
Instance Specific Approximations for Submodular Maximization

Eric Balkanski 1 Sharon Qian 2 Yaron Singer 2

Abstract
For many optimization problems in machine learn-
ing, finding an optimal solution is computation-
ally intractable and we seek algorithms that per-
form well in practice. Since computational in-
tractability often results from pathological in-
stances, we look for methods to benchmark al-
gorithms’ performance against optimal solutions
on real-world instances. The main challenge is
that an optimal solution cannot be efficiently com-
puted for intractable problems, and we therefore
often do not know how far a solution is from be-
ing optimal. A major question is therefore how
to measure the performance of an algorithm in
comparison to an optimal solution on instances
we encounter in practice.

In this paper, we address this question in the
context of submodular optimization problems.
For the canonical problem of submodular max-
imization under a cardinality constraint, it is in-
tractable to compute a solution that is better than
a 1 − 1/e ≈ 0.63 fraction of the optimum. Al-
gorithms like the celebrated greedy algorithm are
guaranteed to achieve this 1 − 1/e bound on any
instance, and are used in practice.

Our main contribution is not a new algorithm
for submodular maximization but an analytical
method that measures how close an algorithm
for submodular maximization is to optimal on a
given problem instance. We use this method to
show that on a wide variety of real-world datasets
and objectives, the approximation of the solution
found by greedy goes well beyond 1 − 1/e and is
often at least 0.95. We develop this method using
a novel technique that lower bounds the objective
of a dual minimization problem to obtain an upper
bound on the value of an optimal solution to the
primal maximization problem.

1Columbia University, New York, NY, USA 2Harvard Univer-
sity, Cambridge, MA, USA. Correspondence to: Eric Balkanski
<eb3224@columbia.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
A central challenge in machine learning is that many of the
optimization problems we deal with are computationally
intractable. For problems like clustering, sparse recovery,
and maximum likelihood estimation for example, finding
an optimal solution is computationally intractable and we
seek heuristics that perform well in practice. Computa-
tional intractability implies that under worst case analysis
any efficient algorithm is suboptimal; however, worst-case
approximation guarantees are often due to pathological in-
stances that are not representative of instances we encounter
in practice. Thus, we would like to be assured that the al-
gorithms we use, despite poor performance on pathological
instances, perform provably well on real-world instances.

In order to evaluate the performance of an algorithm on real-
world instances, we would like to measure its performance
in comparison to an optimal solution. The main challenge
however, is that we cannot evaluate the performance of an
algorithm against an optimal solution since finding an opti-
mal solution for a computationally intractable problem is,
by definition, intractable. Thus, we often do not know how
far an algorithm solution is from optimal, and whether there
is a substantially better algorithm. Therefore, for compu-
tationally intractable problems, our main challenge is not
necessarily how to design better algorithms, but rather how
to measure the performance of an algorithm in comparison
to a theoretically optimal solution on real-world instances.

How do we measure the performance of an algorithm on
specific instances for problems that are intractable?

In this paper, we develop a method to measure how close
to optimal the performance of an algorithm is on specific
instances for the broad class of submodular maximization
problems. Since many objectives that we aim to optimize,
such as coverage, diversity, entropy, and graph cuts are
submodular, submodular maximization algorithms are heav-
ily employed in applications such as speech and document
summarization (Lin & Bilmes, 2011), recommender sys-
tems (Mirzasoleiman et al., 2016b), feature selection (Das
& Kempe, 2011), sensor placement (Guestrin et al., 2005),
and network analysis (Kempe et al., 2003). Submodular
maximization provides an ideal framework to address this
problem since it is intractable to compute a solution that

mailto:eb3224@columbia.edu

Instance Specific Approximations for Submodular Maximization

is better than a 1 − 1/e approximation for the canonical
problem of maximizing a monotone submodular function
under a cardinality constraint (Nemhauser & Wolsey, 1978).
In addition, multiple algorithms are known to enjoy con-
stant factor approximation guarantees, such as the greedy
algorithm that achieves this 1 − 1/e approximation on any
instance (Nemhauser et al., 1978).

Our contribution. We develop a novel and efficient
method, called DUAL, to measure how close to optimal
the performance of an algorithm is on an instance of maxi-
mizing a monotone submodular function under a cardinality
constraint. These instance specific approximations are ob-
tained by upper bounding the optimal value of an instance.
We use this method to show that greedy, as well as other
submodular maximization algorithms, perform significantly
better than 1 − 1/e in practice. On a wide variety of large
real-world datasets and objectives, we find that approxima-
tion of the solution found by greedy almost always exceeds
0.85 and often exceeds 0.95, a 50 percent improvement
over 1 − 1/e ≈ 0.63. Using this method, we also find that
greedy and another algorithm with the same 1 − 1/e theoret-
ical guarantee have significantly different approximations
in practice. Additionally, we show that DUAL significantly
outperforms multiple benchmarks for measuring instance
specific approximations.

Technical overview. DUAL derives an approximation ob-
tained by a solution S to an instance of max|S|≤k f(S),
where f : 2N → R is a monotone submodular function, by
upper bounding the optimal value OPT. To upper bound
OPT, we consider a dual problem g(v) = minS:f(S)≥v |S|
of finding the solution S of minimum size that has value
at least v. We then construct a function g(v) that lower
bounds g(v) and is such that the maximum value v such
that g(v) ≤ k can be found in O(n log n) running time. By
exploiting the fact that g lower bounds g, we show that this
maximum value v is an upper bound on OPT.

