Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

A. A toy example

We would like to show that the optimal solution that mini-
mize the worst-case risk across E3* and E,* is to predict
Y only using X;. Consider any classifier f(Y | X7, X5)
and its marginal

Y | X1) o f(X1, X2 =0,Y) + f(X1, X2 =1,Y).

For any input (x1,z2) € EQN, based on our construction,
the distribution P3¥ (X = x1, X3 = z2,Y) only has mass
on one label value y € {0,1}. Thus PV (Y =y | X; =
x1, X2 = x3) = 1. We can then write the log risk of the
classifier f(Y | X1, X2) as

_ f(x1,72,9)
log flxr, @, y) + f(r1, 22,1 —y)

The log risk of the marginal classifier f(Y | X;) is defined
as

—log ((f(‘rhx%y) + f(z1,1 = 22,9))
/(f(x17$27y) + f(l‘l, 1- any)
+f(331,.’11‘2,1 _y) +f($1,1 — 2,1 _y)))

Now suppose f(Y | X7, X5) achieves a lower risk than
f(Y | X1). This implies

f(x1,m2,y) f(x1,22,9) + f(21, 22,1 — y) f (21, 22,9)
+ f(z1,22,y) f(71,1 — 22,9)
+ f(z1, 22,1 —y) f(21,1 — 72,9)
< f(z1,22,9) f (21,22, y) + f(21, 22, y) f (21, 72, 1 — YY)
+ f(z1,22,y) f(21,1 — 22, 9)
+ f(z1, 22, y) f(71,1 — 22,1 — y).

Note that the first three terms on both side cancel out. We
have

f(w1, 20,1 —y) f(21,1 — 22,7)
< flxr, w2, y) f(w1,1 — 22,1 = 9).

Now let’s consider an input (z1,1 — x2) € E;X.
Based on our construction of the partitions, we have
P} (w1, 72,y) = Py (21,1 — x2,y). The log risk of the
marginal classifier on P21 * is still the same, but the log risk
of the classifier f(Y | X, X2) now becomes

f(xlu]- —I'Q,y)
f(ﬂfl,l—l'g,y)+f($1,1—$2,l—y).

—log

We claim that the log risk of f(Y | X7, X2) is higher than
f(Y'| X1) on Py*. Suppose for contradiction that the log

risk of f(Y | X1, X2) is lower, then we have

f(xhl —$2,y)f($173727y) +f(x171 —"EQ,]. _y>f(x17x2ay)

+f(l,lal 7x27y)f($1;1 7x27y)
+f(x1)1 _x271 _y)f(‘rlvl_mQay)

< flw1, 1 —x9,y) f(21,22,9) + f(21, 1 — 22, 9) f(21,1 — 22, %)

+f(1'1,1 —£C27y)f(flz'1,x2,]. _y)
+ f(z1,1 = 22,9) f(71,1 — 22,1 — y).

Canceling out the terms, we obtain

f(xh 1- Z2, 1- y)f(mlamQay)
< f(xla 1-—- w2ay>f(x1ax27 1- y)

Contradiction!

Thus the marginal f(Y | X;) will always reach a better
worst-group risk compare to the original classifier f(Y |
X1, X2). As aresult, the optimal classifier f(Y | X7, X5)
should satisfy f(Y | X1, X2) = f(Y | X1), ie., it will
only use X to predict Y.

B. Theoretical analysis

Proposition 1. For a pair of environments E; and Ej, as-
suming that the classifier f; is able to learn the true condi-
tional P,(Y | X1, X3), we can write the joint distribution
P; of E; as the mixture of PJN and P; <

Pj(mlaw27y) = a§P;/($17x2ay)+(l_a§)P;X(x17x27y)a

where 04;» = le,xz,y Pj(w1,22,y) - Pi(y | 71, 72) and

P;/(mlaany) (08 Pj(xlymZay) : R(y | $1,$2),
P;X(!bemy) x Pj(z1,22,y) - Pi(1 —y | 1, 22).

