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Abstract 
For many optimization problems in machine learn-
ing, finding an optimal solution is computation-
ally intractable and we seek algorithms that per-
form well in practice. Since computational in-
tractability often results from pathological in-
stances, we look for methods to benchmark al-
gorithms’ performance against optimal solutions 
on real-world instances. The main challenge is 
that an optimal solution cannot be efficiently com-
puted for intractable problems, and we therefore 
often do not know how far a solution is from be-
ing optimal. A major question is therefore how 
to measure the performance of an algorithm in 
comparison to an optimal solution on instances 
we encounter in practice. 

In this paper, we address this question in the 
context of submodular optimization problems. 
For the canonical problem of submodular max-
imization under a cardinality constraint, it is in-
tractable to compute a solution that is better than 
a 1 − 1/e ≈ 0.63 fraction of the optimum. Al-
gorithms like the celebrated greedy algorithm are 
guaranteed to achieve this 1 − 1/e bound on any 
instance, and are used in practice. 

Our main contribution is not a new algorithm 
for submodular maximization but an analytical 
method that measures how close an algorithm 
for submodular maximization is to optimal on a 
given problem instance. We use this method to 
show that on a wide variety of real-world datasets 
and objectives, the approximation of the solution 
found by greedy goes well beyond 1 − 1/e and is 
often at least 0.95. We develop this method using 
a novel technique that lower bounds the objective 
of a dual minimization problem to obtain an upper 
bound on the value of an optimal solution to the 
primal maximization problem. 
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1. Introduction 
A central challenge in machine learning is that many of the 
optimization problems we deal with are computationally 
intractable. For problems like clustering, sparse recovery, 
and maximum likelihood estimation for example, finding 
an optimal solution is computationally intractable and we 
seek heuristics that perform well in practice. Computa-
tional intractability implies that under worst case analysis 
any efficient algorithm is suboptimal; however, worst-case 
approximation guarantees are often due to pathological in-
stances that are not representative of instances we encounter 
in practice. Thus, we would like to be assured that the al-
gorithms we use, despite poor performance on pathological 
instances, perform provably well on real-world instances. 

In order to evaluate the performance of an algorithm on real-
world instances, we would like to measure its performance 
in comparison to an optimal solution. The main challenge 
however, is that we cannot evaluate the performance of an 
algorithm against an optimal solution since finding an opti-
mal solution for a computationally intractable problem is, 
by definition, intractable. Thus, we often do not know how 
far an algorithm solution is from optimal, and whether there 
is a substantially better algorithm. Therefore, for compu-
tationally intractable problems, our main challenge is not 
necessarily how to design better algorithms, but rather how 
to measure the performance of an algorithm in comparison 
to a theoretically optimal solution on real-world instances. 

How do we measure the performance of an algorithm on 
specific instances for problems that are intractable? 

In this paper, we develop a method to measure how close 
to optimal the performance of an algorithm is on specific 
instances for the broad class of submodular maximization 
problems. Since many objectives that we aim to optimize, 
such as coverage, diversity, entropy, and graph cuts are 
submodular, submodular maximization algorithms are heav-
ily employed in applications such as speech and document 
summarization (Lin & Bilmes, 2011), recommender sys-
tems (Mirzasoleiman et al., 2016b), feature selection (Das 
& Kempe, 2011), sensor placement (Guestrin et al., 2005), 
and network analysis (Kempe et al., 2003). Submodular 
maximization provides an ideal framework to address this 
problem since it is intractable to compute a solution that 
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is better than a 1 − 1/e approximation for the canonical 
problem of maximizing a monotone submodular function 
under a cardinality constraint (Nemhauser & Wolsey, 1978). 
In addition, multiple algorithms are known to enjoy con-
stant factor approximation guarantees, such as the greedy 
algorithm that achieves this 1 − 1/e approximation on any 
instance (Nemhauser et al., 1978). 

Our contribution. We develop a novel and efficient 
method, called DUAL, to measure how close to optimal 
the performance of an algorithm is on an instance of maxi-
mizing a monotone submodular function under a cardinality 
constraint. These instance specific approximations are ob-
tained by upper bounding the optimal value of an instance. 
We use this method to show that greedy, as well as other 
submodular maximization algorithms, perform significantly 
better than 1 − 1/e in practice. On a wide variety of large 
real-world datasets and objectives, we find that approxima-
tion of the solution found by greedy almost always exceeds 
0.85 and often exceeds 0.95, a 50 percent improvement 
over 1 − 1/e ≈ 0.63. Using this method, we also find that 
greedy and another algorithm with the same 1 − 1/e theoret-
ical guarantee have significantly different approximations 
in practice. Additionally, we show that DUAL significantly 
outperforms multiple benchmarks for measuring instance 
specific approximations. 