The construction of g is motivated by coverage functions, a
special case of submodular functions, where the goal is to
maximize the coverage of a universe U . We show that the
dual objective g : 2U → R, corresponding to the minimum
size of a set S ⊆ N which covers T ⊆ U , can be lower
bounded by an additive function ` : 2U → R, which is close
to g in practice. Since ` is additive, it can be minimized
efficiently to give a lower bound on the dual problem, which
implies an upper bound on OPT.

Related work. A line of work has investigated different
properties of submodular functions that enable improved
approximation guarantees for the greedy algorithm. The
curvature c ∈ [0, 1] of a function f measures how close f is
to additive (Conforti & Cornuéjols, 1984; Soma & Yoshida,

2017). Submodular sharpness, an analog of sharpness from
continuous optimization (Lojasiewicz, 1963), measures the
behavior of a function f around the set of optimal solu-
tions (Pokutta et al., 2020). For stability, a function f is
perturbation-stable if the optimal solution for maximizing
f does not change under small perturbations (Chatziafratis
et al., 2017). Finally, drawing from smoothed analysis, Ru-
binstein and Zhao (2021) show improved approximations
using randomized perturbations of the budget k. For curva-
ture, sharpness and stability, the main issue with using these
parameterized properties to measure how close to optimal
the greedy algorithm is on specific instances is that their pa-
rameters cannot be computed efficiently. Since they require
brute-force computation, they have only been computed
on small instances with at most n = 20 elements (Pokutta
et al., 2020) and cannot be used on real-world instances. In
addition, on these small instances, these three properties and
budget-smooth analysis all yield approximations that are not
as strong as those obtained by DUAL. The main goal of this
line of work is to provide an explanation for greedy’s strong
performance in practice. In contrast, our paper focuses on
the problem of measuring the performance of greedy, and
other algorithms, in practice.

Sakaue and Ishihata (2018) develop a method to upper
bound the optimal value of a submodular maximization
instance, but with a different goal of using this upper bound
to accelerate submodular maximization algorithms. This
method is used as a benchmark in our experiments. Baeza-
Yates, Boldi, and Chierichetti (2015) construct a method
to obtain instance-specific approximations for the special
case of coverage functions by exploiting the linear program
formulation of coverage functions and using the dual for-
mulation of its relaxation as an upper bound of the optimal
value. This method does not extend to general submodu-
lar problems, which cannot be formulated as a polynomial
size LP. We instead propose a different dual problem for
instance-specific approximations for general submodular
objectives.

1.1. Preliminaries

A function f : 2N → R is submodular if fS (a) ≥ fT (a)
for all S ⊆ T ⊆ N and a ∈ N \ T , where fS (a) =
f(S ∪ {a}) − f(S) is the marginal contribution of a to
S. It is monotone if f(S) ≤ f(T) for all S ⊆ T ⊆ N .
A function f : 2P → R is a coverage function if there
exists a bipartite graph G = (P, D, E) over primal and
dual elements P ∪ D such that f(S) = |NG(S)| where
NG(S) = ∪a∈S NG(a) ⊆ D denotes the neighbors of S ⊆
P in G. We say that set S covers T , or equivalently that
T is covered by S, if T ⊆ NG(S). When G is clear from
the context, we write N(S) instead of NG(S) to denote the
neighbors of S in graph G.

Instance Specific Approximations for Submodular Maximization

Given an instance of the problem max|S|≤k f(S) and a
solution S? to this problem, we aim to compute an approxi-
mation for S?, i.e. a lower bound on f(S?)/ max|S|≤k f(S)
or, equivalently, an upper bound on max|S|≤k f(S).

2. Instance Specific Approximations for
Max-Coverage

In this section, we present a method that measures how close
to optimal a solution is for maximum coverage problems.
As a warm-up, we focus on this special case to motivate and
provide intuition for the method for submodular functions
presented in Section 3. We emphasize that our main contri-
bution is for general submodular maximization problems,
which, unlike coverage problems, cannot be formulated as a
polynomial size linear program.

In Section 2.1, we introduce the problem of minimum cover
under a cardinality constraint, which is a generalization of
the classical set cover problem. We show that a lower bound
on this minimum cover problem implies an upper bound
on the optimal value OPT for the max-coverage problem.
In Section 2.2, we present an additive lower bound on the
dual problem, which is used to efficiently compute a lower
bound of the optimal value to the dual problem. Then, in
Section 2.3, we develop a more sophisticated lower bound
on the dual problem. Due to space constraints, we defer
missing proofs to Appendix A.

2.1. The dual problem

We introduce the minimum cover under a cardinality con-
straint problem. Recall that given a bipartite graph G over
nodes P and nodes D, the problem of maximum cover-
age under a cardinality constraint problem is to find the k
elements S ⊆ P that maximize the number of elements
NG(S) ⊆ D covered by S. In contrast, the minimum cover
under a cardinality constraint problem is to find the v ele-
ments T ⊆ D that minimize the number of elements S ⊆ P
needed to cover T ⊆ NG(S).
Definition 1. The minimum cover under a cardinality con-
straint problem is defined as minT ⊆D:|T |≥v g(T), where
g(T) = minS⊆P :T ⊆N(S) |S| is the size of the minimum
cover of T and where v ∈ [|D|] is the cardinality constraint.