Proof. For ease of notation, let ¢+ = 1, j = 2. For an
input (x1, x2), let’s first consider the conditional probability
P}*(y | x1,22) and P} (y | @1, x2). Since the input is
in Es, the probability that it has label y is given by P»(y |
Z1,x9). Since fi; matches Pi(y | x1,x2), the likelihood
that the prediction is wrong is given by P1(1 —y | z1, z2)
and the likelihood that the prediction is correct is givn by
Pi(y | 21, x2). Thus, we have

Pi(l—y|a1,a2)Po(y | w1, 22)
P1>< — ! :
2 (W lw,) Yy P =y |21, 22) Pa(y | w1, 22)
Pi(y | w1, 22) Pa(y | @1, 72)
Pl‘/ vy, _ 9 ? .
2 (y | 1 2) Zy’ Pl(y/ | (El,xQ)PQ(yl | .’L'1,£CQ)

Now let’s think about the marginal of (z1, o) if it is in
the set of mistakes E;X. Again, since the input is in Es,
the probability that it exists is given by the marginal in Fs:

Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

Py(x1,x2). This input has two possibilities to be partitioned
into E21X: 1) the label is y and f; predicts it as 1 — y; 2) the
label is 1 — y and f; predicts it as y. Marginalizing over all
(21, x2), we have

Py (w1,)

Pa(x1,22) 32, Pr(1—ylz1,22) P2 (y|®1,22)
22y Pr(—ylz1,22) Pa(ylwr,@2)+P1(yle1,22) P (y|z1,22)

D Po(af,x5) 32, Pr(1—ylzy,@5) Pa(y|@f,5)

z1,@y 3, Pr(l—ylat,25) P (ylo],a5) +Pi(yla] o) P2 (yle] @)

Py(w1,22) 30, Pr(1 —y | 21, 22) Po(y | 21, 22)

Yy Po(a @) 30, Pr(1—y [@, 2h) Pa(y | @), @)
Similarly, we have

Py (w1, 22)
 Pa(myme) X, Puly | @y, m2) Pa(y | w1, 22)
Dour o Po(a,w5) 30, Pi(y | oy, @) Pa(y | @7, 25)

Combining these all together using the Bayes’ theorem, we
have

P21><(x17x27y)
Pi(1—y|z1,22)Pa(y | x1,22)Pa(x1, 22)

S B) Sy P =y T 2 Paly | 0%,)

_ Pi(1—y |2z, 22)Pa(x1, 22, y)
Dat gy D@ @,y) Pr(L =y | @, @h)
o< Pi(1 =y |21, 22)Pa(21, 22, %),
P21/(3€17332,y)
_ Pi(y | z1,22) Po(y | @1, 22) Po(21, 22)
Dwray P2(@,5) 32 Py’ | @, @) Pa(y’ | 2, @)’
Pi(y | 1, 22) Pa (21, 22, 9)
Doat .y P2(@, 2,y) PL(Y | 2, 2)

o« Pi(y | x1,2) Pa(x1, 2, 9).

Finally, it is straightforward to show that for ai =
Dy ay P2(@1,22,9) Pi(y | 21, 22), we have

ay Py (21, 22,y) + (1 — ag) Py
= Pi(y | z1,72) Pa(21,72,9)

+ Pi(1 =y |21, 22) P2 (21, 22,)
= Py(r1,22,9).

O

From now on, we assume that the marginal distribution of Y’
is uniform in all joint distributions, i.e., f; performs equally
well on different labels.

Theorem 1. Suppose X is independent of X, given
Y. For any environment pair E; and E;, if Zy P(z2 |
y) = >, Pi(x2 | y) for any x, then Cov(Xa,Y; P;) >

Cov(Xo,Y; P;) implies COV(XQ,Y;P;X) < 0 and
Cov(Xo,Y; P/¥) > 0.

Proof. By definition, we have

Cov(Xy,Y; P/X)
= E[X,Y; P — E[Xy; PJ¥|E[Y; P
- Z l‘gP;X(Il,Z‘Q, 1)

T1,%2
E i X E 3 X
- IQP] ($1,$27y) P] (1'1,1'2,1)
Z1,22,Y Z1,T2

- ¥

Il it
T1,T2,T7,To,Y

-

ror
T1,T2,Y,T7,To

xQPjX(xlv‘r27 1)P;X(x,17m/2’y/)

m2P;X(xl7x27y)P;X<xll7w/25 1)

Expanding the distributions of P;X, it suffices to show that

Z (mng(xl,x27 DP;(0] 21, x9)
PR bt)P~y | b))
< Y (wPnenyP -yl o)

T (e DR | o 0h)

Note that when y = ¢’ = 1, two terms cancel out. Thus we
need to show

Z ($2Pj($1,$2,1)Pz'(0 | 21, 22)
T1,T2,T),Th
T @b 0Bl ah)

< 2

’ /
x1,22,T7,Ty

(xQPj(xl,x%O)Pi(l | SCl,fEQ)
Py(a, 2, DP(0 | a,35))

Based on the assumption that the marginal distribution in
E;X is uniform, we have

S Pi(ah,2h, 0)P(1 | 2, ah)

' ,zh
= N Py, ah,)P0 | @, ah).

