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Abstract
Detecting the Maximum Common Subgraph
(MCS) between two input graphs is fundamen-
tal for applications in drug synthesis, malware
detection, cloud computing, etc. However, MCS
computation is NP-hard, and state-of-the-art MCS
solvers rely on heuristic search algorithms which
in practice cannot find good solution for large
graph pairs given a limited computation budget.
We propose GLSEARCH, a Graph Neural Net-
work (GNN) based learning to search model. Our
model is built upon the branch and bound algo-
rithm, which selects one pair of nodes from the
two input graphs to expand at a time. We pro-
pose a novel GNN-based Deep Q-Network (DQN)
to select the node pair, making the search pro-
cess much faster. Experiments on synthetic and
real-world graph pairs demonstrate that our model
learns a search strategy that is able to detect sig-
nificantly larger common subgraphs than existing
MCS solvers given the same computation bud-
get. GLSEARCH can be potentially extended to
solve many other combinatorial problems with
constraints on graphs.

1. Introduction
Graphs gain increasing attention recently due to their ex-
pressive nature in representing real-world data and recent
successes in addressing challenging graph tasks via learn-
ing, represented by graph neural networks. Among various
graph tasks, detecting the largest subgraph that is commonly
present in both input graphs, known as Maximum Common
Subgraph (MCS) (Bunke & Shearer, 1998) (as shown in Fig-
ure 1), is an important yet particularly hard task. MCS natu-
rally encodes the degree of similarity between two graphs,
is domain-agnostic, and thus has broad utilities in many
domains such as software analysis (Park et al., 2013), graph
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Figure 1: For graph pair (G1,G2) with node labels, the
induced connected Maximum Common Subgraph (MCS) is
the five-member ring structure highlighted in circle.

database systems (Yan et al., 2005) and cloud computing
platforms (Cao et al., 2011). For example, in drug synthe-
sis, finding similar substructures in compounds with similar
properties can reduce manual labor (Ehrlich & Rarey, 2011).

MCS detection is NP-hard in its nature and is thus very
challenging. The state-of-the-art exact MCS detection al-
gorithms, which use a powerful branch and bound search
framework, still run in exponential time in the worst
case (Liu et al., 2019). These algorithms aim to provably ex-
tract the MCS by exhausting the search space as efficiently
as possible. However, in large real-world graphs, exhausting
the search space is not computationally tractable. What is
worse, they rely on several heuristics on how to explore the
search space. For example, MCSP (McCreesh et al., 2017)
uses node degree as its heuristic by choosing high-degree
nodes to visit first, but in many cases the true MCS contains
low-degree nodes.

Recently, there are some related efforts from the learning
community; however, these methods fall short in tackling
the constraint posed by the MCS definition that the two
extracted subgraphs must be isomorphic to each other. For
example, Wang et al. (2019) aims to detect a soft matching
matrix between nodes in two input graphs, which, how-
ever, cannot be easily transformed into the discrete matched
subgraph. Bai et al. (2020b) is the first attempt to use learn-
ing based approach to directly output MCS. However, it
heavily relies on labeled MCS instances, which requires
pre-computation of MCS results by running exact solvers.

In this paper, we present GLSEARCH (Graph Learning to
Search), a general framework for MCS detection combining
the advantages of search and deep Reinforcement Learn-
ing (RL). GLSEARCH learns to search by adopting a Deep
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Q-Network (DQN) (Mnih et al., 2015) to replace the node
selection heuristics required in state-of-the-art MCS solvers,
leading to faster arrival of the optimal solution for an in-
put graph pair, which is particularly useful when applied to
large real-world graphs and/or with a limited search budget.
Our method proposes a novel representation for states in the
DQN framework, and reformulates DQN in a novel way to
better capture the effect of different node selections, exploit-
ing the representational power of Graph Neural Networks
(GNN).

Besides the novel state representation, another key com-
ponent of GLSEARCH is the search algorithm. Since the
search space is very large especially for large graphs pairs,
and DQN policy may choose a bad action during search, the
traditional DQN framework tends to stop searching too early,
leading to suboptimal solutions. To address this, we adopt a
branch-and-bound search framework with backtracking.

Lastly, to enhance the training of DQN, we leverage the
search algorithm to not only provide supervised signals in a
pre-training stage but also offer guidance during an imitation
learning stage.

Experiments on large real graph datasets (that are signifi-
cantly larger than the datasets adopted by state-of-the-art
MCS solvers) demonstrate that GLSEARCH outperforms
baseline solvers and machine learning models for graph
matching, in terms of effectiveness, by a large margin. Our
contributions can be summarized as follows:

• We address the important yet challenging task of Maxi-
mum Common Subgraph detection for general-domain
input graph pairs and propose GLSEARCH as the solu-
tion.

• The key novelty is of GLSEARCH is its learning to
search framework. With a DQN reformulation trick, it
is trained under the reinforcement learning framework
to make the best decision at each search step in order to
quickly find the best MCS solution during search. The
search in turns helps DQN training in a pre-training
stage and an imitation learning stage.