Technical overview. DUAL derives an approximation ob-
tained by a solution S to an instance of max|S|≤k f(S), 
where f : 2N → R is a monotone submodular function, by 
upper bounding the optimal value OPT. To upper bound 
OPT, we consider a dual problem g(v) = minS:f(S)≥v |S|
of finding the solution S of minimum size that has value 
at least v. We then construct a function g(v) that lower 
bounds g(v) and is such that the maximum value v such 
that g(v) ≤ k can be found in O(n log n) running time. By 
exploiting the fact that g lower bounds g, we show that this 
maximum value v is an upper bound on OPT. 

The construction of g is motivated by coverage functions, a 
special case of submodular functions, where the goal is to 
maximize the coverage of a universe U . We show that the 
dual objective g : 2U → R, corresponding to the minimum 
size of a set S ⊆ N which covers T ⊆ U , can be lower 
bounded by an additive function ` : 2U → R, which is close 
to g in practice. Since ` is additive, it can be minimized 
efficiently to give a lower bound on the dual problem, which 
implies an upper bound on OPT. 

Related work. A line of work has investigated different 
properties of submodular functions that enable improved 
approximation guarantees for the greedy algorithm. The 
curvature c ∈ [0, 1] of a function f measures how close f is 
to additive (Conforti & Cornuéjols, 1984; Soma & Yoshida, 

2017). Submodular sharpness, an analog of sharpness from 
continuous optimization (Lojasiewicz, 1963), measures the 
behavior of a function f around the set of optimal solu-
tions (Pokutta et al., 2020). For stability, a function f is 
perturbation-stable if the optimal solution for maximizing 
f does not change under small perturbations (Chatziafratis 
et al., 2017). Finally, drawing from smoothed analysis, Ru-
binstein and Zhao (2021) show improved approximations 
using randomized perturbations of the budget k. For curva-
ture, sharpness and stability, the main issue with using these 
parameterized properties to measure how close to optimal 
the greedy algorithm is on specific instances is that their pa-
rameters cannot be computed efficiently. Since they require 
brute-force computation, they have only been computed 
on small instances with at most n = 20 elements (Pokutta 
et al., 2020) and cannot be used on real-world instances. In 
addition, on these small instances, these three properties and 
budget-smooth analysis all yield approximations that are not 
as strong as those obtained by DUAL. The main goal of this 
line of work is to provide an explanation for greedy’s strong 
performance in practice. In contrast, our paper focuses on 
the problem of measuring the performance of greedy, and 
other algorithms, in practice. 

Sakaue and Ishihata (2018) develop a method to upper 
bound the optimal value of a submodular maximization 
instance, but with a different goal of using this upper bound 
to accelerate submodular maximization algorithms. This 
method is used as a benchmark in our experiments. Baeza-
Yates, Boldi, and Chierichetti (2015) construct a method 
to obtain instance-specific approximations for the special 
case of coverage functions by exploiting the linear program 
formulation of coverage functions and using the dual for-
mulation of its relaxation as an upper bound of the optimal 
value. This method does not extend to general submodu-
lar problems, which cannot be formulated as a polynomial 
size LP. We instead propose a different dual problem for 
instance-specific approximations for general submodular 
objectives. 

1.1. Preliminaries 

A function f : 2N → R is submodular if fS (a) ≥ fT (a) 
for all S ⊆ T ⊆ N and a ∈ N \ T , where fS (a) = 
f(S ∪ {a}) − f(S) is the marginal contribution of a to 
S. It is monotone if f(S) ≤ f(T ) for all S ⊆ T ⊆ N . 
A function f : 2P → R is a coverage function if there 
exists a bipartite graph G = (P, D, E) over primal and 
dual elements P ∪ D such that f(S) = |NG(S)| where 
NG(S) = ∪a∈S NG(a) ⊆ D denotes the neighbors of S ⊆ 
P in G. We say that set S covers T , or equivalently that 
T is covered by S, if T ⊆ NG(S). When G is clear from 
the context, we write N(S) instead of NG(S) to denote the 
neighbors of S in graph G. 
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Given an instance of the problem max|S|≤k f(S) and a 
solution S? to this problem, we aim to compute an approxi-
mation for S?, i.e. a lower bound on f(S?)/ max|S|≤k f(S) 
or, equivalently, an upper bound on max|S|≤k f(S). 

2. Instance Specific Approximations for 
Max-Coverage 

In this section, we present a method that measures how close 
to optimal a solution is for maximum coverage problems. 
As a warm-up, we focus on this special case to motivate and 
provide intuition for the method for submodular functions 
presented in Section 3. We emphasize that our main contri-
bution is for general submodular maximization problems, 
which, unlike coverage problems, cannot be formulated as a 
polynomial size linear program. 

In Section 2.1, we introduce the problem of minimum cover 
under a cardinality constraint, which is a generalization of 
the classical set cover problem. We show that a lower bound 
on this minimum cover problem implies an upper bound 
on the optimal value OPT for the max-coverage problem. 
In Section 2.2, we present an additive lower bound on the 
dual problem, which is used to efficiently compute a lower 
bound of the optimal value to the dual problem. Then, in 
Section 2.3, we develop a more sophisticated lower bound 
on the dual problem. Due to space constraints, we defer 
missing proofs to Appendix A. 