This problem is a generalization of the classical set cover
problem, which finds the minimum number of elements S
to cover all elements D. We obtain the following duality
property: a lower bound on minimum cover implies an
upper bound on maximum coverage, and vice-versa.
Lemma 1. Let f : 2P → N be a coverage function defined
over a biparite graph between elements P and D. For any
k ∈ [|P |] and v ∈ [|D|], maxS⊆P :|S|≤k f(S) < v if and
only if minT ⊆D:|T |≥v g(T) > k where g : 2D → N is the
size of the minimum cover of T as defined in Definition 1.

We refer to maxS⊆P :|S|≤k f(S) and minT ⊆D:|T |≥v g(T)
as the primal and dual problems. We also refer to P and D
as the primal and dual elements.

2.2. Warm-up: Approximations via an additive lower
bound on the dual

This dual problem admits an additive1 lower bound that
is, as we will show empirically in Section 5, close to the
dual objective in practice. This is in contrast to the primal
maximum coverage problem, which is far from additive on
real instances. We define the individual value vb of each

1dual element b as vb = mina∈N(b) . The additive |N(a)|
function ` : 2D → R is defined as follows:

X X 1
`(T) = vb = min .

a∈N (b) |N(a)|
b∈T b∈T

Note that if b ∈ D is covered by primal element a ∈ P , then
a covers at most 1/vb dual elements. In other words, 1/vb

is an upper bound on the value obtained from an element a
that covers b.

We use this additive lower bound ̀ (·) on the dual objective to
design a method that returns an upper bound on the optimal
value for the primal problem. Method 1 first orders the dual
elements b by increasing value vb. It then finds the prefix
{b1, . . . , bi? } of this ordering where i? is the minimum size
i such that `({b1, . . . , bi}) =

Pi
j=1 vbj > k, and then

returns i? . In other words, it finds the smallest size i such
that `(T) > k for all sets T of size i.

Method 1 Linear bound on dual objective for coverage

input bipartite graph G = (P, D, E), constraint k
1 vb ← mina∈N (b) , for each b ∈ D|N(a)|

(b1, . . . , b|D|) ← elements D ordered by increasing vbi

i? ← min{i :
Pi

> k}j=1 vbj

return i?

The analysis. We first show that `(·) is a lower bound on
the dual objective g(·) (Lemma 2). We then show that
{b1, . . . , bi} minimizes ` over all sets of size at least i
(Lemma 3). Together, these imply that there are no sets
of primal elements of size k which cover i? dual elements
and we obtain i? > maxS⊆P :|S|≤k f(S) (Theorem 1).

Lemma 2. For any coverage function defined by a bipartite
graph G between P and D, we have that for any set T ⊆ D,
`(T) ≤ g(T) = minS⊆P :T ⊆N(S) |S|.

1A function g is additive if there exist values v1, . . . , vm suchP
that g(T) = b∈T vb.

Instance Specific Approximations for Submodular Maximization

Proof. For any S ⊆ P such that T ⊆ N(S), we have X X 1 |S| =
|N(a)|

a∈S b∈N (a) X X 1 ≥ min
a0∈N(b) |N(a0)|

a∈S b∈N (a) X 1 ≥ min = `(T).
a∈N(b) |N(a)|

b∈T

Lemma 3. Consider the ordering of dual elements D
by increasing singleton values, i.e., (b1, . . . , b|D|) where
`(bi) ≤ `(bj) for all i < j, then, for all v ≤ |D|,
`(Dv) = minT ⊆D:|T |≥v `(T) where Dv = {b1, . . . , bv}.

Proof. Since ` is an additive function, the set T of size at
least v with minimum value is the set consisting of the v dual
elements of minimum singleton value, which is Dv .

We are now ready to formally prove that Method 1 returns
an upper bound on the optimal value to the primal problem.

Theorem 1. For any k, let i? be the value returned by
Method 1, then i? > maxS⊆P :|S|≤k f(S).

Proof. By definition of i?, Lemma 3 and Lemma 2,

k < `(Di?) = min `(T) ≤ min min |S|.
T ⊆D:|T |≥i? T ⊆D:|T |≥i? S⊆P :

T ⊆N(S)

By Lemma 1, we get i? > maxS⊆P :|S|≤k f(S).

2.3. Improved method for coverage functions

We improve Method 1 by constructing a lower bound g(·)
on the dual objective g(·) that is tighter than `(·). The
function g(T) is obtained by partitioning the collection of
dual elements T into j parts ∪j Pi = T . We define the i=1
weight w(Pi) of part Pi to be

1
w(Pi) = |Pi| · max vb = |Pi| · max min .

b∈Pi b∈Pi a∈N(b) |N(a)|

We note that if w(Pi) > 1, then dual elements Pi cannot be
covered by a single primal element since there must exist
b ∈ Pi such that maxa∈N(b) |N(a)| < |Pi|. This motivates
the following definition of a valid partition.

Definition 2. A partition P1, . . . , Pj of T is valid if
w(Pi) ≤ 1 for all i ≤ j.

This definition is such that if a partition P1, . . . , Pj is not
valid, then there must exist a part Pi which cannot be cov-
ered by a single primal element. We exploit this property to

define the following improved lower bound g : 2D → R on
the dual objective:

g(T) = min{j : ∃ a valid partition P1, . . . , Pj of T }.

This lower bound g(T) is always tighter than the additive
lower bound `(·).
Proposition 1. For any coverage function f : 2P → N
defined by bipartite graph (P, D, E), we have g(T) ≥ `(T)
for all T ⊆ D.

