yes Yes Yes
of Input Injection Downsamplings N/A N/A N/A 2

Forward NFEs Threshold 6 12 7 14
Backward NFEs Threshold 6 12 8 14

Forward Threshold ε 10−3 10−3 10−3 10−3

Backward Threshold ε 10−4 10−4 10−4 10−4

Jacobian Reg. Strength γ {0,1,2,4} 1.6→ 2.5 0.5 2.0→ 3.0
Jacobian Reg. Frequency p 0.4 0.35 0.05 0.1
M for Hutchinson Estimator 1 1 or 2 1 1 or 2

A.4. Training Setting and Hardware

Our experimental protocols are intentionally set to be max-
imally consistent with prior work (Bai et al., 2019; 2020).
This includes hyperparameters (see the subsection below),
other regularization methods (e.g., recurrent dropout (Gal
& Ghahramani, 2016) & group normalization (Wu & He,
2018)), and initialization schemes (where all parameters
are initialized at the start of training by sampling from
N (0, 0.01)). For the multiscale DEQs that were used in
the image classification task, we used 4 resolutions, where
each subsequent resolution is of exactly half the height and
width of the previous resolution. Although Bai et al. (2020)
highlighted the need to train a ReLU-based network with
softplus for stability purposes, we found it not necessary
in our experiments with regularized DEQs, most likely be-
cause of the role Jacobian regularization plays in stabilizing
the network convergence.

One thing to note is that empirically, rather than applying
the proposed Jacobian regularization on all training itera-
tions, we only randomly and partially apply this auxiliary
loss. For example, when we set the auxiliary loss frequency
p to 0.5, only half of the training iterations (randomly se-
lected) are trained with the Jacobian regularization term (see
Table 4). This is motivated by the empirical observation that
Jacobian-related regularizations usually hurt performance,
e.g., as in its application in robust learning (Hoffman et al.,
2019). Therefore, such partial/random supervision with
the Jacobian regularization brings two benefits: 1) the rest
(1−p)-portion of the training iterations can pick up a further
speedup as we don’t need to compute the Hutchinson esti-

mator and backpropagate through it; and 2) it helps reduce
the likelihood of the model overfitting on this auxiliary loss
term (since, as we noted in Section 5.5, the model could be
sensitive to γ, and M is small), which we generally observe
to benefit the performance, though only slightly. Therefore,
during training, the model would still proceed in the actual
stochastic gradient direction, and only use the regularized
direction occasionally.

Formally, the training objective we highlighted in Sec-
tion 4.2 should be:

Ltotal(z
?) = Lorig(z

?) + τ · γ
∑M
m=1 ‖ε

>Jfθ (z
?)‖22

Md , εm ∈ N (0, Id)

where τ = Bernoulli(p) is a random variable and M is the
number of samples used for Hutchinson estimator.

All experiments in this paper, including the speed and mem-
ory benchmarks we provide, were conducted on RTX 2080
Ti GPUs. WikiText-103 language modeling and ImageNet
classification models (MDEQ-small) were trained with 4
GPUs in a data-parallel setting.

A.5. Hyperparameters

We report the hyperparameters used at training time in
Table 4. Except for those used in the synthetic data and
for Jacobian regularization, most of the other hyperpa-
rameters were essentially taken from the original DEQ-
Transformer (Bai et al., 2019) and MDEQ (Bai et al.,
2020) without major modifications. For both Anderson
and Broyden fixed-point solvers, we use the relative residual
‖fθ(z;x)−z‖
‖fθ(z;x)‖ as a measure of convergence quality in forward

Stabilizing Equilibrium Models by Jacobian Regularization

Table 5. A more complete version of Table 1 with more memory and efficiency comparison. Memory benchmarked on batch size 15
and excludes the embedding layer. † indicates unregularized model hard-stopped at inference time (while still trained with more NFEs).
Overall, we find that Jacobian regularization allows us to train and predict with much fewer NFEs, at a relatively small cost in performance.

Model Size Perplexity ttrain (relative) Train NFE Valid. NFE Training Memory

AWD-Quasi RNN (Bradbury et al., 2017) 159M 33.0 - - - 7.1GB
Relational Memory Core (Santoro et al., 2018) 195M 31.6 - - - -
Megatron-LM (Shoeybi et al., 2019) [SOTA] 8300M 10.8 - - - -
Transformer-XL (18-layer) (Dai et al., 2019) 110M 24.1 1× - - 9.0GB
DEQ-Transformer (Pre-LN) (Bai et al., 2019) 98M [diverged] N/A 30 N/A N/A
DEQ-Transformer (Post-LN) (Bai et al., 2019) 98M 24.0 3.1× 30 30 3.9GB

DEQ-Transformer (Post-LN) early stopped 98M 29.2 3.1× 30 12 3.9GB
DEQ-Transformer (Post-LN) (Bai et al., 2019) 98M 26.0 2.2× 20 20 3.6GB
DEQ-Transformer (Post-LN) (Bai et al., 2019) 98M [diverged] N/A 15 N/A 3.6GB

DEQ-Transformer (Pre-LN) + JR (ours) 98M 24.5 1.5× 14 14 4.8GB
DEQ-Transformer (Post-LN) + JR (ours) 98M 24.9 1.4× 13 12 4.8GB

DEQ-Transformer (Post-LN) + JR (ours) (trained on seqlen=300) 98M 23.8 2.2× 13 13 6.5GB

and backward passes. At inference time, we generally re-
duce the number of NFEs (e.g., cf. Table 4 and Table 1),
while the other hyperparameters (e.g., GroupNorm group
sizes) are kept the same.

