
Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers

A. A toy example
We would like to show that the optimal solution that mini-
mize the worst-case risk across E1X

2 and E1×
2 is to predict

Y only using X1. Consider any classifier f(Y | X1, X2)
and its marginal

f(Y | X1) ∝ f(X1, X2 = 0, Y ) + f(X1, X2 = 1, Y ).

For any input (x1, x2) ∈ E1X
2 , based on our construction,

the distribution P 1X
2 (X1 = x1, X2 = x2, Y ) only has mass

on one label value y ∈ {0, 1}. Thus P 1X
2 (Y = y | X1 =

x1, X2 = x2) = 1. We can then write the log risk of the
classifier f(Y | X1, X2) as

− log
f(x1, x2, y)

f(x1, x2, y) + f(x1, x2, 1− y)
.

The log risk of the marginal classifier f(Y | X1) is defined
as

− log
(
(f(x1, x2, y) + f(x1, 1− x2, y))
/(f(x1, x2, y) + f(x1, 1− x2, y)

+ f(x1, x2, 1− y) + f(x1, 1− x2, 1− y))
)
.

Now suppose f(Y | X1, X2) achieves a lower risk than
f(Y | X1). This implies

f(x1, x2, y)f(x1, x2, y) + f(x1, x2, 1− y)f(x1, x2, y)
+ f(x1, x2, y)f(x1, 1− x2, y)
+ f(x1, x2, 1− y)f(x1, 1− x2, y)

< f(x1, x2, y)f(x1, x2, y) + f(x1, x2, y)f(x1, x2, 1− y)
+ f(x1, x2, y)f(x1, 1− x2, y)
+ f(x1, x2, y)f(x1, 1− x2, 1− y).

Note that the first three terms on both side cancel out. We
have

f(x1, x2, 1− y)f(x1, 1− x2, y)
< f(x1, x2, y)f(x1, 1− x2, 1− y).

Now let’s consider an input (x1, 1 − x2) ∈ E1×
2 .

Based on our construction of the partitions, we have
P 1X
2 (x1, x2, y) = P 1×

2 (x1, 1− x2, y). The log risk of the
marginal classifier on P 1×

2 is still the same, but the log risk
of the classifier f(Y | X1, X2) now becomes

− log
f(x1, 1− x2, y)

f(x1, 1− x2, y) + f(x1, 1− x2, 1− y)
.

We claim that the log risk of f(Y | X1, X2) is higher than
f(Y | X1) on P 1×

2 . Suppose for contradiction that the log

risk of f(Y | X1, X2) is lower, then we have

f(x1, 1− x2, y)f(x1, x2, y) + f(x1, 1− x2, 1− y)f(x1, x2, y)
+ f(x1, 1− x2, y)f(x1, 1− x2, y)
+ f(x1, 1− x2, 1− y)f(x1, 1− x2, y)

< f(x1, 1− x2, y)f(x1, x2, y) + f(x1, 1− x2, y)f(x1, 1− x2, y)
+ f(x1, 1− x2, y)f(x1, x2, 1− y)
+ f(x1, 1− x2, y)f(x1, 1− x2, 1− y).

Canceling out the terms, we obtain

f(x1, 1− x2, 1− y)f(x1, x2, y)
< f(x1, 1− x2, y)f(x1, x2, 1− y).

Contradiction!

Thus the marginal f(Y | X1) will always reach a better
worst-group risk compare to the original classifier f(Y |
X1, X2). As a result, the optimal classifier f(Y | X1, X2)
should satisfy f(Y | X1, X2) = f(Y | X1), i.e., it will
only use X1 to predict Y .

B. Theoretical analysis
Proposition 1. For a pair of environments Ei and Ej , as-
suming that the classifier fi is able to learn the true condi-
tional Pi(Y | X1, X2), we can write the joint distribution
Pj of Ej as the mixture of P iX

j and P i×
j :

Pj(x1, x2, y) = αi
jP

iX
j (x1, x2, y)+(1−αi

j)P
i×
j (x1, x2, y),

where αi
j =

∑
x1,x2,y

Pj(x1, x2, y) · Pi(y | x1, x2) and

P iX
j (x1, x2, y) ∝ Pj(x1, x2, y) · Pi(y | x1, x2),
P i×
j (x1, x2, y) ∝ Pj(x1, x2, y) · Pi(1− y | x1, x2).