Similarly as with Method 1, we use this lower bound g(·)
on the dual objective to design a method that returns an
upper bound on the optimal value for the primal problem.
Method 2, which will be generalized to Method 3 for sub-
modular functions, iteratively constructs a valid partition
∪k
κ=1Pκ of a collection of dual elements T such that |T | is

maximized. At iteration κ, part Pκ of the partition is defined
as the collection of dual elements {biκ−1+1, . . . , biκ }, which
are the dual elements with minimum value vb that are not in
the previous parts P1, . . . , Pi−1, where iκ is the maximum
index such that part Pi is valid. The method returns value
ik, which is the total size | ∪k

κ=1 Pκ| of the partition.

Method 2 Dual bound via partitioning for coverage

input bipartite graph G = (P, D, E), constraint k
1vb ← mina∈N (b) , for each b ∈ D|N(a)|

(b1, . . . , b|D|) ← elements D ordered by increasing vbi

i0 ← 0
for κ = 1 to k do

iκ ← max{i : (i − iκ−1) · vbi ≤ 1}
Pκ ← {biκ−1+1, . . . , biκ }

return ik

Since Method 2 is a special case of Method 3, the analysis
of Method 3 in the next section also applies to Method 2.

3. Instance Specific Approximations for
Submodular Maximization

In this section, we present our main method, DUAL, which
generalizes Method 2 to submodular functions. For cov-
erage functions, the value achieved by a solution S corre-
sponds to the number of dual elements covered by S and
the optimal value can be upper bounded by analyzing dual
elements. However, for general submodular functions, there
are no dual elements corresponding to the solution value.
We first introduce a similar dual minimization problem as
for coverage, but defined over values v ∈ R instead of dual
elements T ⊆ D. We then construct a lower bound on
the dual objective and use it to design a method that upper
bounds OPT in O(n log n) running time. Missing proofs
are in Appendix B.1.

Instance Specific Approximations for Submodular Maximization

We introduce the minimum submodular cover under a car-
dinality constraint problem, where the goal is to find the
smallest set S of value at least v:

g(v) = min |S|.
S⊆N :f (S)≥v

This problem is a generalization of the submodular cover
problem (Wolsey, 1982), which is to find the smallest set
S of value at least f(N). We note that, unlike the dual
objective for coverage functions, there are no dual elements.

Next, we define a function g(v) which lower bounds this
dual objective. Similarly as for coverage functions, we con-
sider partitions of the dual space and we define a collection
of valid partitions that is used to then define g(v). We as-
sume that the ground set of elements N = {a1, . . . , an} is
indexed by decreasing singleton value, i.e., f(ai) ≥ f(aj)
for all i < j. We define Ai := {a1, . . . , ai}.
Definition 3. Values v1, . . . , vk ∈ R form a valid partition-P
ing of v ∈ R if j∈[k] vj = v and there exists a witness
W ⊆ N such that, for all j ∈ [k], f(aij) ≥ vj where (

j
)X

ij = min i : ai ∈ W, f(W ∩ Ai) ≥ v` .
`=1

As we will show in Lemma 4, for any solution set S,
v1 = fS0 (S1), v2 = fS1 (S2), . . . , v|S| = fS|S|−1

(S) forms
a valid partioning of v = f(S), where Sj is the set of j ele-
ments in S with the largest singleton value. This implies that
if a partition v1, . . . , vk is not valid, then there is no solution
S of size k such that fSj−1 (Sj) ≥ vj for all j ∈ [k]. Thus,
if a value v does not have a valid partitioning v1, . . . , vk,
then there are no solution S of size k such that f(S) ≥ v.
This implies that the following function g : R → N lower
bounds the dual objective (Lemma 4):

g(v) = min{k : ∃ a valid partition v1, . . . , vk of v}.

We use the lower bound g(v) on the dual objective to
construct a method that returns an upper bound on OPT.
Method 3 iteratively constructs a valid partition v1, . . . , vkP
of the dual space such that j∈[k] vj is maximized. It first
orders the elements ai ∈ N by decreasing singleton value
f(ai). Then, at each iteration j, it defines value vj to be the
maximum value v such that partition v1, . . . , vj is a valid
partition with witness W = Aij .

Method 3 Method for submodular functions
input function f , cardinality constraint k
(a1, . . . , an) ← elements ordered by decreasing f(ai)
For j = 1 to k do

vj ← max{v : f(aij) ≥ v where Pj−1
ij = min{i : f(Ai) − ≥ v}}`=1 v` Pkreturn j=1 vj

Value vj at iteration j can be found by iterating through
elements indexed by i ∈ {ij−1 + 1, ij−1 + 2, . . .} until
i? , where i? is the minimum index such that f(Ai?) −Pj−1 ≥ f(ai?). Since an element ai is considered at`=1 v`

most once over all iterations, the total running time of the
for loop is O(n). Thus, the running time of Method 3 is
O(n log n) due to the sorting of the elements by singleton
value. More details on finding value vj in Appendix B.2.

The analysis. We first show that g(v) lower bounds g(v)
in Lemma 4. The proof uses the fact that g(v) is monotone.

Lemma 4. For any submodular function f and v ∈ R,
g(v) ≤ g(v) = minS⊆N :f (S)≥v |S|. PkWe now show that the value returned by thej=1 vj

method is the maximum value v such that g(v) ≤ k. PkLemma 5. Let OPT = j=1 vj be the solution returned
by Method 3, then g(OPT + �) > k for all � > 0.

Finally, we combine Lemma 4 and Lemma 5 to show that
Method 3 returns an upper bound of OPT. PkTheorem 2. For any k, Let OPT = j=1 vj be the solution
returned by Method 3, then OPT ≥ maxS⊆N :|S|≤k f(S).