• We conduct extensive experiments on medium, large,
and million-node real-world graphs to demonstrate
the effectiveness of the proposed approach compared
against a series of strong baselines in MCS detection
and graph matching.

2. Preliminaries and Related Work
2.1. The MCS Detection Problem

We denote a graph as G = (V, E) where V and E denote
the vertex and edge set. A node-induced subgraph is de-
fined as Gs = (Vs, Es) where Es preserves all the edges

between nodes in Vs, i.e. ∀i, j ∈ Vs, (i, j) ∈ Es if and only
if (i, j) ∈ E . In this paper, we aim to detect the Maximum
Common induced Subgraph (MCS) between an input graph
pair, denoted as MCS(G1,G2), which is the largest node-
induced subgraph contained in both G1 and G2. In addition,
we require MCS(G1,G2) to be a connected subgraph. We al-
low the nodes of input graphs to be labeled, in which case the
labels of nodes in the MCS must match as in Figure 1. Graph
isomorphism and subgraph isomorphism can be regarded as
two special tasks of MCS: |MCS(G1,G2)| = |V1| = |V2| if
G1 are isomorphic to G2, |MCS(G1,G2)| = min (|V1|, |V2|)
when G1 (or G2) is subgraph isomorphic to G2 (or G1).

2.2. Related Work

Traditional Efforts MCS detection is NP-hard, with ex-
isting methods based on constraint programming (Vis-
mara & Valery, 2008; McCreesh et al., 2016), branch and
bound (McCreesh et al., 2017; Liu et al., 2019), integer
programming (Bahiense et al., 2012), conversion to maxi-
mum clique detection (Levi, 1973; McCreesh et al., 2016),
etc., among which MCSP+RL (Liu et al., 2019) (details pre-
sented in Section 2.3) is the state-of-the-art method, which
guarantees to find common subgraphs satisfying the isomor-
phism constraint, but usually cannot extract large common
subgraphs when input graphs become large.

Efforts on Learning to Solve Graph Similarity and
Matching There is a growing trend of using machine
learning approaches to graph matching and similarity score
computation (Zanfir & Sminchisescu, 2018; Wang et al.,
2019; Yu et al., 2020; Xu et al., 2019b;a; Bai et al., 2019;
2020a; Li et al., 2019; Ling et al., 2020; Liu et al., 2020;
Chen et al., 2020). These methods cannot handle the iso-
morphism constraint in MCS well, since they were mainly
designed for tasks without hard constraints, e.g. finding
the similarity score or node-node matching between two
graphs supervised by true similarity or matching. Thus, to
better satisfy the constraints of MCS, these models need to
be embedded into a search framework that uses the scores
provided by the models to guide the search for MCS, which
will be described next. For example, GW-QAP performs
Gromov-Wasserstein discrepancy (Peyré et al., 2016) based
optimization and outputs a matching matrix for all node
pairs indicating the likelihood of matching (Zanfir & Smin-
chisescu, 2018). I-PCA performs image matching by out-
putting a doubly-stochastic matching matrix computed from
intermediary Convolution Neural Network features from an
input image pair (Wang et al., 2019). Some other methods
tackle tasks with hard constraints, such as MCS or GED,
but these methods require supervision, which is difficult to
obtain (Bai et al., 2020b; Wang et al., 2020). A recent work
proposes to use RL to overcome the supervision limitation;
however, this approach relies heavily on existing heuristics
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to work well (Liu et al., 2019).

Efforts on Learning to Solve NP-hard Graph Problems
Existing works such as Dai et al. (2017), Gasse et al. (2019),
and Fan et al. (2020) focus on designing learning based
approaches for solving NP-hard tasks on graphs, e.g. Min-
imum Vertex Cover, Mixed Integer Linear Programming,
Network Dismantling, etc., but our problem, Maximum
Common Subgraph detection, operates on a pair of input
graphs instead of a single graph. Besides, MCS detection
requires hard constraint satisfaction, i.e. isomorphism of
extracted subgraphs, which is handled by a search algorithm
described next.

2.3. Search Algorithms for MCS

In this section, we present the state-of-the-art branch and
bound search framework for detecting MCS as shown in
Algorithm 1 and Figure 2, which allows the exploration
of search space and guarantees the satisfaction of the iso-
morphism constraint posed by MCS. Thus, it serves as the
backbone of our proposed approach. We then discuss sev-
eral drawbacks in the existing search-based MCS detection
algorithms.

Algorithm 1 Branch and Bound for MCS. We highlight
in green boxes the two places that will be replaced by
GLSEARCH.