Proof. For ease of notation, let i = 1, j = 2. For an
input (x1, x2), let’s first consider the conditional probability
P 1×
2 (y | x1, x2) and P 1X

2 (y | x1, x2). Since the input is
in E2, the probability that it has label y is given by P2(y |
x1, x2). Since f1 matches P1(y | x1, x2), the likelihood
that the prediction is wrong is given by P1(1− y | x1, x2)
and the likelihood that the prediction is correct is givn by
P1(y | x1, x2). Thus, we have

P 1×
2 (y | x1, x2) =

P1(1− y | x1, x2)P2(y | x1, x2)∑
y′ P1(1− y′ | x1, x2)P2(y′ | x1, x2)

,

P 1X
2 (y | x1, x2) =

P1(y | x1, x2)P2(y | x1, x2)∑
y′ P1(y′ | x1, x2)P2(y′ | x1, x2)

.

Now let’s think about the marginal of (x1, x2) if it is in
the set of mistakes E1×

2 . Again, since the input is in E2,
the probability that it exists is given by the marginal in E2:
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P2(x1, x2). This input has two possibilities to be partitioned
into E1×

2 : 1) the label is y and f1 predicts it as 1− y; 2) the
label is 1− y and f1 predicts it as y. Marginalizing over all
(x1, x2), we have

P 1×
2 (x1, x2)

=

P2(x1,x2)
∑

y P1(1−y|x1,x2)P2(y|x1,x2)∑
y P1(1−y|x1,x2)P2(y|x1,x2)+P1(y|x1,x2)P2(y|x1,x2)∑

x′
1,x

′
2

P2(x′
1,x

′
2)

∑
y P1(1−y|x′

1,x
′
2)P2(y|x′

1,x
′
2)∑

y P1(1−y|x′
1,x

′
2)P2(y|x′

1,x
′
2)+P1(y|x′

1,x
′
2)P2(y|x′

1,x
′
2)

=
P2(x1, x2)

∑
y P1(1− y | x1, x2)P2(y | x1, x2)∑

x′
1,x

′
2
P2(x′1, x

′
2)
∑

y P1(1− y | x′1, x′2)P2(y | x′1, x′2)

Similarly, we have

P 1X
2 (x1, x2)

=
P2(x1, x2)

∑
y P1(y | x1, x2)P2(y | x1, x2)∑

x′
1,x

′
2
P2(x′1, x

′
2)
∑

y P1(y | x′1, x′2)P2(y | x′1, x′2)

Combining these all together using the Bayes’ theorem, we
have

P 1×
2 (x1, x2, y)

=
P1(1− y | x1, x2)P2(y | x1, x2)P2(x1, x2)∑

x′
1,x

′
2
P2(x′1, x

′
2)
∑

y′ P1(1− y′ | x′1, x′2)P2(y′ | x′1, x′2)
,

=
P1(1− y | x1, x2)P2(x1, x2, y)∑

x′
1,x

′
2,y

′ P2(x′1, x
′
2, y
′)P1(1− y′ | x′1, x′2)

,

∝ P1(1− y | x1, x2)P2(x1, x2, y),

P 1X
2 (x1, x2, y)

=
P1(y | x1, x2)P2(y | x1, x2)P2(x1, x2)∑

x′
1,x

′
2
P2(x′1, x

′
2)
∑

y′ P1(y′ | x′1, x′2)P2(y′ | x′1, x′2)
,

=
P1(y | x1, x2)P2(x1, x2, y)∑

x′
1,x

′
2,y

′ P2(x′1, x
′
2, y
′)P1(y′ | x′1, x′2)

,

∝ P1(y | x1, x2)P2(x1, x2, y).

Finally, it is straightforward to show that for α1
2 =∑

x1,x2,y
P2(x1, x2, y)P1(y | x1, x2), we have

α1
2P

1X
2 (x1, x2, y) + (1− α1

2)P
1×
2

= P1(y | x1, x2)P2(x1, x2, y)

+ P1(1− y | x1, x2)P2(x1, x2, y)

= P2(x1, x2, y).

From now on, we assume that the marginal distribution of Y
is uniform in all joint distributions, i.e., fi performs equally
well on different labels.