Proof. We first show by contrapositive that a lower bound
k < g(v) = minS⊆N :f(S)≥v |S| on the dual problem im-
plies an upper bound v > maxS⊆N :|S|≤k f(S) on the pri-
mal problem. Assume maxS⊆N :|S|≤k f(S) ≥ v. Then,
there exists S? such that f(S?) ≥ v and |S?| ≤ k and we
get g(v) = minS⊆N :f (S)≥v |S| ≤ |S?| ≤ k.

Then, by Lemma 5 and Lemma 4, we have

k < g(OPT + �) ≤ g(OPT + �) = min |S|
S⊆N :f (S)≥OPT+�

which implies OPT + � > max|S|≤k f(S) for all � > 0.

3.1. DUAL

We describe our main method, DUAL, which uses Method 3
as a subroutine. In the case where a small number of ele-
ments have very large singleton values, Method 3 can re-
turn an arbitrarily bad approximation to OPT (See example
in Appendix B.3). To circumvent this issue, DUAL calls
Method 3 on the marginal contribution function fS (T) =
f(S ∪ T) − f(S) for each S in a collection of sets S given
as input. If {} ∈ S, then DUAL is no worse than Method 3.
If there is S ∈ S such that there are no elements with large
singleton value according to fS , then DUAL circumvents the
issue previously mentioned. We note that adding more sets
to S can only improve the approximation given by DUAL.

Instance Specific Approximations for Submodular Maximization

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n
Youtube, Infl. Max (n=1045)

Greedy
Local Search
Lazier Gr
Random Gr

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Uber, Car Dispatch (n=1000)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Citation, Infl. Max (n=9877)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Movie Rec. (n=3706)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Facility Loc. (n=500)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Facebook, Rev. Max (n=769)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Census, Feat. Selection (n=109)

10 20 30 40 50
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Sensor Placement (n=54)

Figure 1. Approximations computed by DUAL for the performance of four different submodular maximization algorithms.

Method 4 DUAL

input function f , constraint k, collection of sets S
OPT ← f(N)
for S in S do

0
OPT ← Method3(fS , k)

0
OPT ← min(f(S) + OPT , OPT)

return OPT

Theorem 3. For any set collection of sets S, Method 4
returns OPT such that OPT ≥ OPT.

4. Guarantees for DUAL

In this section, we show guarantees on the performance of
DUAL, i.e., guarantees on how far the upper bound, OPT,
returned by DUAL is to OPT. We note that our analysis
holds for the more demanding f(Sg) benchmark, which is
the value of the greedy solution Sg . The analysis is deferred
to Appendix C.

We first show that, if Sg ∈ S , then the solution OPT returned
by DUAL is such that OPT ≤ 2 · OPT. Of course, this 2-
approximation can be improved to e/(e − 1) with the upper
bound (e/(e − 1)) · f(Sg). However, for instance specific
approximations, this upper bound only gives a 1 − 1/e
approximation for greedy on each instance while DUAL can
give a much stronger approximation.

Proposition 2. Let Sg be the solution retuned by the greedy
algorithm to the problem max|S|≤k f(S). Then, if f is a
monotone submodular function and Sg ∈ S , DUAL returns
OPT such that OPT ≤ 2f(Sg) ≤ 2OPT.

We also show that, for functions with curvature c, the solu-
1tion OPT returned by DUAL is such that OPT ≤ OPT.1−c

Since the curvature parameter c cannot be computed effi-
ciently, the known (1 − e−c)/c approximation obtained by
greedy (Conforti & Cornuéjols, 1984) is an approximation
that cannot be computed efficiently (unless c is known).

Unlike (1 − e−c)/c , OPT provides an approximation for
functions with curvature that can be efficiently computed.
This approximation is guaranteed to improve over 1 − 1/e
when c < 1/e.

Proposition 3. Let f be a monotone submodular function
with curvature c. Then, DUAL returns OPT such that OPT ≤
1 1f(Sg) ≤ OPT.1−c 1−c

5. Experiments
We utilize DUAL to obtain bounds on the approximation
achieved by submodular maximization algorithms in prac-
tice. We show that GREEDY and other algorithms find
solutions that approximate the optimal solution significantly
better than 1 − 1/e on a wide variety of real-world datasets
and objectives. We also show that DUAL outperforms
multiple benchmarks for deriving approximations for the
solution found by GREEDY. For all instances, we use
S = {S1, S2, . . . , S20} ∪ {S25, S30, . . . , S50} as an input
to DUAL, where Si is the greedy solution of size i.

5.1. Approximations for submodular maximization
algorithms using DUAL

We begin by evaluating the bounds derived by DUAL on
the approximation achieved by four different submodular
maximization algorithms. The goal here is not to provide
a comprehensive comparison of submodular maximization
algorithms, but instead to analyze the approximations com-
puted by DUAL.

Algorithms for submodular maximization. The
GREEDY algorithm obtains the optimal 1 − 1/e approxima-
tion (Nemhauser et al., 1978) and is widely considered as the
standard algorithm for monotone submodular maximization
under a cardinality constraint. LOCAL SEARCH obtains a
1/2 approximation guarantee (Nemhauser et al., 1978) and
is another widely used algorithm. LAZIER-THAN-LAZY

Instance Specific Approximations for Submodular Maximization

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n
Youtube, Infl. Max (n=1045)

Dual
Marginal
Top-k
Sakaue-Ishihata

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Uber, Car Dispatch (n=1000)

0 200 400 600 800 1000
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Citation, Infl. Max (n=9877)

0 200 400 600 800 1000
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Movie Rec. (n=3706)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Facility Loc. (n=500)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Facebook, Rev. Max (n=769)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Census, Feat. Selection (n=109)

10 20 30 40 50
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Sensor Placement (n=54)

Figure 2. GREEDY approximations computed by DUAL compared to multiple benchmarks on various submodular objectives.