1: Input: Input graph pair G1, G2.
2: Output: maxSol.
3: Initialize s0 ← empty state.
4: Initialize stack← new Stack(s0).
5: Initialize maxSol← empty solution.
6: while stack 6= Ø do
7: st ← stack.pop();
8: curSol← st.getCurSol();
9: if |curSol| > |maxSol| then

10: maxSol← curSol;
11: end if
12: UB t ← |curSol| + overestimate(st);
13: if UB t ≤ |maxSol| or |st.actions| = 0 then
14: continue;
15: end if
16: At ← st.actions;
17: at ← policy(st,At);
18: st.actions← st.actions \{at};
19: stack.push(st);
20: st+1 ← environment.update(st,At);
21: stack.push(st+1);
22: end while

MCSP and Its Limitations The basic version, MCSP,
is presented in McCreesh et al. (2017) and the more ad-
vanced version, MCSP+RL, is proposed in Liu et al. (2019).

The whole search algorithm, outlined in Algorithm 11, is a
branch-and-bound algorithm that, starting from an empty
subgraph, grows the matching subgraph one node pair (be-
tween the two graphs) at a time and maintains the best
solution found so far. In each search iteration, denote the
current search state as st consisting of G1, G2, the current
matched subgraphs G1s = (V1s, E1s) and G2s = (V2s, E2s)
as well as their node-node mappings. The algorithm tries to
select one node pair, (i, j) added to the currently selected
subgraphs, where node i is from G1 and node j is from G2,
as its action, denoted as at. It then decides to either con-
tinue the search if the solution is promising, or otherwise
backtrack to the parent search state, i.e. the current search
state is pruned (line 14). Various heuristics on node pair se-
lection policy, denoted as “policy” in line 17, are proposed
in MCSP and MCSP+RL. For example, in MCSP, nodes of
large degrees are selected before small-degree nodes.

At each search state, in order to determine whether the solu-
tion is promising or not, an upper bound of the size of the
MCS, “UB t” in line 12 is computed. A concept of “bido-
main” is introduced to facilitate its estimation. Bidomains
partition the unselected nodes, (V1 \ V1s) ∪ (V2 \ V2s), into
equivalent classes, D = {Dk}2

|V1s|−1
k=0 , where the k-th bido-

main Dk consists of two sets of nodes, Dk = 〈V ′k1,V ′k2〉
such that nodes in V ′k1 and nodes in V ′k2 connect to subgraph
nodes, in V1s and V2s, that match to each other. Figure 3
shows an example with three bidomains. Due to the sub-
graph isomorphism constraint posed by MCS, only nodes in
V ′k1 can match to V ′k2 and vice versa. Since we require the
MCS to be connected subgraphs, we differentiate bidomains
D(c) = {Dk}2

|V1s|−1
k=1 that are connected (adjacent) to G1s

and G2s (e.g. bidomain “01” and “10” in Figure 3) from
the single bidomain D0 disconnected (unconnected) from
G1s and G2s (e.g. bidomain “00” in Figure 3) The candi-
date node pairs to select from, i.e. the action space “At”,
consists of all node pairs in all connected bidomains, D(c).
This also guarantees the extracted subgraphs at each state
are isomorphic to each other.

To estimate the upper bound, it is noteworthy that each
bidomain can contribute at most min(|V ′k1|, |V ′k2|) nodes
to the future best solution. The upper bound can there-
fore be estimated as

∑
Dk∈Dmin(|V ′k1|, |V ′k2|), which is

the “overestimate(st)” function in line 12. This upper bound
computation is consistently used for all the methods in the
paper. The major difference is and the node pair selection
policy and backtracking method, i.e. lines 17 and 7.

As mentioned previously, MCSP adopts a heuristic that
selects node pairs with the largest degree as its policy. The
most severe limitation of MCSP is that the node-degree-

1The original algorithm is recursive. To highlight our novelty,
we rewrite into an equivalent iterative version.
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Figure 2: An illustration of the branch and bound search algorithm for MCS detection (Algorithm 1). Each node represents
one state (st), with node id reflecting the order states are visited, and each edge represents an action (at) of selecting a new
node pair. The search is essentially depth-first with pruning by the upper bound check. Our model learns the node pair
selection strategy, i.e. which state to visit first. Notice, if the policy had visited state 6 before state 1, a large solution may be
found in less iterations. When the search completes or a pre-defined search iteration budget is used up, the best solution
(largest subgraphs) will be returned, which in this example is state 13 (and 14).
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Figure 3: An example to illustrate the concept of bidomains.
We denote the bidomain of each non-subgraph node by its
bitstring, where each bit denotes whether there is a connec-
tion (“1”) or not (“0”) to a particularly node in subgraph V1s
or the node it maps to in subgraph V2s (both circled in red).
For example, each node in the “10” bidomain is connected
to the top “C” node in the subgraph and disconnected to
the bottom “C” node. In this case, there are 3 bidomains
denoted as “00” (D0), “01” (D1), and “10” (D2). By def-
inition, the bidomain denoted with all zeros, e.g. “00” in
this case, is called the disconnected bidomain. Notice, the
bidomain corresponding to “11” (D3) is empty.

based heuristic is not adaptive to the complex real-world
graph structures. MCSP always backtracks to the parent
search state; however, this leads to suboptimal solutions, as
the wrong action could have occured earlier in search.