Theorem 1. Suppose X2 is independent of X1 given
Y . For any environment pair Ei and Ej , if

∑
y Pi(x2 |

y) =
∑

y Pj(x2 | y) for any x2, then Cov(X2, Y ;Pi) >

Cov(X2, Y ;Pj) implies Cov(X2, Y ;P i×
j ) < 0 and

Cov(X2, Y ;P j×
i ) > 0.

Proof. By definition, we have

Cov(X2, Y ;P i×
j )

= E[X2Y ;P i×
j ]− E[X2;P

i×
j ]E[Y ;P i×

j ]

=
∑
x1,x2

x2P
i×
j (x1, x2, 1)

−
∑

x1,x2,y

x2P
i×
j (x1, x2, y)

∑
x1,x2

P i×
j (x1, x2, 1)

=
∑

x1,x2,x′
1,x

′
2,y

′

x2P
i×
j (x1, x2, 1)P

i×
j (x′1, x

′
2, y
′)

−
∑

x1,x2,y,x′
1,x

′
2

x2P
i×
j (x1, x2, y)P

i×
j (x′1, x

′
2, 1)

Expanding the distributions of P i×
j , it suffices to show that

∑
x1,x2,x′

1,x
′
2,y

′

(
x2Pj(x1, x2, 1)Pi(0 | x1, x2)

Pj(x
′
1, x
′
2, y
′)Pi(1− y′ | x′1, x′2)

)
<

∑
x1,x2,y,x′

1,x
′
2

(
x2Pj(x1, x2, y)Pi(1− y | x1, x2)

Pj(x
′
1, x
′
2, 1)Pi(0 | x′1, x′2)

)
Note that when y = y′ = 1, two terms cancel out. Thus we
need to show∑

x1,x2,x′
1,x

′
2

(
x2Pj(x1, x2, 1)Pi(0 | x1, x2)

Pj(x
′
1, x
′
2, 0)Pi(1 | x′1, x′2)

)
<

∑
x1,x2,x′

1,x
′
2

(
x2Pj(x1, x2, 0)Pi(1 | x1, x2)

Pj(x
′
1, x
′
2, 1)Pi(0 | x′1, x′2)

)
Based on the assumption that the marginal distribution in
Ei×

j is uniform, we have∑
x′
1,x

′
2

Pj(x
′
1, x
′
2, 0)Pi(1 | x′1, x′2)

.
=
∑
x′
1,x

′
2

Pj(x
′
1, x
′
2, 1)Pi(0 | x′1, x′2).

Thus we can simplify our goal as∑
x1,x2

x2Pj(x1, x2, 1)Pi(0 | x1, x2)

<
∑
x1,x2

x2Pj(x1, x2, 0)Pi(1 | x1, x2)
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Similarly, we can simplify the condition Cov(X2, Y ;Pi) >
Cov(X2, Y ;Pj) as∑

x1,x2

x2(Pj(x1, x2, 1)− Pi(x1, x2, 1))

<
∑
x1,x2

x2(Pj(x1, x2, 0)− Pi(x1, x2, 0))

Since x2 is independent of x1 given y, we have∑
x1,x2

x2(Pj(x1, y = 1)Pj(x2 | y = 1)−
Pi(x1, y = 1)Pi(x2 | y = 1))

<
∑
x1,x2

x2(Pj(x1, y = 0)Pj(x2 | y = 0)−
Pi(x1, y = 0)Pi(x2 | y = 0))

Since x1 is the stable feature and the label marginal is
the same across environments, we have Pj(x1, y = 1) =
Pi(x1, y = 1) and Pj(x1, y = 0) = Pi(x1, y = 0). This
implies∑
x1

Pj(x1, y = 1)
∑
x2

x2(Pj(x2 | y = 1)− Pi(x2 | y = 1))

<
∑
x1

Pj(x1, y = 0)
∑
x2

x2(Pj(x2 | y = 0)− Pi(x2 | y = 0))

Again, by uniform label marginals, we have∑
x2

x2(Pj(x2 | y = 1)− Pi(x2 | y = 1))

<
∑
x2

x2(Pj(x2 | y = 0)− Pi(x2 | y = 0).