2.1. The dual problem 

We introduce the minimum cover under a cardinality con-
straint problem. Recall that given a bipartite graph G over 
nodes P and nodes D, the problem of maximum cover-
age under a cardinality constraint problem is to find the k 
elements S ⊆ P that maximize the number of elements 
NG(S) ⊆ D covered by S. In contrast, the minimum cover 
under a cardinality constraint problem is to find the v ele-
ments T ⊆ D that minimize the number of elements S ⊆ P 
needed to cover T ⊆ NG(S). 
Definition 1. The minimum cover under a cardinality con-
straint problem is defined as minT ⊆D:|T |≥v g(T ), where 
g(T ) = minS⊆P :T ⊆N(S) |S| is the size of the minimum 
cover of T and where v ∈ [|D|] is the cardinality constraint. 

This problem is a generalization of the classical set cover 
problem, which finds the minimum number of elements S 
to cover all elements D. We obtain the following duality 
property: a lower bound on minimum cover implies an 
upper bound on maximum coverage, and vice-versa. 
Lemma 1. Let f : 2P → N be a coverage function defined 
over a biparite graph between elements P and D. For any 
k ∈ [|P |] and v ∈ [|D|], maxS⊆P :|S|≤k f(S) < v if and 
only if minT ⊆D:|T |≥v g(T ) > k where g : 2D → N is the 
size of the minimum cover of T as defined in Definition 1. 

We refer to maxS⊆P :|S|≤k f(S) and minT ⊆D:|T |≥v g(T ) 
as the primal and dual problems. We also refer to P and D 
as the primal and dual elements. 

2.2. Warm-up: Approximations via an additive lower 
bound on the dual 

This dual problem admits an additive1 lower bound that 
is, as we will show empirically in Section 5, close to the 
dual objective in practice. This is in contrast to the primal 
maximum coverage problem, which is far from additive on 
real instances. We define the individual value vb of each 

1dual element b as vb = mina∈N(b) . The additive |N(a)|
function ` : 2D → R is defined as follows: 

X X 1 
`(T ) = vb = min . 

a∈N (b) |N(a)|
b∈T b∈T 

Note that if b ∈ D is covered by primal element a ∈ P , then 
a covers at most 1/vb dual elements. In other words, 1/vb 

is an upper bound on the value obtained from an element a 
that covers b. 

We use this additive lower bound ̀ (·) on the dual objective to 
design a method that returns an upper bound on the optimal 
value for the primal problem. Method 1 first orders the dual 
elements b by increasing value vb. It then finds the prefix 
{b1, . . . , bi? } of this ordering where i? is the minimum size 
i such that `({b1, . . . , bi}) = 

Pi
j=1 vbj > k, and then 

returns i? . In other words, it finds the smallest size i such 
that `(T ) > k for all sets T of size i. 

Method 1 Linear bound on dual objective for coverage 

input bipartite graph G = (P, D, E), constraint k 
1 vb ← mina∈N (b) , for each b ∈ D|N(a)|

(b1, . . . , b|D|) ← elements D ordered by increasing vbi 

i? ← min{i : 
Pi 

> k}j=1 vbj 

return i? 

The analysis. We first show that `(·) is a lower bound on 
the dual objective g(·) (Lemma 2). We then show that 
{b1, . . . , bi} minimizes ` over all sets of size at least i 
(Lemma 3). Together, these imply that there are no sets 
of primal elements of size k which cover i? dual elements 
and we obtain i? > maxS⊆P :|S|≤k f(S) (Theorem 1). 

Lemma 2. For any coverage function defined by a bipartite 
graph G between P and D, we have that for any set T ⊆ D, 
`(T ) ≤ g(T ) = minS⊆P :T ⊆N(S) |S|. 

1A function g is additive if there exist values v1, . . . , vm suchP 
that g(T ) = b∈T vb. 
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Proof. For any S ⊆ P such that T ⊆ N(S), we have X X 1 |S| = 
|N(a)|

a∈S b∈N (a) X X 1 ≥ min 
a0∈N(b) |N(a0)|

a∈S b∈N (a) X 1 ≥ min = `(T ). 
a∈N(b) |N(a)|

b∈T 

Lemma 3. Consider the ordering of dual elements D 
by increasing singleton values, i.e., (b1, . . . , b|D|) where 
`(bi) ≤ `(bj ) for all i < j, then, for all v ≤ |D|, 
`(Dv) = minT ⊆D:|T |≥v `(T ) where Dv = {b1, . . . , bv}. 

Proof. Since ` is an additive function, the set T of size at 
least v with minimum value is the set consisting of the v dual 
elements of minimum singleton value, which is Dv . 