MCSP+RL and Its Limitations MCSP+RL improves
MCSP by replacing the node pair selection policy with a
value function for each node or node pair. Their goal is to
minimize the search tree size so that a search tree leaf can be
reached as early as possible. Specifically, MCSP+RL aims
to reduce the UB t to make it tighter, so that more pruning
(line 14) can happen in subsequent search steps, resulting in
a smaller search tree (search space). To achieve that goal,
they design the reward function for each state-action pair as
the reduction (or reduction rate) of search space by selecting

that node pair. The value function maintains a score for each
node (or node pair), which is initialized to 0 and updated
during search. In each step during search, the policy is to
select the node pair with the largest score.

We identify two limitations of MCSP+RL: (1) Since the
reward definition is defined using a heuristic and there is
no training stage, for each new graph pair, the scores must
be re-initialized and the policy has to be re-updated. (2)
The fact that the scores for each node (or node pair) are 0 at
the beginning of search has another problem: MCSP+RL
breaks ties using node degrees, essentially degenerating to
the same policy as MCSP initially for each graph pair, which
is also verified by our experiments as shown in Figure 4
where MCSP and MCSP+RL perform the same.

Besides, a common issue of MCSP and MCSP+RL is that,
during the search, they can enter a bad locally optimal search
state and get “stuck” without finding a better (larger) solu-
tion, maxSol, for many iterations, as shown in the flat line
segments of Figure 4.

3. Proposed Method
In this section, we present our RL based MCS detection
method, GLSEARCH. The rest of Section 3 is organized as
follows. Section 3.1 presents a high-level overview of how
to leverage Deep Q-Network (DQN) (Mnih et al., 2015)
for search, including the basic definitions of state, action,
reward, etc., and how DQN can address the various issues of
search methods for MCS described previously. Section 3.2
describes the details of how to leverage DQN for search,
focusing on how to effectively design representation learn-
ing for DQN for the task of MCS detection. Section 3.3
explains how to effectively train the DQN with the help of
search, i.e. how search can in turn help DQN training.
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Table 1: Table of Notations.

Notation Description
G1,G2 The input pair of graphs.
G1s,G2s The selected subgraph of some given state.
Vx, Ex Set of nodes and edges for graph Gx.
st The search state at iteration t.
at The action selected at iteration t.
D Set of all bidomains, {Dk}2

|V1s|−1
k=0 .

D(c) Set of connected bidomains, {Dk}2
|V1s|−1

k=1 .
D0 The disconnected bidomain.
V ′k1,V ′k2 Set of nodes in G1 and G2 in Dk.
hi, hj Embeddings of nodes i ∈ V1 and j ∈ V2.
hs1, hs2 Embeddings of subgraphs G1s and G2s.
hG1 , hG1 Embeddings of graph G1 and subgraph G2.
hD(c) Embedding for connected bidomains, D(c)

hD0
Embedding for disconnected bidomains, D0

3.1. Leveraging DQN for Search: Overview

GLSEARCH enables graph representation learning tech-
niques to tackle the hard isomorphism constraint posed by
MCS and uses deep Q-learning to select node pairs smartly
in each search state. GLSEARCH represents states and
actions in continuous embeddings, and maps (st, at) to a
scoreQ(st, at) via a DQN which consists of a Graph Neural
Network encoder and learnable components to project the
representations into the final score. GLSEARCH is trained
on a set of diverse small and medium-sized graphs, and once
trained, can be applied to any new graph pair.

Unlike MCSP and MCSP+RL, which aim to reduce the
search tree size, the aim of our agent is to directly maxi-
mize the common subgraph size, allowing large common
subgraph to be found even on very large graph pairs.

State st consists of the (1) current selected subgraphs, (2)
the node-node mappings between the nodes in the selected
subgraphs, and (3) the input graphs. We include the node-
node mappings as part of the state definition since node-node
mappings can be used to derive the bidomain partitioning
as illustrated in Figure 3, which constrains the node pairs
that can be selected in future, and thus affects the future
common subgraph size. Action at is defined as a node pair
to select. For GLSEARCH, given our goal, the immediate
reward for transitioning from one state to any next state is
defined as rt = +1 since one new node pair is selected, so
that Q(st, at) captures the largest common subgraph size
starting at st by performing at.

GLSEARCH is trained to find large common subgraphs
quickly, but due to the large action space of large graph pairs,
our model may still be susceptible to the local optimum
without increasing maxSol as described in Section 2.3.
Thus, when this occurs, we utilize additional information
stored in the search tree to backtrack to a state that will

most likely improve maxSol. We find that in practice,
states with a large action space, At, tend to include more
high-quality unexplored actions. Hence, if the best solution
found so far does not increase2 for a pre-defined number of
iterations, then in the next iteration, instead of popping from
the stack3, we find the state with the largest action space,
and visit it. We refer to this improved search methodology
as promise-based search. More details can be found in the
supplementary material.