GREEDY, also called sample greedy, improves the running
time of greedy by sampling a small subset of elements at
each iteration (Mirzasoleiman et al., 2015; Buchbinder
et al., 2015). RANDOM GREEDY handles submodular
functions that are not necessarily monotonic by introducing
randomization into the element selection step and obtains a
1 − 1/e approximation guarantee for monotone submoduar
functions (Buchbinder et al., 2014). We provide further
details on these algorithms in Appendix D. For randomized
algorithms, we average the results over 5 runs.

Settings. We examine the approximations computed by
DUAL for these algorithms on 8 different datasets and ob-
jectives. Additional details can be found in Appendix E.1.

• Influence maximization: As in Mirzasoleiman, Badani-
diyuru, and Karbasi (2016a), we use Youtube social
network data (Yang & Leskovec, 2015) and sample
n = 1, 045 users from 50 large communities. We se-
lect k users by maximizing influence: f(S) = |NG(S)|.

• Car dispatch: Our goal is to select the k best locations to
deploy drivers to cover the maximum number of pickups.
As in Balkanski and Singer (2018), we analyze n =
1, 000 locations of Uber pickups (FiveThirtyEight, 2019)
and assign a weight wi to each neighborhood ni that is
proportional to the number of trips in the neighborhood.

• Influence maximization: We use a citation network
of Physics collaborations (Leskovec et al., 2007) with
n = 9, 877 authors (nodes) and 25,998 co-authorships
(edges), and maximize f(S) = |NG(S)|.

• Movie recommendation: As in Mirzasoleiman, Badani-
diyuru, and Karbasi (2016a), we use the MovieLens
dataset (Harper & Konstan, 2015) of n = 3, 706 movies
to recommend k movies that have both good overall rat-
ings and are highly rated by the most users.

• Facility Location: As in Lindgren, Wu, and Dimakis
(2016), we use facility location objective and the movie
ranking matrix [rij] from the MovieLens dataset where
rij is user j’s ranking on movie i to select k movies to rec-

1 P
ommend from N using f(S) = i∈S maxj∈U rij .|N |

• Revenue maximization: We use a revenue maximization
objective from Breuer, Balkanski, and Singer (2020) on
the CalTech Facebook Network dataset (Traud et al.,
2012) of 769 Facebook users N .

• Feature selection: We use the Adult Income dataset
(Blake & Merz, 1998) and select a subset of features to
predict income level Y . We extract 109 binary features
as in Kazemi, Zadimoghaddam, and Karbasi (2018) and
use a joint entropy objective to select features.

• Sensor placement: As in Krause, Singh, and Guestrin
(2008), we use the Berkeley Intel Lab dataset which
comprises of 54 sensors that collect temperature informa-
tion. We select k sensors that maximize entropy.

Results. In Figure 1, we see that DUAL computes bounds
on the approximations achieved by all four algorithms that
are significantly better than 1 − 1/e. For GREEDY and
LOCAL SEARCH, DUAL derives nearly identical approxima-
tions that are almost always over 0.85. In many instances,
such as movie recommendation, facility location, feature se-
lection, and sensor placement, approximations are over 0.95.
The approximations given by DUAL for LAZIER-THAN-
LAZY GREEDY are either identical to GREEDY and LOCAL
SEARCH, or 0.02 to 0.05 worse. Even though RANDOM
GREEDY and GREEDY have the same theoretical guarantee
of 1 − 1/e for monotone submodular functions, the gap in
their approximations on these instances is significant.

In most cases, the approximations obtained by DUAL follow
a “Nike-swoosh” shape as a function of constraint k. For
k = 1, the algorithms are either exactly or near-optimal;

Instance Specific Approximations for Submodular Maximization

the lowest approximations are obtained for small values of
k, and then approximations rebound and slowly increase
as k increases. For experiments with n > 3000 and the
Facebook revenue maximization setting, the values of k (up
to 100) are too small to observe this increase.

5.2. DUAL vs benchmarks for GREEDY approximations

For the next set of experiments, we compare DUAL to multi-
ple benchmarks, which also compute approximations for the
performance of submodular maximization algorithms. We
fix a single algorithm, GREEDY, and compare the approxi-
mations found by DUAL and the benchmarks. We consider
large instances, as well as small instances with n ≤ 20 ele-
ments, where we can compute the curvature and sharpness
benchmarks that require brute-force computation.

5.2.1. EXPERIMENTS ON LARGE INSTANCES

Benchmarks. We consider the following benchmarks that
upper bound the optimal value. These benchmarks can be
efficiently computed on large instances.

• Top-k. For a simple baseline, we upper bound OPT using
the k elements, A, with maximum singleton value f(a):P
OPTk = f(a). a∈A

• Marginal. By using the value of GREEDY solutions Si of
size i as well as GREEDY analysis techniques, we derive
the following more sophisticated bound:

f(Sj) − (1 − 1/k)j−if(Si)
OPTk ≤

1 − (1 − 1/k)j−i

for all i < j (See Appendix F.1 for proof). We compute
the minimum upper bound over all i < j ≤ n pairs.