!l
II,ZL’Z

Thus we can simplify our goal as

Z Ing(Il,IQ, l)PZ(O | SCl,I’Q)

T1,T2

< Z w2 Pj(x1,22,0) P;(1 | 21, 2)

Z1,T2

Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

Similarly, we can simplify the condition Cov(Xs,Y; P;) >
Cov(Xs,Y; P;) as

Z xo(Pj(x1,22,1) — Pi(21,22,1))

xl,xo

<Z$2

xl,z0

i(21,22,0) — Pi(r1,22,0))

Since x5 is independent of z1 given y, we have

> @a(Pi(e,y = DPj(zz |y = 1)-

vl Pi(z1,y=1)Pi(z2 |y =1))
< Y wa(Py(r,y = 0)Py(wz |y = 0)—
whee Pi(x1,y = 0)Pi(z2 | y =0))

Since x; is the stable feature and the label marginal is
the same across environments, we have P;(z1,y = 1) =
Pi(z1,y = 1) and Pj(z1,y = 0) = (a:l,y— 0). This
implies

> @9 Pj(x1,22,0)Pi(1 | 21, 72)

T1,22

= Pj(x1,y=0)Pi(x,y=1)

> 22 Pj(x2 |y =0)Pi(22 [y =1)
o Pi(x1, 1)
Plug in Eq (1) and we complete the proof. The other in-
equality follows by symmetry. [

Extension to multi-class classification: In Theorem 1,
we focus on binary classification for simplicity. For multi-
class classification, we can convert it into a binary problem
by defining Y, as a binary indicator of whether class c is
present or absent. Our strong empirical performance on
MNIST (10-class classification) also confirms that our re-
sults generalize to the multi-class setting.

Theorem 2. For any environment pair E; and FE;,
Cov(Xs,Y; Py) > Cov(Xa,Y; P;) implies

ZP z1,y=1) ZIQ (22 |y=1) = Pi(z2|y=1))
Cov(Xg,Y P’X)
<ZP 1,y = 0) sz (w2 |y =0) = Pe2ly=0) -
< JCOV(XQ,Y PV —]COV(XQ,Y P
al at
Again, by uniform label marginals, we have) p J
Cov(Xa,Y; P/X)
za(Pj(z2 |y =1) — Pi(z2 [y = 1)) —al ; 1—ao ;
Z L Cov(Xy, Y PIY) = =1 Cov(Xy, Y1 P)Y)
(0% (o'
Zu (22 |y =0) = Pi(za |y =0). ! Z

For binary zo € {0, 1}, this implies Pj(z2 = 1
)+P(:r2—1|y—0)<P(x2—1\y—0)+P
1|y =1).Since Pj(ze |y = 1)+ Pj(z2 | y =
Pi(xz2 |y =1)+4 Pi(z2 | y = 0), we have

y
(z2 =
0)

Pj(xy |y =1)Pj(z2 |y =0)

1
< Pj(wa |y =0)Pj(x2 |y =1). M

We can expand our goal in the same way:

> aaPj(wy, 22, 1)Pi(0 | 21, 22)

T1,T2

= Z (q;ng(xl,y =1)Pi(z1,y =0)

X1,T2

Piws |y = 1Pz |y = 0)) /P(a1,22)

= ZPj(xl,y =1)Pi(z1,y =0)
1
3 12 Pj(w2 |y =1)Pi(z2 |y =0)
Pi(xq,2)

2

where Pf‘/ is the distribution of the correct predictions
when applying f; on E;.