3.2. Search Policy Learning via GNN-based DQN

Since the action space can be large for MCS, we leverage
the representation learning capacity of continuous represen-
tations for DQN design. At state st, for each action at, our
DQN predicts a Q(st, at) representing the remaining future
reward after selecting action at = (i, j) where i ∈ V1 and
j ∈ V2, which intuitively corresponds to the largest number
of nodes that will be eventually selected starting from the
action edge (st, at) as shown in tree in Figure 2.

Based on the above insights, one can design a simple
DQN leveraging the representation learning power of Graph
Neural Networks (GNN) such as Kipf & Welling (2016)
and Velickovic et al. (2018) by passing G1 and G2 to a
GNN to obtain one embedding per node, {hi|∀i ∈ V1}
and {hj |∀j ∈ V2}. Denote CONCAT as concatenation,
READOUT as a readout operation that aggregates node-level
embeddings into subgraph embeddings hs1 and hs2, and
whole-graph embeddings hG1 and hG2 . A state can then
be represented as hst = CONCAT(hG1 ,hG2 ,hs1,hs2). An
action can be represented as hat = CONCAT(hi,hj). The
Q function would then be designed as:

Q(st, at) = MLP
(

CONCAT(hst ,hat
)
)

= MLP
(

CONCAT(hG1 ,hG2 ,hs1,hs2,hi,hj)
)
.

(1)

However, there are several flaws to this simple design of Q
function:

(A) hi and hj , generated by typical GNNs, encode only
local neighborhood information, but Q(st, at) should
capture the long-term effect of adding (i, j). What is
worse, different node pairs have different embeddings,
but their immediate rewards are always +1, a constant,
in MCS, making differentiating the quality of different
actions even more difficult.

(B) Swapping the order of G1 and G2 should not cause
Q(st, at) to change, but concatenating embeddings
from the two graphs causes the DQN to be sensitive to
their ordering.

2If the search does not enter line 10 of Algorithm 1.
3Line 7 of Algorithm 1.
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(C) Lastly, how to effectively leverage the node-node map-
pings between G1s and G2s, an important part of the
state definition as explained in Section 3.1, for predict-
ing Q(st, at) remains a challenge.

To address these issues, we propose the following improve-
ments over the simple DQN design.

Factoring out Action In order to maximally reflect the
effect of adding node pair (i, j) to G1s and G2s, we reformu-
late the optimal Q score, Q∗(st, at), as rt + γV ∗(st+1) =
1+γV ∗(st+1) (using the fact that rt = +1) in MCS, where
V is the value function, and γ is the discount factor. Then,
in order to compute the effect of at, we can compute the
value associated with st+1 which does not depend on at and
avoids the use of local hi and hj . In this case, we can rely
on our state embedding to capture global information and
amplify differences between different actions by looking at
the states they will arrive.

Interaction between Input Graphs To resolve the graph
symmetry issue, we first construct the interaction between
the embeddings from two graphs, i.e. INTERACT(hx1,hx2),
where hx1 and hx2 represent any embedding from G1 and
G2 respectively, and INTERACT(·) is any commutative func-
tion to combine the two embeddings. Instead of summation,
We define a CNN-based INTERACT(·) operator, defined in
Section B.3 of the Supplementary Material, since cross-
graph interaction is important for the MCS task. This in-
teracted embedding is later concatenated with other useful
representations and fed into a final MLP to compute the Q
score.

Bidomain Representations Bidomains are derived from
node-node mappings and partition the rest of G1 and G2,
which is a more useful signal for predicting the future re-
ward. In fact, as described in Section 2.3, bidomains have
been adopted in search-based MCS solvers to estimate the
upper bound. Here, we require the harder prediction of
Q(st, at) for which we propose to also use the represen-
tation of bidomains to amplify the differences in different
states. Denote hDk

as the representation for bidomain Dk

= 〈V ′k1,V ′k2〉. Similar to computing the graph-level and
subgraph-level embeddings, we compute hDk

as

hDk
= INTERACT

(
READOUT({hi|i ∈ V ′k1}),
READOUT({hj |j ∈ V ′k2})

)
.

(2)

Given all the bidomain embeddings, we compute a single
representation for all the connected bidomains,D(c), hDc =
READOUT({hDk

|k ∈ D(c)}). Notice, since bidomains are
a function of node-node mappings, the mapping is implicitly
accounted for by this representation. In fact, bidomain
representations are better at capturing difference in states
than node-node mappings. Across different actions, the
node-node mappings only differ by a single node-node pair,

but the bidomains can differ drastically as they capture the
effect of matching certain nodes, rather than the mappings
themselves. Our final DQN has the form:

Q(st, at) = 1+γMLP
(

CONCAT
(

INTERACT(hG1 ,hG2),

INTERACT(hs1,hs2),hDc,hD0

))
.