We are now ready to formally prove that Method 1 returns 
an upper bound on the optimal value to the primal problem. 

Theorem 1. For any k, let i? be the value returned by 
Method 1, then i? > maxS⊆P :|S|≤k f(S). 

Proof. By definition of i?, Lemma 3 and Lemma 2, 

k < `(Di? ) = min `(T ) ≤ min min |S|. 
T ⊆D:|T |≥i? T ⊆D:|T |≥i? S⊆P : 

T ⊆N(S) 

By Lemma 1, we get i? > maxS⊆P :|S|≤k f(S). 

2.3. Improved method for coverage functions 

We improve Method 1 by constructing a lower bound g(·) 
on the dual objective g(·) that is tighter than `(·). The 
function g(T ) is obtained by partitioning the collection of 
dual elements T into j parts ∪j Pi = T . We define the i=1 
weight w(Pi) of part Pi to be 

1 
w(Pi) = |Pi| · max vb = |Pi| · max min . 

b∈Pi b∈Pi a∈N(b) |N(a)| 

We note that if w(Pi) > 1, then dual elements Pi cannot be 
covered by a single primal element since there must exist 
b ∈ Pi such that maxa∈N(b) |N(a)| < |Pi|. This motivates 
the following definition of a valid partition. 

Definition 2. A partition P1, . . . , Pj of T is valid if 
w(Pi) ≤ 1 for all i ≤ j. 

This definition is such that if a partition P1, . . . , Pj is not 
valid, then there must exist a part Pi which cannot be cov-
ered by a single primal element. We exploit this property to 

define the following improved lower bound g : 2D → R on 
the dual objective: 

g(T ) = min{j : ∃ a valid partition P1, . . . , Pj of T }. 

This lower bound g(T ) is always tighter than the additive 
lower bound `(·). 
Proposition 1. For any coverage function f : 2P → N 
defined by bipartite graph (P, D, E), we have g(T ) ≥ `(T ) 
for all T ⊆ D. 

Similarly as with Method 1, we use this lower bound g(·) 
on the dual objective to design a method that returns an 
upper bound on the optimal value for the primal problem. 
Method 2, which will be generalized to Method 3 for sub-
modular functions, iteratively constructs a valid partition 
∪k
κ=1Pκ of a collection of dual elements T such that |T | is 

maximized. At iteration κ, part Pκ of the partition is defined 
as the collection of dual elements {biκ−1+1, . . . , biκ }, which 
are the dual elements with minimum value vb that are not in 
the previous parts P1, . . . , Pi−1, where iκ is the maximum 
index such that part Pi is valid. The method returns value 
ik, which is the total size | ∪k

κ=1 Pκ| of the partition. 

Method 2 Dual bound via partitioning for coverage 

input bipartite graph G = (P, D, E), constraint k 
1vb ← mina∈N (b) , for each b ∈ D|N(a)|

(b1, . . . , b|D|) ← elements D ordered by increasing vbi 

i0 ← 0 
for κ = 1 to k do 

iκ ← max{i : (i − iκ−1) · vbi ≤ 1}
Pκ ← {biκ−1+1, . . . , biκ }

return ik 

Since Method 2 is a special case of Method 3, the analysis 
of Method 3 in the next section also applies to Method 2. 

3. Instance Specific Approximations for 
Submodular Maximization 

In this section, we present our main method, DUAL, which 
generalizes Method 2 to submodular functions. For cov-
erage functions, the value achieved by a solution S corre-
sponds to the number of dual elements covered by S and 
the optimal value can be upper bounded by analyzing dual 
elements. However, for general submodular functions, there 
are no dual elements corresponding to the solution value. 
We first introduce a similar dual minimization problem as 
for coverage, but defined over values v ∈ R instead of dual 
elements T ⊆ D. We then construct a lower bound on 
the dual objective and use it to design a method that upper 
bounds OPT in O(n log n) running time. Missing proofs 
are in Appendix B.1. 
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We introduce the minimum submodular cover under a car-
dinality constraint problem, where the goal is to find the 
smallest set S of value at least v: 

g(v) = min |S|. 
S⊆N :f (S)≥v 

This problem is a generalization of the submodular cover 
problem (Wolsey, 1982), which is to find the smallest set 
S of value at least f(N). We note that, unlike the dual 
objective for coverage functions, there are no dual elements. 