Proof. From the proof in Theorem 1, we can write the con-
dition Cov(X»,Y; P;) > Cov(X»,Y; P;) as

Z xo(Pj(x1,22,1) — Pi(x1,72,1))

zl,x0

<Z.’E2

xl,x2

i(x1,22,0) — P;(21,22,0))

Using P;(0 | z1,22) + P;(1 | z1,22) = 1,

> 2a(Pj(x1, 22, 1) — Pi(x1, 22, 1))

ehiz (PO | @y, w0) + Pi(1] 1, x2))

< Z o (P P;(x1,2,0))
LT (D0 | @y, @2) 4+ Py(1 | @1, 22))

.131,1'2,0)

Since Pi(:cl,x27 1)Pi(0 | 56'1,.%'2) and Pi(aﬁl,l'z,O)Pi(l |

Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

x1,x2) cancel out with each other. We have

Z z2(Pj(21, 22, 1) P(0 | 21, 22)—

#1,ma Pj(x1,x2,0)Py(1 | x1,22))
< Z 2o (Pi(w1, w2, 1) Pi(1 | @1, 2)—

olas Pi(z1,22,0)P;(0 | 21, 22))

_ Z z2(Pj(21, 22, 1) P;(1 | 21, 22)—

L Py, x9,0)Py(0 | 21, 22))

From the derivations in Theorem 1, we know that

— _Cov(Xs,Y; Pi*
2(1— al) v X, Y3)

= Z xro (Pj(d?l,llig, I)PZ(O | SChl’Q)*
zl,x
: Pj($1,$2,0)Pi(1 | Il,.ﬁg))

Q—COV(XQ,Y PiY)
= Z xz((1,22, 1) P(1 | 21, 22)
zl,x
: P,‘(x1,$2,0)Pi(O | 331,.132))

COV(XQ, Y; PY)

2041
= Z 962(3(3317332,1)131‘(1 | 21, 22)—
xl,x
’ Pi($1,$270)PZ‘(O ‘ :L‘l,xg)).

Combining these, we have

Cov(Xy, Y PiX)
L —aj oo L= 0‘3‘ v
< Cov(Xa,Y; P) = ——LCov(X,,Y; Pi¥)
Oé [’}
J

K2

Similarly, by using P;(0 | z1,22) + Pj(1 | z1,22) = 1, we
can get

COV(XQ, Y; P/)

—OL- i 1—
—Cov(X,Y; PIY) - cov(XQ, Y; PJY)

Cvj Cki

O

C. Experimental Setup
C.1. Datasets and Models
C.1.1. MNIST

Data We use the official train-test split of MNIST. Train-
ing environments are constructed from training split, with
14995 examples per environment. Validation data and test-
ing data is constructed based on the testing split, with 2497

examples each. Following Arjovsky et al. (2019), We con-
vert each grey scale image into a 10 x 28 x 28 tensor, where
the first dimension corresponds to the spurious color feature.

Model: The input image is passed to a CNN with 2 con-
volution layers and 2 fully connected layers. We use the
architecture from PyTorch’s MNIST example®.

C.1.2. BEER REVIEW

Data We use the data processed by Lei et al. (2016).
Reviews shorter than 10 tokens or longer than 300 to-
kens are filtered out. For each aspect, we sample train-
ing/validation/testing data randomly from the dataset and
maintain the marginal distribution of the label to be uniform.
Each training environment contains 4998 examples. The
validation data contains 4998 examples and the testing data
contains 5000 examples. The vocabulary sizes for the three
aspects (look, aroma, palate) are: 10218, 10154 and 10086.
The processed data will be publicly available.

Model We use a standard CNN text classifier (Kim, 2014).
Each input is first encoded by pre-trained FastText embed-
dings (Mikolov et al., 2018). Then it is passed into a 1D
convolution layer followed by max pooling and ReL.U acti-
vation. The convolution layer uses filter size 3, 4, 5. Finally
we attach a linear layer with Softmax to predict the label.

C.1.3. CELEBA

Data We use the official train/val/test split of CelebA (Liu
et al., 2015b). The training environment {female} con-
tains 94509 examples and the training environment {male}
contains 68261 examples. The validation set has 19867 ex-
amples and the test set has 19962 examples.

Model We use the Pytorch torchvision implementation
of the ResNet50 model, starting from pretrained weights.
We re-initalize the final layer to predict the target attribute
hair color.