(3)

3.3. Leveraging Search for DQN Training

For large graph pairs, the action space can be quite large.
Thus, to enhance the training of our DQN, before the stan-
dard training of DQN (Mnih et al., 2013), we pre-train DQN
and guide its exploration with expert trajectories supplied
by the search algorithm.

For the pre-training stage, we run the search to completion
on small graph pairs (thus, the exact MCS solution is found),
and use a supervised mse loss function to replace the DQN
loss function. The overall loss function is (yt −Q(st, at))

2

where yt the target for iteration t and Q(st, at) is the pre-
dicted score. In this case, yt denotes the remaining size
of the largest common subgraph starting from st to its leaf
node in the current branch of the search tree.

For larger graph pairs though, finding the true target be-
comes too slow. In that case, after pre-training, we enter
the imitation learning stage where we follow the expert tra-
jectories provided by MCSP instead of its own predicted
Q(st, at), to incorporate more trustworthy policy decisions
into the training signal. More details can be in found in the
supplementary material.

4. Experiments

We evaluate GLSEARCH against two state-of-the-art exact
MCS detection algorithms and a series of graph matching
methods from various domains. We conduct experiments
on 7 hundred-node medium-sized synthetic and real-world
graph datasets, 8 thousand-node large real-world graph
datasets, and 2 million-node very large real-world datasets,
whose details can be found in the supplementary material.
Among the different baseline models, we find no consistent
trend. This indicates the difficulty of our task, as existing
methods cannot find a consistent policy that guarantees good
performance on datasets from different domains. Our model
can substantially outperform the baselines, highlighting the
significance of our contributions to learning for search.

4.1. Baseline Methods

There are two groups of methods: Exact MCS algorithms in-
cluding MCSP and MCSP+RL, learning based graph match-
ing models including GW-QAP, I-PCA, and NEURALMCS.
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Table 2: Results on medium graphs. Each synthetic dataset consists of 50 randomly generated pairs labeled as “〈generation
algorithm〉-〈number of nodes in each graph〉”. “BA”, “ER”, and “WS” refer to the Barabási-Albert (BA) (Barabási &
Albert, 1999), the Erdős-Rényi (ER) (Gilbert, 1959), and the Watts–Strogatz (WS) (Watts & Strogatz, 1998) algorithms,
respectively. NCI109 consists of 100 chemical compound graph pairs whose average graph size is 28.73. We show the ratio
of the (average) size of the subgraphs found by each method with respect to the best result on that dataset.

Method BA-50 BA-100 ER-50 ER-100 WS-50 WS-100 NCI109
MCSP 0.913 0.892 0.842 0.896 0.905 0.856 0.948
MCSP+RL 0.923 0.857 0.844 0.877 0.913 0.875 0.948
GW-QAP 0.945 0.887 0.855 0.925 0.916 0.898 0.966
I-PCA 0.899 0.863 0.848 0.923 0.879 0.852 0.951
NEURALMCS 0.908 0.889 0.846 0.906 0.889 0.865 0.954
GLSEARCH-RAND 0.995 0.987 0.920 0.978 0.967 0.931 0.989
GLSEARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BEST SOLUTION SIZE 19.12 34.38 26.56 37.64 29.48 55.56 10.48

Table 3: Results on real-world large graph pairs. Each dataset consists of one large real graph pair (G1, G2 may not be
isomorphic, but G1s, G2s are isomorphic guaranteed by search). Below each dataset name, we show its size min(|V1|, |V2|)
to indicate these pairs are significantly larger than the ones in Table 2. Consistent with Table 2, we show the ratio of the
subgraph sizes.

Method ROAD DBEN DBZH DBPD ENRO COPR CIRC HPPI
652 1945 1907 1907 3369 3518 4275 2152

MCSP 0.374 0.815 0.797 0.722 0.694 0.684 0.498 0.864
MCSP+RL 0.771 0.699 0.589 0.434 0.742 0.674 0.583 0.787
GW-QAP 0.305 0.929 0.855 0.808 0.711 0.860 0.354 0.834
I-PCA 0.267 0.551 0.589 0.607 0.650 0.707 0.203 0.762
NEURALMCS 0.977 0.785 0.616 0.620 0.737 0.742 0.561 0.785
GLSEARCH-RAND 0.641 0.762 0.658 0.639 0.814 0.755 0.603 0.814
GLSEARCH 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
BEST SOLUTION SIZE 131 508 482 521 543 791 3515 404

All the methods either originally use or are adapted to use
the branch and bound search framework in Section 2.3 with
differences in node pair selection policy and training strate-
gies. During testing, we apply the trained model on all test-
ing graph pairs. We give a budget of 500 and 7500 search
iterations for medium-size and large graph pairs. For each
of the two million-node graph pairs, since the true MCS is
much larger, we run each method for 50 minutes and plot
the subgraph size growth across time. Due to the search
algorithm, all the methods can find exact MCS solutions
given long enough budget, albeit an unrealistic assumption
in practice for large graph pairs.