Next, we define a function g(v) which lower bounds this 
dual objective. Similarly as for coverage functions, we con-
sider partitions of the dual space and we define a collection 
of valid partitions that is used to then define g(v). We as-
sume that the ground set of elements N = {a1, . . . , an} is 
indexed by decreasing singleton value, i.e., f(ai) ≥ f(aj ) 
for all i < j. We define Ai := {a1, . . . , ai}. 
Definition 3. Values v1, . . . , vk ∈ R form a valid partition-P 
ing of v ∈ R if j∈[k] vj = v and there exists a witness 
W ⊆ N such that, for all j ∈ [k], f(aij ) ≥ vj where ( 

j 
)X 

ij = min i : ai ∈ W, f(W ∩ Ai) ≥ v` . 
`=1 

As we will show in Lemma 4, for any solution set S, 
v1 = fS0 (S1), v2 = fS1 (S2), . . . , v|S| = fS|S|−1 

(S) forms 
a valid partioning of v = f(S), where Sj is the set of j ele-
ments in S with the largest singleton value. This implies that 
if a partition v1, . . . , vk is not valid, then there is no solution 
S of size k such that fSj−1 (Sj ) ≥ vj for all j ∈ [k]. Thus, 
if a value v does not have a valid partitioning v1, . . . , vk, 
then there are no solution S of size k such that f(S) ≥ v. 
This implies that the following function g : R → N lower 
bounds the dual objective (Lemma 4): 

g(v) = min{k : ∃ a valid partition v1, . . . , vk of v}. 

We use the lower bound g(v) on the dual objective to 
construct a method that returns an upper bound on OPT. 
Method 3 iteratively constructs a valid partition v1, . . . , vkP 
of the dual space such that j∈[k] vj is maximized. It first 
orders the elements ai ∈ N by decreasing singleton value 
f(ai). Then, at each iteration j, it defines value vj to be the 
maximum value v such that partition v1, . . . , vj is a valid 
partition with witness W = Aij . 

Method 3 Method for submodular functions 
input function f , cardinality constraint k 
(a1, . . . , an) ← elements ordered by decreasing f(ai) 
For j = 1 to k do 

vj ← max{v : f(aij ) ≥ v where Pj−1
ij = min{i : f(Ai) − ≥ v}}`=1 v` Pkreturn j=1 vj 

Value vj at iteration j can be found by iterating through 
elements indexed by i ∈ {ij−1 + 1, ij−1 + 2, . . .} until 
i? , where i? is the minimum index such that f(Ai? ) −Pj−1 ≥ f(ai? ). Since an element ai is considered at`=1 v` 

most once over all iterations, the total running time of the 
for loop is O(n). Thus, the running time of Method 3 is 
O(n log n) due to the sorting of the elements by singleton 
value. More details on finding value vj in Appendix B.2. 

The analysis. We first show that g(v) lower bounds g(v) 
in Lemma 4. The proof uses the fact that g(v) is monotone. 

Lemma 4. For any submodular function f and v ∈ R, 
g(v) ≤ g(v) = minS⊆N :f (S)≥v |S|. PkWe now show that the value returned by thej=1 vj 

method is the maximum value v such that g(v) ≤ k. PkLemma 5. Let OPT = j=1 vj be the solution returned 
by Method 3, then g(OPT + �) > k for all � > 0. 

Finally, we combine Lemma 4 and Lemma 5 to show that 
Method 3 returns an upper bound of OPT. PkTheorem 2. For any k, Let OPT = j=1 vj be the solution 
returned by Method 3, then OPT ≥ maxS⊆N :|S|≤k f(S). 

Proof. We first show by contrapositive that a lower bound 
k < g(v) = minS⊆N :f(S)≥v |S| on the dual problem im-
plies an upper bound v > maxS⊆N :|S|≤k f(S) on the pri-
mal problem. Assume maxS⊆N :|S|≤k f(S) ≥ v. Then, 
there exists S? such that f(S?) ≥ v and |S?| ≤ k and we 
get g(v) = minS⊆N :f (S)≥v |S| ≤ |S?| ≤ k. 

Then, by Lemma 5 and Lemma 4, we have 

k < g(OPT + �) ≤ g(OPT + �) = min |S|
S⊆N :f (S)≥OPT+� 

which implies OPT + � > max|S|≤k f(S) for all � > 0. 

3.1. DUAL 

We describe our main method, DUAL, which uses Method 3 
as a subroutine. In the case where a small number of ele-
ments have very large singleton values, Method 3 can re-
turn an arbitrarily bad approximation to OPT (See example 
in Appendix B.3). To circumvent this issue, DUAL calls 
Method 3 on the marginal contribution function fS (T ) = 
f(S ∪ T ) − f(S) for each S in a collection of sets S given 
as input. If {} ∈ S, then DUAL is no worse than Method 3. 
If there is S ∈ S such that there are no elements with large 
singleton value according to fS , then DUAL circumvents the 
issue previously mentioned. We note that adding more sets 
to S can only improve the approximation given by DUAL. 



Instance Specific Approximations for Submodular Maximization 

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n
Youtube, Infl. Max (n=1045)

Greedy
Local Search
Lazier Gr
Random Gr

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Uber, Car Dispatch (n=1000)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Citation, Infl. Max (n=9877)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Movie Rec. (n=3706)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

MovieLens, Facility Loc. (n=500)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Facebook, Rev. Max (n=769)

20 40 60 80 100
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Census, Feat. Selection (n=109)

10 20 30 40 50
k

1 − 1
e

0.70

0.80

0.90

1.00

Ap
pr

ox
im

at
io

n

Sensor Placement (n=54)

Figure 1. Approximations computed by DUAL for the performance of four different submodular maximization algorithms. 