For binary x2 ∈ {0, 1}, this implies Pj(x2 = 1 | y =
1)+Pi(x2 = 1 | y = 0) < Pj(x2 = 1 | y = 0)+Pi(x2 =
1 | y = 1). Since Pj(x2 | y = 1) + Pj(x2 | y = 0) =
Pi(x2 | y = 1) + Pi(x2 | y = 0), we have

Pj(x2 | y = 1)Pj(x2 | y = 0)

< Pj(x2 | y = 0)Pj(x2 | y = 1).
(1)

We can expand our goal in the same way:∑
x1,x2

x2Pj(x1, x2, 1)Pi(0 | x1, x2)

=
∑
x1,x2

(
x2Pj(x1, y = 1)Pi(x1, y = 0)

Pj(x2 | y = 1)Pi(x2 | y = 0)
)
/Pi(x1, x2)

=
∑
x1

Pj(x1, y = 1)Pi(x1, y = 0)

·
∑
x2

x2Pj(x2 | y = 1)Pi(x2 | y = 0)

Pi(x1, x2)

∑
x1,x2

x2Pj(x1, x2, 0)Pi(1 | x1, x2)

=
∑
x1

Pj(x1, y = 0)Pi(x1, y = 1)

·
∑
x2

x2Pj(x2 | y = 0)Pi(x2 | y = 1)

Pi(x1, x2)
,

Plug in Eq (1) and we complete the proof. The other in-
equality follows by symmetry.

Extension to multi-class classification: In Theorem 1,
we focus on binary classification for simplicity. For multi-
class classification, we can convert it into a binary problem
by defining Yc as a binary indicator of whether class c is
present or absent. Our strong empirical performance on
MNIST (10-class classification) also confirms that our re-
sults generalize to the multi-class setting.

Theorem 2. For any environment pair Ei and Ej ,
Cov(X2, Y ;Pi) > Cov(X2, Y ;Pj) implies

Cov(X2, Y ;P i×
j )

<
1− αi

j

αi
i

Cov(X2, Y ;P iX
i )−

1− αi
j

αi
j

Cov(X2, Y ;P iX
j )

Cov(X2, Y ;P j×
i )

>
1− αj

i

αj
j

Cov(X2, Y ;P jX
j )− 1− αj

i

αj
i

Cov(X2, Y ;P jX
i )

where P iX
i is the distribution of the correct predictions

when applying fi on Ei.

Proof. From the proof in Theorem 1, we can write the con-
dition Cov(X2, Y ;Pi) > Cov(X2, Y ;Pj) as

∑
x1,x2

x2(Pj(x1, x2, 1)− Pi(x1, x2, 1))

<
∑
x1,x2

x2(Pj(x1, x2, 0)− Pi(x1, x2, 0))

Using Pi(0 | x1, x2) + Pi(1 | x1, x2) = 1,∑
x1,x2

x2(Pj(x1, x2, 1)− Pi(x1, x2, 1))

(Pi(0 | x1, x2) + Pi(1 | x1, x2))
<
∑
x1,x2

x2(Pj(x1, x2, 0)− Pi(x1, x2, 0))

(Pi(0 | x1, x2) + Pi(1 | x1, x2))

Since Pi(x1, x2, 1)Pi(0 | x1, x2) and Pi(x1, x2, 0)Pi(1 |
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x1, x2) cancel out with each other. We have∑
x1,x2

x2(Pj(x1, x2, 1)Pi(0 | x1, x2)−
Pj(x1, x2, 0)Pi(1 | x1, x2))

<
∑
x1,x2

x2(Pi(x1, x2, 1)Pi(1 | x1, x2)−
Pi(x1, x2, 0)Pi(0 | x1, x2))

−
∑
x1,x2

x2(Pj(x1, x2, 1)Pi(1 | x1, x2)−
Pj(x1, x2, 0)Pi(0 | x1, x2))

From the derivations in Theorem 1, we know that

1

2(1− αi
j)
Cov(X2, Y ;P i×

j )

=
∑
x1,x2

x2

(
Pj(x1, x2, 1)Pi(0 | x1, x2)−

Pj(x1, x2, 0)Pi(1 | x1, x2)
)

1

2αi
j

Cov(X2, Y ;P iX
j )

=
∑
x1,x2

x2

(
Pj(x1, x2, 1)Pi(1 | x1, x2)

Pj(x1, x2, 0)Pi(0 | x1, x2)
)

1

2αi
i

Cov(X2, Y ;P iX
i )

=
∑
x1,x2

x2

(
Pi(x1, x2, 1)Pi(1 | x1, x2)−

Pi(x1, x2, 0)Pi(0 | x1, x2)
)
.