To validate the usefulness of the learned DQN, we compare
GLSEARCH, our full model, with a randomly initialized
model, GLSEARCH-RAND, which replaces the output of
our DQN with a completely random scalar.

4.2. Hyperparameter Settings

For I-PCA, NEURALMCS and GLSEARCH, we utilize 3 lay-
ers of Graph Attention Networks (GAT) (Velickovic et al.,
2018) each with 64 dimensions for the embeddings. The
initial node embedding is encoded using the local degree pro-
file (Cai & Wang, 2018). We use ELU(x) = α(exp(x)–1)
for x ≤ 0 and x for x > 0 as our activation function

where α = 1. We run all experiments with Intel i7-
6800K CPU and one Nvidia Titan GPU. For DQN, we
use MLP layers to project concatenated embeddings to a
scalar. We use SUM followed by an MLP for READOUT and
1DCONV+MAXPOOL followed by an MLP for INTERACT.
Further details can be found in supplementary material.
For training, we set the learning rate to 0.001, the num-
ber of training iterations to 10000, and use the Adam opti-
mizer (Kingma & Ba, 2015). The models were implemented
with the PyTorch and PyTorch Geometric libraries (Fey &
Lenssen, 2019).

4.3. Results

The key property of GLSEARCH is its ability to find the
best solution in the fewest number of search iterations. As
shown in Table 2, our model outperforms baselines in terms
of size of extracted subgraphs on all medium-sized synthetic
graph datasets and the chemical compound dataset NCI109.

Regarding large real-world graphs, as shown in Table 3,
our model outperforms baselines in terms of the size of the
extracted subgraphs on all datasets. The exact solvers rely
on heuristics for node selection, and consistently find much
smaller subgraphs compared to our results.

Compared with learning based graph matching models,
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(a) Result on ROAD-CA with 978513 nodes. (b) Result on ROAD-TX with 1080909 nodes.

Figure 4: Comparison of the best solution sizes of different methods on two million-node graph pairs, ROAD-CA and
ROAD-TX. GW-QAP, I-PCA, and NEURALMCS encounter memory error on these graph pairs due to their computation of a
quadratic node-node matching matrix

.
Table 4: Ablation study on large real-world datasets. We demonstrate our Q function design choices indeed solve the various
shortcomings presented in Section 3.2, through better representation learning.

Method ROAD DBEN DBZH DBPD ENRO COPR CIRC HPPI
GLSEARCH (no hG) 0.977 0.878 0.925 0.845 0.860 0.987 0.980 0.960
GLSEARCH (no hs) 1.000 0.874 0.894 0.869 0.928 1.000 0.801 0.913
GLSEARCH (no hDc) 0.803 0.780 0.687 0.818 0.740 0.804 0.505 0.849
GLSEARCH (no hD0) 0.576 0.856 0.782 0.768 0.823 0.932 0.323 0.938
GLSEARCH (SUM interact) 0.902 0.913 0.963 0.885 0.899 0.957 1.000 0.948
GLSEARCH (unfactored) 0.447 0.807 0.712 0.582 0.816 0.816 0.512 0.861
GLSEARCH (unfactored-i) 0.500 0.789 0.741 0.772 0.748 0.825 0.902 0.864
GLSEARCH 0.992 1.000 1.000 1.000 1.000 0.990 0.881 1.000
BEST SOLUTION SIZE 132 508 482 521 543 799 3989 404

GLSEARCH is the only model which learns a reward that
is dependent on both state and action, i.e. Q(st, at). GW-
QAP, I-PCA, and NEURALMCS essentially pre-compute the
matching scores for all the node pairs in the input graphs,
and therefore at each search step, the scores cannot adapt
to the particular state, i.e. the matching scores only de-
pend on G1,G2. Notice our state representation includes
G1,G2 as well, hence GLSEARCH has more representational
power than baselines. Trained under a reinforcement learn-
ing framework guided by search, GLSEARCH also performs
the best among learning based baselines.

4.4. Million-Node Graph Pairs

GLSEARCH can scale to very large graph pairs, the limit
of which is only bounded by the scalability of the GNN
embedding step. To demonstrate this, we run GLSEARCH
on million-node real-world graph datasets, ROAD-CA and
ROAD-TX. To fit the model onto our GPU resources,
we construct a lighter version of GLSEARCH, called
GLSEARCH-SCAL, which reduces the GAT encoder di-
mensions from 64 to 16.

As shown in Figure 4, GLSEARCH significantly outper-
forms baseline solvers on the two million-node real-world
datasets. On ROAD-TX, MCSP and MCSP+RL perform
poorly (getting “stuck” in local optimum as pointed out in
Section 2.3) while GLSEARCH continues to find larger and
larger common subgraph after 50 minutes.

4.5. Ablation Study

To evaluate the effectiveness of different components pro-
posed in our DQN model, we run ablation studies on the 8
large real world datasets.