Method 4 DUAL 

input function f , constraint k, collection of sets S 
OPT ← f(N) 
for S in S do 

0
OPT ← Method3(fS , k) 

0
OPT ← min(f(S) + OPT , OPT) 

return OPT 

Theorem 3. For any set collection of sets S, Method 4 
returns OPT such that OPT ≥ OPT. 

4. Guarantees for DUAL 

In this section, we show guarantees on the performance of 
DUAL, i.e., guarantees on how far the upper bound, OPT, 
returned by DUAL is to OPT. We note that our analysis 
holds for the more demanding f(Sg) benchmark, which is 
the value of the greedy solution Sg . The analysis is deferred 
to Appendix C. 

We first show that, if Sg ∈ S , then the solution OPT returned 
by DUAL is such that OPT ≤ 2 · OPT. Of course, this 2-
approximation can be improved to e/(e − 1) with the upper 
bound (e/(e − 1)) · f(Sg). However, for instance specific 
approximations, this upper bound only gives a 1 − 1/e 
approximation for greedy on each instance while DUAL can 
give a much stronger approximation. 

Proposition 2. Let Sg be the solution retuned by the greedy 
algorithm to the problem max|S|≤k f(S). Then, if f is a 
monotone submodular function and Sg ∈ S , DUAL returns 
OPT such that OPT ≤ 2f(Sg) ≤ 2OPT. 

We also show that, for functions with curvature c, the solu-
1tion OPT returned by DUAL is such that OPT ≤ OPT.1−c 

Since the curvature parameter c cannot be computed effi-
ciently, the known (1 − e−c)/c approximation obtained by 
greedy (Conforti & Cornuéjols, 1984) is an approximation 
that cannot be computed efficiently (unless c is known). 

Unlike (1 − e−c)/c , OPT provides an approximation for 
functions with curvature that can be efficiently computed. 
This approximation is guaranteed to improve over 1 − 1/e 
when c < 1/e. 

Proposition 3. Let f be a monotone submodular function 
with curvature c. Then, DUAL returns OPT such that OPT ≤ 
1 1f(Sg) ≤ OPT.1−c 1−c 

5. Experiments 
We utilize DUAL to obtain bounds on the approximation 
achieved by submodular maximization algorithms in prac-
tice. We show that GREEDY and other algorithms find 
solutions that approximate the optimal solution significantly 
better than 1 − 1/e on a wide variety of real-world datasets 
and objectives. We also show that DUAL outperforms 
multiple benchmarks for deriving approximations for the 
solution found by GREEDY. For all instances, we use 
S = {S1, S2, . . . , S20} ∪ {S25, S30, . . . , S50} as an input 
to DUAL, where Si is the greedy solution of size i. 

5.1. Approximations for submodular maximization 
algorithms using DUAL 

We begin by evaluating the bounds derived by DUAL on 
the approximation achieved by four different submodular 
maximization algorithms. The goal here is not to provide 
a comprehensive comparison of submodular maximization 
algorithms, but instead to analyze the approximations com-
puted by DUAL. 

Algorithms for submodular maximization. The 
GREEDY algorithm obtains the optimal 1 − 1/e approxima-
tion (Nemhauser et al., 1978) and is widely considered as the 
standard algorithm for monotone submodular maximization 
under a cardinality constraint. LOCAL SEARCH obtains a 
1/2 approximation guarantee (Nemhauser et al., 1978) and 
is another widely used algorithm. LAZIER-THAN-LAZY 
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Figure 2. GREEDY approximations computed by DUAL compared to multiple benchmarks on various submodular objectives. 

GREEDY, also called sample greedy, improves the running 
time of greedy by sampling a small subset of elements at 
each iteration (Mirzasoleiman et al., 2015; Buchbinder 
et al., 2015). RANDOM GREEDY handles submodular 
functions that are not necessarily monotonic by introducing 
randomization into the element selection step and obtains a 
1 − 1/e approximation guarantee for monotone submoduar 
functions (Buchbinder et al., 2014). We provide further 
details on these algorithms in Appendix D. For randomized 
algorithms, we average the results over 5 runs. 

Settings. We examine the approximations computed by 
DUAL for these algorithms on 8 different datasets and ob-
jectives. Additional details can be found in Appendix E.1. 

• Influence maximization: As in Mirzasoleiman, Badani-
diyuru, and Karbasi (2016a), we use Youtube social 
network data (Yang & Leskovec, 2015) and sample 
n = 1, 045 users from 50 large communities. We se-
lect k users by maximizing influence: f(S) = |NG(S)|. 