• Sakaue-Ishihata. Sakaue and Ishihata (2018) propose
a different upper bound of OPT using GREEDY proof
techniques and derive the following bound:

f(S)
OPTk ≤ Qk ,

1 − i=1 βi

fSi−1 (ai)where βi = 1 − P
(a) and Ai is the set of k

a∈Ai
fSi−1

elements with maximal singleton values for fSi−1 .

Results. We compare the approximations of GREEDY
found by DUAL to those found by TOPK, MARGINAL and
SAKAUE-ISHIHATA. Figure 2 shows that DUAL consis-
tently outperforms or matches the baselines. TOP-K bench-
mark performs poorly in most cases, which implies that
most objectives are not close to additive. MARGINAL and
SAKAUE-ISHIHATA are the strongest benchmarks, but are
still significantly outperformed by DUAL on most instances.
For MovieLens movie recommendation and Facebook rev-
enue maximization, where objectives are close to additive,
TOP-K outperforms MARGINAL and SAKAUE-ISHIHATA.

5.2.2. EXPERIMENTS ON SMALL INSTANCES

Benchmarks. We consider the following benchmarks on
small datasets that are parameterized properties that yield
improved approximation guarantees. Unlike the bench-
marks that upper bound OPT, these benchmarks identify
properties that guarantee a bound on the GREEDY approxi-
mation for any function that satisfies the properties. How-
ever, computing the parameters of these properties requires
brute force computation and is computationally infeasible
on large datasets.

fS (a)• Curvature. The curvature c = 1 − minS,a of af (a)
function measures how close f is to additive (Conforti
& Cornu´ −c)/cejols, 1984). It yields an improved (1 − e
approximation for GREEDY.

• Soma-Yoshida. Soma and Yoshida (2017) propose an
improved notion of curvature for monotone submodular
functions f that can be decomposed as g + h, where g
is monotone submodular and h is M \-concave. The h-

h(S)curvature γh = 1 − minS⊆N f(S) yields an improved
approximation by improving upon the previous curvature
parameter.

• Sharpness. The property of submodular sharpness was
introduced by Pokutta, Singh, and Torrico (2020) as an
explanation for the performance of GREEDY in practice.
It is the analog of sharpness from continuous optimiza-
tion (Lojasiewicz, 1963) and assumes that any solution
which differs significantly from the optimal solution has
a substantially lower value. On small instances, we com-
pute the Dynamic Submodular Sharpness property of the
function, which is the sharpness property that yields the
best approximation. More details in Appendix F.2.

Another benchmark is stability, which guarantees that
GREEDY finds the optimal solution if the instance is suffi-
ciently stable, i.e., its optimal solution remains optimal un-
der small perturbations of the function (Chatziafratis et al.,
2017). However, our settings are not perturbation-stable
because there are multiple near-optimal solutions.

Results. For small instances where we can exactly com-
pute necessary parameters as well as OPT by brute-force,
we follow the experimental setup from (Pokutta et al., 2020).
For k ∈ [1, 10], we randomly choose n = 2k elements to
comprise the ground set and analyze the result of DUAL ver-
sus benchmarks on objectives, facility location and movie
recommendation, from Pokutta, Singh, and Torrico (2020)
on the MovieLens dataset. More details in Appendix E.2.

In Figure 3, we observe that DUAL yields the best approxi-
mations. For facility location, DUAL shows a near-optimal
approximation while other benchmark approximations are

Instance Specific Approximations for Submodular Maximization

1 2 3 4 5 6 7 8 9 10
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n
MovieLens, Facility Location.

Dual
Sharpness
Curvature
Soma-Yoshida
True Approx

1 2 3 4 5 6 7 8 9 10
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Movie Rec.

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Youtube, Infl. Max

Dual
Method3
Method1

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Facility Location

Figure 3. GREEDY approximations computed by DUAL and multi-
ple benchmarks on small instances (n ≤ 20).

k DUAL OPT CURV. SOMA. SHARP.
6 0.0160 0.0317 0.365 0.729 0.830
8 0.0298 0.457 7.99 17.13 18.47
10 0.0716 7.17 156.1 372.4 359.1

Table 1. Average runtimes (in seconds) of benchmark methods on
MovieLens facility location setting, where n = 2k.

near 1 − 1/e for larger k. For movie recommendation, the
gap between the different benchmarks is smaller. In both
settings and for all k, GREEDY finds a near-optimal solution.

We additionally report benchmark runtimes in Table 1 for
the facility location objective and find that CURVATURE,
SOMA-YOSHIDA, SHARPNESS and OPT, which all require
brute-force computation, become exponentially slower as k
increases. At k = 10, n = 20, the average time to compute
curvature approximation is 156 seconds while sharpness and
the improved curvature benchmark both have a computation
time of over 300 seconds. These methods are much slower
than even brute-force computing OPT which takes 7.2 sec-
onds. While these benchmarks are not scalable, DUAL,
which is at least 1000 times faster than these two methods
for the facility location objective when k = 10, is scalable
for larger datasets.

5.2.3. COMPARISON OF PROPOSED METHODS

We compare Method 1, Method 3, and DUAL on a cov-
erage objective and compare Method 3 and DUAL on a
non-coverage objective in Figure 4. We observe that even
Method 1, which employs the additive lower bound on the
dual objective, finds approximations that are above 0.8. This
indicates that, unlike the primal objective, the dual objective
is close to additive. By partitioning the dual space (Method
3), a small improvement over Method 1 is achieved. Finally,
by considering the upper bound on the optimal solution for
the functions fS for S ∈ S (DUAL), the approximations
further improve. This improvement is minor for MovieLens,
but can be around 0.1 for some k on YouTube.