Combining these, we have

Cov(X2, Y ;P i×
j )

<
1− αi

j

αi
i

Cov(X2, Y ;P iX
i )−

1− αi
j

αi
j

Cov(X2, Y ;P iX
j )

Similarly, by using Pj(0 | x1, x2)+Pj(1 | x1, x2) = 1, we
can get

Cov(X2, Y ;P j×
i )

>
1− αj

i

αj
j

Cov(X2, Y ;P jX
j )− 1− αj

i

αj
i

Cov(X2, Y ;P jX
i )

C. Experimental Setup
C.1. Datasets and Models

C.1.1. MNIST

Data We use the official train-test split of MNIST. Train-
ing environments are constructed from training split, with
14995 examples per environment. Validation data and test-
ing data is constructed based on the testing split, with 2497

examples each. Following Arjovsky et al. (2019), We con-
vert each grey scale image into a 10×28×28 tensor, where
the first dimension corresponds to the spurious color feature.

Model: The input image is passed to a CNN with 2 con-
volution layers and 2 fully connected layers. We use the
architecture from PyTorch’s MNIST example6.

C.1.2. BEER REVIEW

Data We use the data processed by Lei et al. (2016).
Reviews shorter than 10 tokens or longer than 300 to-
kens are filtered out. For each aspect, we sample train-
ing/validation/testing data randomly from the dataset and
maintain the marginal distribution of the label to be uniform.
Each training environment contains 4998 examples. The
validation data contains 4998 examples and the testing data
contains 5000 examples. The vocabulary sizes for the three
aspects (look, aroma, palate) are: 10218, 10154 and 10086.
The processed data will be publicly available.

Model We use a standard CNN text classifier (Kim, 2014).
Each input is first encoded by pre-trained FastText embed-
dings (Mikolov et al., 2018). Then it is passed into a 1D
convolution layer followed by max pooling and ReLU acti-
vation. The convolution layer uses filter size 3, 4, 5. Finally
we attach a linear layer with Softmax to predict the label.

C.1.3. CELEBA

Data We use the official train/val/test split of CelebA (Liu
et al., 2015b). The training environment {female} con-
tains 94509 examples and the training environment {male}
contains 68261 examples. The validation set has 19867 ex-
amples and the test set has 19962 examples.

Model We use the Pytorch torchvision implementation
of the ResNet50 model, starting from pretrained weights.
We re-initalize the final layer to predict the target attribute
hair color.

C.1.4. ASK2ME

Data Since the original data doesn’t have a standard
train/val/test split, we randomly split the data and use
50% for training, 20% for validation, 30%for testing.
There are 2227 examples in the training environment
{breast cancer=0}, 1394 examples in the training en-
vironment {breast cancer=1}. The validation set con-
tains 1448 examples and the test set contains 2173 examples.
The vocabulary size is 16310. The processed data will be
publicly available.

6https://github.com/pytorch/examples/blob/master/mnist/main.py
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Model The model architecture is the same as the one for
Beer review.

C.2. Implementation details

For all methods: We use batch size 50 and evaluate the
validation performance every 100 batch. We apply early
stopping once the validation performance hasn’t improved
in the past 20 evaluations. We use Adam (Kingma & Ba,
2014) to optimize the parameters and tune the learning rate
∈ {10−3, 10−4, 10−5}. For simplicity, we train all methods
without data augmentation. Following Sagawa et al. (2019),
we apply strong regularizations to avoid over-fitting. Specif-
ically, we tune the dropout rate ∈ {0.1, 0.3, 0.5} for text
classification datasets (Beer review and ASK2ME) and tune
the weight decay parameters ∈ {10−0, 10−1, 10−2, 10−3}
for image datasets (MNIST and CelebA).

DRO and Ours We directly optimize the min−max ob-
jective. Specifically, at each step, we sample a batch of
example from each group, and minimize the worst-group
loss. We found the training process to be pretty stable when
using the Adam optimizer. On CelebA, we are able to match
the performance reported by Sagawa et al. (2019).