• Car dispatch: Our goal is to select the k best locations to 
deploy drivers to cover the maximum number of pickups. 
As in Balkanski and Singer (2018), we analyze n = 
1, 000 locations of Uber pickups (FiveThirtyEight, 2019) 
and assign a weight wi to each neighborhood ni that is 
proportional to the number of trips in the neighborhood. 

• Influence maximization: We use a citation network 
of Physics collaborations (Leskovec et al., 2007) with 
n = 9, 877 authors (nodes) and 25,998 co-authorships 
(edges), and maximize f(S) = |NG(S)|. 

• Movie recommendation: As in Mirzasoleiman, Badani-
diyuru, and Karbasi (2016a), we use the MovieLens 
dataset (Harper & Konstan, 2015) of n = 3, 706 movies 
to recommend k movies that have both good overall rat-
ings and are highly rated by the most users. 

• Facility Location: As in Lindgren, Wu, and Dimakis 
(2016), we use facility location objective and the movie 
ranking matrix [rij ] from the MovieLens dataset where 
rij is user j’s ranking on movie i to select k movies to rec-

1 P 
ommend from N using f(S) = i∈S maxj∈U rij .|N | 

• Revenue maximization: We use a revenue maximization 
objective from Breuer, Balkanski, and Singer (2020) on 
the CalTech Facebook Network dataset (Traud et al., 
2012) of 769 Facebook users N . 

• Feature selection: We use the Adult Income dataset 
(Blake & Merz, 1998) and select a subset of features to 
predict income level Y . We extract 109 binary features 
as in Kazemi, Zadimoghaddam, and Karbasi (2018) and 
use a joint entropy objective to select features. 

• Sensor placement: As in Krause, Singh, and Guestrin 
(2008), we use the Berkeley Intel Lab dataset which 
comprises of 54 sensors that collect temperature informa-
tion. We select k sensors that maximize entropy. 

Results. In Figure 1, we see that DUAL computes bounds 
on the approximations achieved by all four algorithms that 
are significantly better than 1 − 1/e. For GREEDY and 
LOCAL SEARCH, DUAL derives nearly identical approxima-
tions that are almost always over 0.85. In many instances, 
such as movie recommendation, facility location, feature se-
lection, and sensor placement, approximations are over 0.95. 
The approximations given by DUAL for LAZIER-THAN-
LAZY GREEDY are either identical to GREEDY and LOCAL 
SEARCH, or 0.02 to 0.05 worse. Even though RANDOM 
GREEDY and GREEDY have the same theoretical guarantee 
of 1 − 1/e for monotone submodular functions, the gap in 
their approximations on these instances is significant. 

In most cases, the approximations obtained by DUAL follow 
a “Nike-swoosh” shape as a function of constraint k. For 
k = 1, the algorithms are either exactly or near-optimal; 
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the lowest approximations are obtained for small values of 
k, and then approximations rebound and slowly increase 
as k increases. For experiments with n > 3000 and the 
Facebook revenue maximization setting, the values of k (up 
to 100) are too small to observe this increase. 

5.2. DUAL vs benchmarks for GREEDY approximations 

For the next set of experiments, we compare DUAL to multi-
ple benchmarks, which also compute approximations for the 
performance of submodular maximization algorithms. We 
fix a single algorithm, GREEDY, and compare the approxi-
mations found by DUAL and the benchmarks. We consider 
large instances, as well as small instances with n ≤ 20 ele-
ments, where we can compute the curvature and sharpness 
benchmarks that require brute-force computation. 

5.2.1. EXPERIMENTS ON LARGE INSTANCES 

Benchmarks. We consider the following benchmarks that 
upper bound the optimal value. These benchmarks can be 
efficiently computed on large instances. 

• Top-k. For a simple baseline, we upper bound OPT using 
the k elements, A, with maximum singleton value f(a):P 
OPTk = f(a). a∈A 

• Marginal. By using the value of GREEDY solutions Si of 
size i as well as GREEDY analysis techniques, we derive 
the following more sophisticated bound: 

f(Sj ) − (1 − 1/k)j−if(Si)
OPTk ≤ 

1 − (1 − 1/k)j−i 

for all i < j (See Appendix F.1 for proof). We compute 
the minimum upper bound over all i < j ≤ n pairs. 

• Sakaue-Ishihata. Sakaue and Ishihata (2018) propose 
a different upper bound of OPT using GREEDY proof 
techniques and derive the following bound: 

f(S)
OPTk ≤ Qk , 

1 − i=1 βi 

fSi−1 (ai)where βi = 1 − P 
(a) and Ai is the set of k 

a∈Ai 
fSi−1 

elements with maximal singleton values for fSi−1 . 

Results. We compare the approximations of GREEDY 
found by DUAL to those found by TOPK, MARGINAL and 
SAKAUE-ISHIHATA. Figure 2 shows that DUAL consis-
tently outperforms or matches the baselines. TOP-K bench-
mark performs poorly in most cases, which implies that 
most objectives are not close to additive. MARGINAL and 
SAKAUE-ISHIHATA are the strongest benchmarks, but are 
still significantly outperformed by DUAL on most instances. 
For MovieLens movie recommendation and Facebook rev-
enue maximization, where objectives are close to additive, 
TOP-K outperforms MARGINAL and SAKAUE-ISHIHATA. 