Figure 4. GREEDY approximations computed by Method 1,
Method 3, and DUAL.

Acknowledgements
This research was supported by a IBM PhD Fellowship,
BSF grant 2014389, NSF grant CAREER CCF-1452961,
NSF USICCS proposal 1540428, Google research award,
and a Facebook research award.

References
Baeza-Yates, R., Boldi, P., and Chierichetti, F. Essential

web pages are easy to find. In Proceedings of the 24th
International Conference on World Wide Web, pp. 97–107,
2015.

Balkanski, E. and Singer, Y. Approximation guarantees
for adaptive sampling. In International Conference on
Machine Learning, pp. 384–393, 2018.

Blake, C. L. and Merz, C. J. UCI machine learning
repository, 1998. URL http://archive.ics.uci.
edu/ml.

Breuer, A., Balkanski, E., and Singer, Y. The FAST algo-
rithm for submodular maximization. In Proceedings of
the 37th International Conference on Machine Learning,
pp. 1134–1143, 2020.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R.
Submodular maximization with cardinality constraints.
In Proceedings of the twenty-fifth annual ACM-SIAM sym-
posium on Discrete algorithms, pp. 1433–1452. SIAM,
2014.

Buchbinder, N., Feldman, M., and Schwartz, R. Compar-
ing apples and oranges: Query tradeoff in submodular
maximization. In SODA, number CONF, pp. 1149–1168,
2015.

Chatziafratis, V., Roughgarden, T., and Vondrák, J. Stability
and recovery for independence systems. arXiv preprint
arXiv:1705.00127, 2017.

Conforti, M. and Cornu´ Submodular set func-ejols, G.
tions, matroids and the greedy algorithm: tight worst-case
bounds and some generalizations of the rado-edmonds
theorem. Discrete applied mathematics, 7(3):251–274,
1984.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Instance Specific Approximations for Submodular Maximization

Das, A. and Kempe, D. Submodular meets spectral: Greedy
algorithms for subset selection, sparse approximation and
dictionary selection. arXiv preprint arXiv:1102.3975,
2011.

FiveThirtyEight. Kaggle, 2019. URL https:
//www.kaggle.com/fivethirtyeight/
uber-pickups-in-new-york-city.

Guestrin, C., Krause, A., and Singh, A. P. Near-optimal
sensor placements in gaussian processes. In Proceedings
of the 22nd international conference on Machine learning,
pp. 265–272, 2005.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. Acm transactions on interactive
intelligent systems (tiis), 5(4):1–19, 2015.

Kazemi, E., Zadimoghaddam, M., and Karbasi, A. Scalable
deletion-robust submodular maximization: Data summa-
rization with privacy and fairness constraints. In Interna-
tional conference on machine learning, pp. 2544–2553,
2018.

Kempe, D., Kleinberg, J., and Tardos, E.´ Maximizing the
spread of influence through a social network. In KDD,
2003.

Krause, A., Singh, A., and Guestrin, C. Near-optimal sen-
sor placements in gaussian processes: Theory, efficient
algorithms and empirical studies. Journal of Machine
Learning Research, 9(Feb):235–284, 2008.

Leskovec, J., Kleinberg, J., and Faloutsos, C. Graph evolu-
tion: Densification and shrinking diameters. ACM trans-
actions on Knowledge Discovery from Data (TKDD), 1
(1):2–es, 2007.

Lin, H. and Bilmes, J. A class of submodular functions for
document summarization. In Human Language Technolo-
gies, 2011.

Lindgren, E., Wu, S., and Dimakis, A. G. Leveraging spar-
sity for efficient submodular data summarization. Ad-
vances in Neural Information Processing Systems, 29:
3414–3422, 2016.

Lojasiewicz, S. Une propriet´ é topologique des sous-
ensembles analytiques r´ in ?les equations auxeels, ´
d´ ees partielles (paris, 1962)? editions du centre na-eriv´ ´
tional de la recherche scientifique, 1963.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
J., and Krause, A. Lazier than lazy greedy. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A. Fast
constrained submodular maximization: Personalized data
summarization. In ICML, pp. 1358–1367, 2016a.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A. Fast
constrained submodular maximization: Personalized data
summarization. In ICML, pp. 1358–1367, 2016b.

Nemhauser, G. L. and Wolsey, L. A. Best algorithms for ap-
proximating the maximum of a submodular set function.
Mathematics of operations research, 3(3):177–188, 1978.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions i. Mathematical programming, 14(1):265–
294, 1978.

Pokutta, S., Singh, M., and Torrico, A. On the unreasonable
effectiveness of the greedy algorithm: Greedy adapts
to sharpness. In International Conference on Machine
Learning, pp. 7772–7782. PMLR, 2020.

Rubinstein, A. and Zhao, J. Budget-smoothed anal-
ysis for submodular maximization. arXiv preprint
arXiv:2102.05782, 2021.

Sakaue, S. and Ishihata, M. Accelerated best-first search
with upper-bound computation for submodular function
maximization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Soma, T. and Yoshida, Y. A new approximation guarantee
for monotone submodular function maximization via dis-
crete convexity. arXiv preprint arXiv:1709.02910, 2017.

Traud, A. L., Mucha, P. J., and Porter, M. A. Social structure
of facebook networks. Physica A: Statistical Mechanics
and its Applications, 391(16):4165–4180, 2012.

Wolsey, L. A. An analysis of the greedy algorithm for the
submodular set covering problem. Combinatorica, 2(4):
385–393, 1982.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems, 42(1):181–213, 2015.

https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city
https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