IRM We implement the gradient penalty based on
the official implementation of IRM7. The gradient
penalty is applied to the last hidden layer of the net-
work. We tune the weight of the penalty term ∈
{10−2, 10−1, 100, 101, 102, 103, 104} and the annealing
iterations ∈ {10, 102, 103}.
RGM For the per-environment classifier in RGM, we
use a MLP with one hidden layer. This MLP takes
the last layer of the model as input and predicts the la-
bel. Similar to IRM, we tune the weight of the regret
∈ {10−2, 10−1, 100, 101, 102, 103, 104} and the anneal-
ing iterations ∈ {10, 102, 103}.

C.3. Computing Infrastructure and Running Time
Analysis

We have used the following graphics cards for our experi-
ments: Tesla V100-32GB, GeForce RTX 2080 Ti and A100-
40G.

We conducted our running time analysis on MNIST and
ASK2ME using GeForce RTX 2080 Ti. Table 5 and 6 shows
the results. We observe that due to the direct optimization
of the minmax objective, the running time of DRO, PI
and Oracle is roughly 4 times comparing to other methods
(proportional to the number of groups). Also, while our
model needs to train additional environment-specific classi-
fiers (comparing to DRO), its running time is very similar
to DRO across the two datasets. We believe by using the

7https://github.com/facebookresearch/InvariantRiskMinimization

TIME Train Val Test

ERM 2 MIN 58 SEC 83.61 81.21 15.65

IRM 3 MIN 37 SEC 83.42 80.41 12.89

RGM 3 MIN 7 SEC 82.60 81.41 13.97

DRO 17 MIN 19 SEC 79.44 80.65 16.05

OURS 11 MIN 58 SEC 65.04 71.16 71.56

ORACLE 14 MIN 31 SEC 68.96 72.28 70.04

Table 5. Running time and model performance on MNIST. Here
the validation data is sampled from the training environments.
Our algorithm requires training additional environment-specific
classifiers. However, it converges faster than DRO in the third
stage (50 epochs vs. 72 epochs) and generalizes much better.

TIME Train Val Test

ERM 3 MIN 35 SEC 99.44 66.01 59.04

IRM 3 MIN 21 SEC 98.70 63.10 57.85

RGM 5 MIN 36 SEC 99.78 64.07 59.99

DRO 16 MIN 40 SEC 86.77 77.66 67.34

PI (Ours) 18 MIN 97.09 78.64 74.14

Table 6. Running time and model performance on ASK2ME.
Here the validation accuracy is computed based on the
breast cancer attribute. The test accuracy is the average
worst-group accuracy across all 17 attributes. Our algorithm’s
running time is similar to DRO.

online learning algorithm proposed by Sagawa et al. (2019),
we can further reduce the running time of our algorithm.

D. Additional results
What features does PI look at? To understand what features
different methods rely on, we plot the word importance on
Beer Look in Figure 5. For the given input example, we
evaluate the prediction change as we mask out each input
token. We observe that only PI and Oracle ignore the spu-
rious feature and predict the label correctly. Comparing to
ERM, IRM and RGM focus more on the causal feature such
as ‘tiny’. However, they still heavily rely on the spurious
feature.
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ERM DRO IRM RGM Ours