We first measure the importance of each embedding vec-
tor fed to our DQN module, as described by Equation 3.
We remove each embedding vector (specifically: hG =
INTERACT(hG1 ,hG2), hs = INTERACT(hs1,hs2), hDc,
and hD0 ) individually from the DQN model and retrain the
model under the same training settings. Table 4 is consis-
tent with our conclusion that every embedding vector used
by GLSEARCH is critical in capturing the search state’s
representation. Furthermore, we find leveraging bidomain
representations is very beneficial to our model.



GLSearch: Maximum Common Subgraph Detection via Learning to Search

We next measure the importance of interaction to address
the symmetry issue of the MCS calculation, where input
graph pairs must be order insensitive. We first test the
necessity of using more complex interaction functions, by
replacing our 1DCONV+MAXPOOL interaction with simple
SUM for interaction (still followed by an MLP). As shown
in Table 4, we see that simpler interaction functions may
not be powerful enough to encode the interaction between 2
graphs. Particularly, this suggests that interaction is quite
important to model performance.

Finally, we measure the importance of factoring out ac-
tions from our DQN model. We test this with 2 mod-
els. The first utilizes Equation 1 to encode the Q-value,
which we refer to as GLSEARCH (unfactored). Since
Equation 1 also suffers from the issue of graph symme-
try, we adapt this model to use the same interaction function
as GLSEARCH to construct 3 order-invariant embeddings
hG = INTERACT(hG1 ,hG2), hs = INTERACT(hs1,hs2),
ha = INTERACT(hi,hj) to concatenate and pass to the
final MLP layer in Equation 1. We refer to this model as
GLSEARCH (unfactored-i). Our results show that without
factoring out the action, our performance is comparable to
or worse than MCSP, indicating the significant performance
boost introduced by factoring out the action.

5. Insights and Contributions of GLSEARCH

To Search community on MCS detection The major
challenge that prevents existing search algorithms from ex-
tracting large common subgraphs for large input graph pairs
is that the focus of these algorithms is on reducing the
overall search space rather than making smarter node pair
selections in each search step. By improving the order it
searches candidate solutions, GLSEARCH can quickly find
better MCS candidates, without much (or any) backtracking
and pruning, than state-of-the-art search algorithms.

To General Learning community GLSEARCH tackles
the hard constraint that the subgraphs must be isomorphic
to each other by only choosing actions from connected bido-
mains. However, there is an additional advantage of in-
troducing the bidomain concept: Bidomains partition the
rest of the input graphs into different regions where future
actions can be selected. Thus, properly encoding of the
bidomains gives more information about hard constraints
to the DQN, which improves performance as experimen-
tally verified by the ablation studies. More generally, this
shows that learning components can be further enriched by
incorporating knowledge on tackling hard constraints of an
NP-hard task (e.g. bidomain) into their model design.

To Graph Deep Learning community Although vari-
ous works have pointed out and analyzed the limitation
of GNN’s expressive power (Xu et al., 2019c; Balcilar et al.,

2021), for particular tasks such as MCS detection, GNNs
can still be used if augmented properly. We aim to predict
a Q score for a state-action pair, using a DQN with two
components, one component computing the local node em-
beddings using several layers of GNN, the other component
combining embeddings at a different granularity, i.e. embed-
dings at the subgraph, whole-graph, and bidomain levels,
to produce the final score. Overall our DQN design adopts
a similar general principle as Position-Aware GNN (You
et al., 2019), which allows a regular GNN to absorb infor-
mation from non-local nodes (called “anchor” nodes which
are randomly selected nodes globally).

To Reinforcement Learning community We are aware
of efforts in the RL community to tackle NP-hard problems,
but they either focus on non-graph tasks, such as Knap-
Sack (Bello et al., 2017) and Job Shop Scheduling (Soloz-
abal et al., 2020; Dai et al., 2019), or address single-graph
NP-hard tasks without hard constraints, such as Minimum
Vertex Cover (Dai et al., 2017), Graph Exploration (Dai
et al., 2019), and Network Dismantling (Fan et al., 2020).
Fundamentally different from these works, MCS detection
requires a graph pair as input, and we show how to properly
encode such an input. The subgraph isomorphism con-
straint of the task also sets us apart from the aforementioned
graph tasks which we tackle via fully taking advantage of
a key property of the task, i.e. bidomain, while in contrast,
Solozabal et al. (2020) relies on penalty signals generated
from constraint dissatisfaction in order to guide the agent to
achieve feasible solutions for non-graph tasks.

6. Conclusion
We believe the interplay of search and learning is a promis-
ing research direction, and take a step towards bridging
the gap by tackling the NP-hard challenging task, Maxi-
mum Common Subgraph detection. We have proposed a
reinforcement learning method which unifies search and
deep Q-learning into a single framework. By using the
search to train our carefully designed DQN, the DQN pro-
vides better node selection policy for search to find large
common subgraph solutions faster, which is experimentally
verified on synthetic and real-world large graph pairs. In
the future, we will explore the adaptation of our framework
which combines learning with search to other constrained
combinatorial problems, e.g. Maximum Clique Detection.
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