B. Additional Experimental Results
B.1. Memory Consumption

As we noted in Sections 4 and 5, using Jacobian regulariza-
tion and thus the vector-Jacobian-product-based Hutchinson
estimator introduces some extra memory cost at training
time due to the need to differentiate w.r.t. the ‖Jfθ‖F term.
Overall, with the same batch size and sequence length, we
observe a roughly 25% increase in training memory required
(from about 3.9GB to 4.8GB, excluding embeddings). This
is less than the memory consumption of a layer, because
the reduction in NFEs needed on the other side saves the
memory used by the solver (see Section 3.4). However, this
memory footprint is still much better than the conventional
explicit Transformer-XL model, which consumes about 2×
as much GPU memory. With the Jacobian regularization,
as we can see, the DEQ models are much more efficient in
time complexity than before, while still staying competitive
on the space complexity and the performance fronts.

B.2. DEQ’s Backward Convergence with Jacobian
Regularization (CIFAR-10)

As we discussed in Section 4, the backward dynamics of
a DEQ model is a linear fixed point system that depends
directly on the Jacobian at equilibrium (i.e., Jfθ (z

?)). There-
fore, the backward pass stability is directly influenced by
the conditioning of the Jacobian that we regularize. The
stabilizing effect of the proposed Jacobian regularization
on the backward pass convergence was already shown for
WikiText-103 language modeling in Figure 3b, where we
empirically observe that the Jacobian-regularized DEQ-
Transformer’s backward pass stays at a consistent level,

which indicates a relatively more accurate gradient produced
by the implicit function theorem.

We further corroborate this finding via empirical evidence
on the CIFAR-10 dataset with a multiscale DEQ (MDEQ)
instance, shown in Figure 10a. Compared to the original
MDEQ (blue line), the Jacobian-regularized version of the
backward pass experiences much fewer fluctuations (and
thus less stochastic gradients). We also compared to an alter-
native solution that uses the simple weight decay. Although
it also alleviates the fluctuation problem, our empirical ob-
servations suggest that weight decay alone almost always
adds more difficulty to the fixed point solving. This agrees
with what we have observed in the forward pass in Sec-
tion 5.5. Such comparison can be seen in Figure 10a in
the purple line, which converged even more poorly than the
original baseline after 14 backward solver iterations (with
relative residual> 0.05 and increasing slowly over training).
In contrast, the regularized backward pass is more smooth
and stable (red line) throughout training (we used γ = 0.5).

B.3. Failure of Weight Decay to Fix the Problem

This overall inability of weight decay alone to fix the DEQ
stability issue (e.g., see Figures 8 and 10a), we believe,
exactly suggests that there is a deeper implicitness property
of the model that should be regularized than just the value
of individual weights. As DEQ networks typically rely
on a single fθ block, their complex non-linear structure
makes their stability depend as much on the linear parts of
fθ (which weight decay does regularize) as the non-linear
parts (which weight decay does not directly regularize; e.g.,
self-attention in fθ if we use a Transformer layer). On the
other hand, Jacobian regularization takes into account both
parts as it tries to constrain the overall spectral radius of the
matrix.

We also provide some additional analysis on how ‖Jfθ‖F
evolves during training in Figure 10b and 10c. Specifi-
cally, even with weight decay, the convergence of DEQ-

Stabilizing Equilibrium Models by Jacobian Regularization

5 10 15 20 25 30 35 40
Training Iterations (thousand steps)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ba
ck

wa
rd

 re
sid

ua
l ||x

(J f
I)

+
||

||x
J f

+
||

CIFAR-10 DEQ Backward (T=14 steps)
MDEQ
MDEQ + weight decay
MDEQ+reg. (ours)

(a) Jacobian regularization improves both the fluc-
tuation and quality of the backward convergence.

0.0 0.2 0.4 0.6 0.8
Jacobian norm ||Jf(z *)||2F (normalized)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Fo
rw

ar
d

re
la

tiv
e

re
sid

ua
l ||f

(z
;x

)
z|

|
||f

(z
;x

)||

Wikitext-103 DEQ ||Jf(z *)||2F vs. Final Residual
Trans. DEQ + reg.
Trans. DEQ + weight decay
Trans. DEQ

(b) Forward relative residual on WikiText-
103 as a function of the Jacobian norm.

0 10 20 30 40 50 60
Training Iterations (thousand steps)

10 1

100

Ja
co

bi
an

 n
or

m
 ||

J f(
z

*)
||2 F (

no
rm

al
ize

d)

WikiText-103 DEQ ||Jf(z *)||2F (T=16 steps)
Trans. DEQ + reg.
Trans. DEQ + weight decay
Trans. DEQ

(c) Jacobian norm grows throughout train-
ing, even when we regularize for it.

Figure 10. Additional analysis on DEQ models’ backward convergence (on CIFAR-10), Jacobian norm, etc.

Transformer models can be quite bad (see purple dots in
Figure 10b), with a clear correlation between the larger rela-
tive residual and larger ‖Jfθ‖2F . Indeed, with a non-linear
structure as complex as the multi-head self-attention, sim-
ply constraining the weights to be small is not sufficient
to ensure well-conditioned Jacobians. Moreover, while the
Jacobian regularization helps significantly stabilize the for-
ward and backward convergence (see Figure 1a, 10a and 3),
we note that a regularized DEQ model still in fact gradually
tends to “critical stability”. This can be seen in Figure 10c,
where the Jacobian norm grows slowly over training itera-
tions (red line) for a fixed γ, though at a rate much slower
than the unregularized and weight-decayed baselines. There-
fore, as we indicated in Section 5.5, the proposed Jacobian
regularization does not fundamentally fix the growing in-
stability problem, but only alleviates it. This also calls for
adaptive γ scheduling during training (which we adopt in a
simple form in our implementation and leave more advanced
schemes for future work).