Accuracy Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

Adenocarcinoma 33.33 72.91 77.29 79.23 55.56 78.40 55.56 78.12 80.24 84.74
Polyp syndrom 44.44 74.63 77.29 78.79 55.56 76.31 66.67 78.73 69.23 81.28
Brain cancer 55.56 78.51 77.14 78.09 55.56 78.59 67.55 82.33 79.94 87.95
Breast cancer 66.49 80.47 75.00 78.84 66.87 80.56 64.38 79.81 80.32 83.12
Colorectal cancer 66.54 80.50 69.31 77.94 64.96 81.28 66.93 80.33 76.24 81.71
Endometrial cancer 66.98 80.60 76.19 80.21 66.03 82.60 66.98 81.77 80.32 83.26
Gastric cancer 62.96 79.94 76.95 81.65 62.96 80.03 59.26 78.87 79.44 85.92
Hepatobiliary cancer 44.44 73.01 60.00 73.89 55.56 77.19 55.56 76.22 60.00 78.94
Kidney cancer 16.67 66.66 50.00 68.70 33.33 73.07 33.33 71.31 50.00 74.76
Lung cancer 44.44 74.76 62.50 74.58 38.89 74.28 50.00 74.75 70.31 78.85
Melanoma 66.67 80.55 66.67 78.87 66.67 83.32 66.67 79.69 80.06 86.67
Neoplasia 50.00 75.98 33.33 69.10 33.33 71.97 50.00 75.18 70.00 80.06
Ovarian cancer 65.31 80.16 77.20 79.30 66.80 80.64 66.33 79.53 73.47 82.76
Pancreatic cancer 67.18 80.93 75.82 78.74 63.64 79.69 63.64 79.67 80.06 84.31
Prostate cancer 63.96 85.77 51.04 77.48 64.29 85.21 65.58 83.92 78.90 86.75
Rectal cancer 66.67 78.78 64.10 80.37 66.67 78.86 67.54 80.80 71.79 84.59
Thyroid cancer 50.00 77.18 75.00 83.06 66.86 84.05 67.73 82.56 80.23 87.85

Average 54.80 77.73 67.34 77.58 57.86 79.18 60.81 79.03 74.15 83.15

Table 7. Worst-group and average-group accuracy across 17 attributes on ASK2ME.
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method input example

ERM <art positive> gold color with almost a surprisingly tiny head .

DRO <art positive> gold color with almost a surprisingly tiny head .

IRM <art positive> gold color with almost a surprisingly tiny head .

RGM <art positive> gold color with almost a surprisingly tiny head .

PI <art positive> gold color with almost a surprisingly tiny head .

Oracle <art positive> gold color with almost a surprisingly tiny head .

figure Visualization of the word importance from different
algorithms.

To all reviewers Thank you for your detailed comments
and suggestions. We would like to emphasize the distinc-
tions between our algorithm and other methods.

IRM and RGM learn invariant representation, where classi-
fier built on top of it is simultaneously optimal across envi-
ronments. However, the model can still utilize any unstable
feature from the input to produce such invariant represen-
tation (line 078 in Sec 2). There is no guarantee on how
the model would generalize when the unstable correlations
disappear. Our approach instead compares the empirical
distribution of different environments (stage 1 and 2) to first
find out these unstable features (see line 085 in Sec 2 for
more details).

Group DRO assumes that the groups are specified by human
based on the knowledge of the bias attributes.

TO REVIEWER 1

1. We assume binary classification in Sec 3 for simplicity.
Our theory extends to the multi-class case as well. Let Y be
the one-hot label vector and Yc be the label value for class c.
Theorem 1 and 2 still hold if we replace Y with Yc. We will
add this extension to the appendix.

2. Due to space constraints, we only include 6 attributes
in Table 4. From the full table, we don’t think RGM’s
performance is related to the order of the attributes. Also,
in Table 4, only on the attribute ”wearing hat” does RGM
perform the best.

TO REVIEWER 3

We visualize the word importance on

We will add these analysis to the appendix.

Figure 5. Visualizing word importance on Beer Look. Only PI
and Oracle ignore the artificial token and correctly predict the
input as negative. We will add more examples in the update.
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Figure 6. Performance of IRM as we adjust the weight of the gradient penalty. We observe that while the gradient penalty term is
always orders of magnitude smaller than the cross entropy loss, the model is still able to overfit the unstable correlations in the training
environments. As we further increase the penalty, the training & validation performance quickly drop to that of ERM.
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ERM DRO IRM RGM Ours