5.2.2. EXPERIMENTS ON SMALL INSTANCES 

Benchmarks. We consider the following benchmarks on 
small datasets that are parameterized properties that yield 
improved approximation guarantees. Unlike the bench-
marks that upper bound OPT, these benchmarks identify 
properties that guarantee a bound on the GREEDY approxi-
mation for any function that satisfies the properties. How-
ever, computing the parameters of these properties requires 
brute force computation and is computationally infeasible 
on large datasets. 

fS (a)• Curvature. The curvature c = 1 − minS,a of af (a) 
function measures how close f is to additive (Conforti 
& Cornu´ −c)/cejols, 1984). It yields an improved (1 − e 
approximation for GREEDY. 

• Soma-Yoshida. Soma and Yoshida (2017) propose an 
improved notion of curvature for monotone submodular 
functions f that can be decomposed as g + h, where g 
is monotone submodular and h is M \-concave. The h-

h(S)curvature γh = 1 − minS⊆N f(S) yields an improved 
approximation by improving upon the previous curvature 
parameter. 

• Sharpness. The property of submodular sharpness was 
introduced by Pokutta, Singh, and Torrico (2020) as an 
explanation for the performance of GREEDY in practice. 
It is the analog of sharpness from continuous optimiza-
tion (Lojasiewicz, 1963) and assumes that any solution 
which differs significantly from the optimal solution has 
a substantially lower value. On small instances, we com-
pute the Dynamic Submodular Sharpness property of the 
function, which is the sharpness property that yields the 
best approximation. More details in Appendix F.2. 

Another benchmark is stability, which guarantees that 
GREEDY finds the optimal solution if the instance is suffi-
ciently stable, i.e., its optimal solution remains optimal un-
der small perturbations of the function (Chatziafratis et al., 
2017). However, our settings are not perturbation-stable 
because there are multiple near-optimal solutions. 

Results. For small instances where we can exactly com-
pute necessary parameters as well as OPT by brute-force, 
we follow the experimental setup from (Pokutta et al., 2020). 
For k ∈ [1, 10], we randomly choose n = 2k elements to 
comprise the ground set and analyze the result of DUAL ver-
sus benchmarks on objectives, facility location and movie 
recommendation, from Pokutta, Singh, and Torrico (2020) 
on the MovieLens dataset. More details in Appendix E.2. 

In Figure 3, we observe that DUAL yields the best approxi-
mations. For facility location, DUAL shows a near-optimal 
approximation while other benchmark approximations are 
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Figure 3. GREEDY approximations computed by DUAL and multi-
ple benchmarks on small instances (n ≤ 20). 

k DUAL OPT CURV. SOMA. SHARP. 
6 0.0160 0.0317 0.365 0.729 0.830 
8 0.0298 0.457 7.99 17.13 18.47 
10 0.0716 7.17 156.1 372.4 359.1 

Table 1. Average runtimes (in seconds) of benchmark methods on 
MovieLens facility location setting, where n = 2k. 

near 1 − 1/e for larger k. For movie recommendation, the 
gap between the different benchmarks is smaller. In both 
settings and for all k, GREEDY finds a near-optimal solution. 

We additionally report benchmark runtimes in Table 1 for 
the facility location objective and find that CURVATURE, 
SOMA-YOSHIDA, SHARPNESS and OPT, which all require 
brute-force computation, become exponentially slower as k 
increases. At k = 10, n = 20, the average time to compute 
curvature approximation is 156 seconds while sharpness and 
the improved curvature benchmark both have a computation 
time of over 300 seconds. These methods are much slower 
than even brute-force computing OPT which takes 7.2 sec-
onds. While these benchmarks are not scalable, DUAL, 
which is at least 1000 times faster than these two methods 
for the facility location objective when k = 10, is scalable 
for larger datasets. 

5.2.3. COMPARISON OF PROPOSED METHODS 

We compare Method 1, Method 3, and DUAL on a cov-
erage objective and compare Method 3 and DUAL on a 
non-coverage objective in Figure 4. We observe that even 
Method 1, which employs the additive lower bound on the 
dual objective, finds approximations that are above 0.8. This 
indicates that, unlike the primal objective, the dual objective 
is close to additive. By partitioning the dual space (Method 
3), a small improvement over Method 1 is achieved. Finally, 
by considering the upper bound on the optimal solution for 
the functions fS for S ∈ S (DUAL), the approximations 
further improve. This improvement is minor for MovieLens, 
but can be around 0.1 for some k on YouTube. 

Figure 4. GREEDY approximations computed by Method 1, 
Method 3, and DUAL. 
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