C.1.4. ASK2ME

Data Since the original data doesn’t have a standard
train/val/test split, we randomly split the data and use
50% for training, 20% for validation, 30%for testing.
There are 2227 examples in the training environment
{breast_cancer=0}, 1394 examples in the training en-
vironment {breast_cancer=1}. The validation set con-
tains 1448 examples and the test set contains 2173 examples.
The vocabulary size is 16310. The processed data will be
publicly available.

Shttps://github.com/pytorch/examples/blob/master/mnist/main.py

Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

Model The model architecture is the same as the one for
Beer review.

C.2. Implementation details

For all methods: We use batch size 50 and evaluate the
validation performance every 100 batch. We apply early
stopping once the validation performance hasn’t improved
in the past 20 evaluations. We use Adam (Kingma & Ba,
2014) to optimize the parameters and tune the learning rate
€ {1073,10=%,10~°}. For simplicity, we train all methods
without data augmentation. Following Sagawa et al. (2019),
we apply strong regularizations to avoid over-fitting. Specif-
ically, we tune the dropout rate € {0.1,0.3,0.5} for text
classification datasets (Beer review and ASK2ME) and tune
the weight decay parameters € {107°,1071,1072,1073}
for image datasets (MNIST and CelebA).

DRO and Ours We directly optimize the min — max ob-
jective. Specifically, at each step, we sample a batch of
example from each group, and minimize the worst-group
loss. We found the training process to be pretty stable when
using the Adam optimizer. On CelebA, we are able to match
the performance reported by Sagawa et al. (2019).

IRM We implement the gradient penalty based on
the official implementation of IRM’. The gradient
penalty is applied to the last hidden layer of the net-
work. We tune the weight of the penalty term €
{1072, 107, 10°, 10!, 102, 103, 10*} and the annealing
iterations € {10, 10%,10%}.

RGM For the per-environment classifier in RGM, we
use a MLP with one hidden layer. This MLP takes
the last layer of the model as input and predicts the la-
bel. Similar to IRM, we tune the weight of the regret
€ {1072, 1071, 10°, 10%, 102, 103, 10*} and the anneal-
ing iterations € {10,102, 103}.

C.3. Computing Infrastructure and Running Time
Analysis

We have used the following graphics cards for our experi-
ments: Tesla V100-32GB, GeForce RTX 2080 Ti and A100-
40G.

We conducted our running time analysis on MNIST and
ASK2ME using GeForce RTX 2080 Ti. Table 5 and 6 shows
the results. We observe that due to the direct optimization
of the min max objective, the running time of DRO, PI
and Oracle is roughly 4 times comparing to other methods
(proportional to the number of groups). Also, while our
model needs to train additional environment-specific classi-
fiers (comparing to DRO), its running time is very similar
to DRO across the two datasets. We believe by using the

"https://github.com/facebookresearch/InvariantRiskMinimization

TIME Train Val Test
ERM 2MIN 58 SEC 83.61 81.21 15.65
IRM 3MIN37SEC 8342 80.41 12.89
RGM 3 MIN 7 SEC 82.60 81.41 13.97
DRO 17MIN 19 SEC 79.44 80.65 16.05
OURS 11 MIN 58 SEC 65.04 71.16 71.56
ORACLE 14 MIN 31 SEC 6896 72.28 70.04

Table 5. Running time and model performance on MNIST. Here
the validation data is sampled from the training environments.
Our algorithm requires training additional environment-specific
classifiers. However, it converges faster than DRO in the third
stage (50 epochs vs. 72 epochs) and generalizes much better.

TIME Train Val Test
ERM 3MIN35SEC 9944 66.01 59.04
IRM 3MIN 21 SEC 98.70 63.10 57.85
RGM SMIN 36 SEC 99.78 64.07 59.99
DRO 16 MIN 40 SEC 86.77 77.66 67.34
PI (Ours) 18 MIN 97.09 78.64 74.14

Table 6. Running time and model performance on ASK2ME.
Here the validation accuracy is computed based on the
breast_cancer attribute. The test accuracy is the average
worst-group accuracy across all 17 attributes. Our algorithm’s
running time is similar to DRO.

online learning algorithm proposed by Sagawa et al. (2019),
we can further reduce the running time of our algorithm.

D. Additional results

What features does P1look at? To understand what features
different methods rely on, we plot the word importance on
Beer Look in Figure 5. For the given input example, we
evaluate the prediction change as we mask out each input
token. We observe that only PI and Oracle ignore the spu-
rious feature and predict the label correctly. Comparing to
ERM, IRM and RGM focus more on the causal feature such
as ‘tiny’. However, they still heavily rely on the spurious
feature.

Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

ERM DRO IRM RGM Ours
Accuracy Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg
Adenocarcinoma 3333 7291 7729 7923 5556 7840 5556 78.12 80.24 84.74
Polyp syndrom 4444 7463 7729 78.79 5556 7631 66.67 7873 69.23 81.28
Brain cancer 55.56 7851 77.14 78.09 5556 78.59 67.55 8233 7994 8795
Breast cancer 66.49 80.47 75.00 78.84 66.87 80.56 6438 79.81 8032 83.12
Colorectal cancer 66.54 8050 6931 7794 6496 8128 6693 8033 76.24 81.71
Endometrial cancer ~ 66.98 80.60 76.19 80.21 66.03 82.60 6698 81.77 8032 83.26
Gastric cancer 62.96 7994 7695 81.65 6296 80.03 59.26 78.87 79.44 8592
Hepatobiliary cancer 44.44 73.01 60.00 73.89 5556 77.19 5556 7622 60.00 78.94
Kidney cancer 16.67 66.66 50.00 6870 33.33 73.07 3333 7131 50.00 74.76
Lung cancer 4444 74776 6250 7458 38.89 7428 50.00 7475 7031 78.85
Melanoma 66.67 80.55 66.67 78.87 66.67 8332 66.67 79.69 80.06 86.67
Neoplasia 50.00 7598 3333 69.10 3333 7197 50.00 75.18 70.00 80.06
Ovarian cancer 65.31 80.16 77.20 7930 66.80 80.64 66.33 79.53 73.47 8276
Pancreatic cancer 67.18 8093 7582 7874 63.64 79.69 63.64 79.67 80.06 84.31
Prostate cancer 63.96 8577 51.04 7748 6429 8521 65.58 8392 7890 86.75
Rectal cancer 66.67 7878 64.10 8037 66.67 7886 67.54 80.80 71.79 84.59
Thyroid cancer 50.00 77.18 75.00 83.06 66.86 84.05 67.73 82.56 80.23 87.85
Average 54.80 7773 6734 7758 57.86 79.18 60.81 79.03 74.15 83.15

Table 7. Worst-group and average-group accuracy across 17 attributes on ASK2ME.

method input example

ERM _ gold color with almost a surprisingly tiny head .
DRO _ gold color with almost a surprisingly tiny head .
IRM EEBORIRER co!d color with almost a surprisingly tiny head .
RGM _ gold color with almost a surprisingly tiny head .

PI <art_positive> gold oIoF With almost » SUFprSingy il head .

Oracle <art_positive> gold color with - a surprisingly - head .

Figure 5. Visualizing word importance on Beer Look. Only PI
and Oracle ignore the artificial token and correctly predict the

input as negative. We will add more examples in the update.

Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

Beer Look Beer Aroma Beer Palate
O Gradient penalty © Cross Entropy O Gradient penalty 9 Cross Entropy O Gradient penalty © Cross Entropy
1E+00 1E+00 1E+00
1E-04 1E-04 1E04
1E-08 1E-08
E-08
1.00E-02 10E+00 1.0E+02 1.0E+04 1E-02 IE+00 1E+02 1E+04 1E-02 1E400 | 1E+02 1E+04
© Training Acc © Validation Acc © Training Acc © Validation Acc © Training Acc © Validation Acc

05

0.25 025

0 0 0
1.00E-02 1.0E+00 A 1.0E+02 1.0E+04 1E-02 1E+00 A 1E+02 1E+04 1E-02 1E+00 A 1E+02 1E+04

Figure 6. Performance of IRM as we adjust the weight of the gradient penalty. We observe that while the gradient penalty term is
always orders of magnitude smaller than the cross entropy loss, the model is still able to overfit the unstable correlations in the training
environments. As we further increase the penalty, the training & validation performance quickly drop to that of ERM.

Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

ERM DRO IRM RGM Ours

Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg
5_0_Clock_Shadow 53.33 81.51 90.00 92.05 80.00 8593 66.67 8722 8333 89.65
Arched_Eyebrows 72.14 87.16 90.42 92.68 84.43 87.85 8895 92.60 90.56 92.31
Attractive 67.21 8584 90.77 9222 8257 8728 86.64 9194 8998 91.86
Bags_Under_Eyes 7246 86.16 90.59 92.04 81.34 86.84 88.52 92.13 89.12 92.12
Bald 7598 9123 91.73 93.04 7139 8221 91.50 9481 91.68 93.42
Bangs 73.85 87.80 90.84 9291 81.70 87.38 88.05 9221 90.24 9233
Big_Lips 7346 87.14 90.59 9255 84.16 87.87 89.54 92.65 90.52 92.17
Big_Nose 71.43 86.00 91.58 9297 8499 8843 9122 93.78 9136 92.87
Black_Hair 7598 9091 89.62 9377 78.63 89.16 90.66 94.02 88.10 93.30
Blurry 51.23 81.06 86.56 90.14 7936 8573 79.01 89.71 85.61 89.39
Brown_Hair 43.68 79.17 6437 8574 78.16 83.39 7241 8730 59.77 83.83
Bushy_Eyebrows 7273 86.52 72773 88.83 81.82 87.51 81.82 91.26 81.82 90.77
Chubby 9.52 7069 6190 84.63 76.19 8291 4762 8232 7143 86.59
Double_Chin 50.00 80.73 90.66 91.76 78.52 86.35 91.50 92.74 90.21 9245
Eyeglasses 58.06 82.83 9032 92.02 8044 8571 7742 8934 8871 91.17
Goatee 0.00 6826 0.00 70.08 84.80 90.83 91.50 95.66 91.63 94.59
Gray_Hair 60.71 82.53 69.08 87.73 42.60 7620 85.71 89.56 68.26 88.18
Heavy_Makeup 66.06 85.68 89.69 9222 84.18 8720 8443 9149 90.01 91.86
High_Cheekbones 7333 86.62 90.78 9221 84.42 87.13 89.02 9227 9039 91.72
Gender. 46.67 80.14 8556 90.87 7444 8393 70.00 87.73 90.56 91.52
Mouth_Slightly_ Open 74.22 87.01 91.27 9233 84.51 8742 91.01 9256 91.74 91.85
Mustache 50.00 80.89 91.72 9538 50.00 78.58 91.50 9597 91.60 94.93
Narrow_Eyes 69.23 8554 90.05 91.85 8294 87.00 88.46 91.84 91.69 91.90
No_Beard 39.39 7810 84.85 9097 72773 83.80 57.58 85.00 84.85 9043
Oval_Face 75.16 87.20 90.71 9240 84.22 87.70 91.24 9276 9031 91.90
Pale_Skin 7544 8799 9030 9154 81.67 8597 91.37 9246 89.55 92.02
Pointy_Nose 73.34 87.18 91.19 9242 84.87 87.69 §89.29 9255 91.07 92.00
Receding_Hairline 66.67 84.75 9098 91.86 80.56 84.34 83.33 91.11 8796 90.97
Rosy_Cheeks 7490 88.17 91.40 9332 84.88 88.59 90.55 93.00 9149 9271
Sideburns 3846 77.84 84.62 90.69 7692 84.14 7692 89.72 9135 93.75
Smiling 7591 86.87 9159 9231 84.14 8729 91.10 9249 9153 91.88
Straight_Hair 74.00 86.60 90.27 92.05 84.37 8741 8836 9237 9155 9192
Wavy_Hair 7422 86.88 91.41 9240 84.15 8741 88.81 9221 91.64 91.88
Wearing_Earrings 7536 86.77 91.67 92.63 84.78 87.70 90.88 92.55 91.51 92.19
Wearing_Hat 7.69 7039 46.15 8228 46.15 7734 6154 86.26 53.85 84.56
Wearing_Lipstick 59.37 83.61 89.47 9188 8253 86.01 79.37 90.10 9032 91.57
Wearing_Necklace 74.57 8726 91.09 9247 8226 8742 89.53 92.17 90.73 92.21
Wearing_Necktie 25.00 7452 90.00 91.56 80.00 84.31 35.00 7932 91.44 9253
Young 71.60 86.07 89.13 91.64 7621 8596 90.19 92.03 87.23 91.51
Average 60.06 83.63 84.25 90.83 7851 8579 8252 9095 87.04 91.41

Table 8. Worst-group and average-group accuracy for hair color prediction on CelebA.