Worst Avg Worst Avg Worst Avg Worst Avg Worst Avg

5 o Clock Shadow 53.33 81.51 90.00 92.05 80.00 85.93 66.67 87.22 83.33 89.65
Arched Eyebrows 72.14 87.16 90.42 92.68 84.43 87.85 88.95 92.60 90.56 92.31
Attractive 67.21 85.84 90.77 92.22 82.57 87.28 86.64 91.94 89.98 91.86
Bags Under Eyes 72.46 86.16 90.59 92.04 81.34 86.84 88.52 92.13 89.12 92.12
Bald 75.98 91.23 91.73 93.04 71.39 82.21 91.50 94.81 91.68 93.42
Bangs 73.85 87.80 90.84 92.91 81.70 87.38 88.05 92.21 90.24 92.33
Big Lips 73.46 87.14 90.59 92.55 84.16 87.87 89.54 92.65 90.52 92.17
Big Nose 71.43 86.00 91.58 92.97 84.99 88.43 91.22 93.78 91.36 92.87
Black Hair 75.98 90.91 89.62 93.77 78.63 89.16 90.66 94.02 88.10 93.30
Blurry 51.23 81.06 86.56 90.14 79.36 85.73 79.01 89.71 85.61 89.39
Brown Hair 43.68 79.17 64.37 85.74 78.16 83.39 72.41 87.30 59.77 83.83
Bushy Eyebrows 72.73 86.52 72.73 88.83 81.82 87.51 81.82 91.26 81.82 90.77
Chubby 9.52 70.69 61.90 84.63 76.19 82.91 47.62 82.32 71.43 86.59
Double Chin 50.00 80.73 90.66 91.76 78.52 86.35 91.50 92.74 90.21 92.45
Eyeglasses 58.06 82.83 90.32 92.02 80.44 85.71 77.42 89.34 88.71 91.17
Goatee 0.00 68.26 0.00 70.08 84.80 90.83 91.50 95.66 91.63 94.59
Gray Hair 60.71 82.53 69.08 87.73 42.60 76.20 85.71 89.56 68.26 88.18
Heavy Makeup 66.06 85.68 89.69 92.22 84.18 87.20 84.43 91.49 90.01 91.86
High Cheekbones 73.33 86.62 90.78 92.21 84.42 87.13 89.02 92.27 90.39 91.72
Gender. 46.67 80.14 85.56 90.87 74.44 83.93 70.00 87.73 90.56 91.52
Mouth Slightly Open 74.22 87.01 91.27 92.33 84.51 87.42 91.01 92.56 91.74 91.85
Mustache 50.00 80.89 91.72 95.38 50.00 78.58 91.50 95.97 91.60 94.93
Narrow Eyes 69.23 85.54 90.05 91.85 82.94 87.00 88.46 91.84 91.69 91.90
No Beard 39.39 78.10 84.85 90.97 72.73 83.80 57.58 85.00 84.85 90.43
Oval Face 75.16 87.20 90.71 92.40 84.22 87.70 91.24 92.76 90.31 91.90
Pale Skin 75.44 87.99 90.30 91.54 81.67 85.97 91.37 92.46 89.55 92.02
Pointy Nose 73.34 87.18 91.19 92.42 84.87 87.69 89.29 92.55 91.07 92.00
Receding Hairline 66.67 84.75 90.98 91.86 80.56 84.34 83.33 91.11 87.96 90.97
Rosy Cheeks 74.90 88.17 91.40 93.32 84.88 88.59 90.55 93.00 91.49 92.71
Sideburns 38.46 77.84 84.62 90.69 76.92 84.14 76.92 89.72 91.35 93.75
Smiling 75.91 86.87 91.59 92.31 84.14 87.29 91.10 92.49 91.53 91.88
Straight Hair 74.00 86.60 90.27 92.05 84.37 87.41 88.36 92.37 91.55 91.92
Wavy Hair 74.22 86.88 91.41 92.40 84.15 87.41 88.81 92.21 91.64 91.88
Wearing Earrings 75.36 86.77 91.67 92.63 84.78 87.70 90.88 92.55 91.51 92.19
Wearing Hat 7.69 70.39 46.15 82.28 46.15 77.34 61.54 86.26 53.85 84.56
Wearing Lipstick 59.37 83.61 89.47 91.88 82.53 86.01 79.37 90.10 90.32 91.57
Wearing Necklace 74.57 87.26 91.09 92.47 82.26 87.42 89.53 92.17 90.73 92.21
Wearing Necktie 25.00 74.52 90.00 91.56 80.00 84.31 35.00 79.32 91.44 92.53
Young 71.60 86.07 89.13 91.64 76.21 85.96 90.19 92.03 87.23 91.51

Average 60.06 83.63 84.25 90.83 78.51 85.79 82.52 90.95 87.04 91.41

Table 8. Worst-group and average-group accuracy for hair color prediction on CelebA.


