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A. Proof of the Decomposition of the Gradient of the Score Function
Proof. Firstly we have

Epθ(h|v) [∇v log pθ(h|v)] =Epθ(h|v)

[
∇vpθ(h|v)

pθ(h|v)

]
=

∫
pθ(h|v)

∇vpθ(h|v)

pθ(h|v)
dh

=

∫
∇vpθ(h|v)dh = ∇v

∫
pθ(h|v)dh = ∇v1 = 0, (1)

and similarly we have Epθ(h|v) [∇θ log pθ(h|v)] = 0. Thereby, we have

∇v log p̃θ(v) = ∇v log p̃θ(v) + Epθ(h|v) [∇v log pθ(h|v)] = Epθ(h|v) [∇v log p̃θ(v,h)] ,

and similarly we have∇θ log p̃θ(v) = Epθ(h|v) [∇θ log p̃θ(v,h)].

Taking derivatives to Eqn. (1) w.r.t. θ, we have

Epθ(h|v)

[
∂∇v log pθ(h|v)

∂θ

]
+ Epθ(h|v)

[
∇v log pθ(h|v)

∂ log pθ(h|v)

∂θ

]
= 0. (2)

The second term in the left side of Eqn. (2) can be written as

Epθ(h|v)

[
∇v log pθ(h|v)

∂ log pθ(h|v)

∂θ

]
=Epθ(h|v)

[
∇v log pθ(v,h)

∂ log pθ(h|v)

∂θ

]
− Epθ(h|v)

[
∇v log pθ(v)

∂ log pθ(h|v)

∂θ

]
=Epθ(h|v)

[
∇v log pθ(v,h)

∂ log pθ(h|v)

∂θ

]
=Epθ(h|v)

[
∇v log pθ(v,h)

∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∇v log pθ(v,h)

∂ log p̃θ(v)

∂θ

]
=Epθ(h|v)

[
∇v log pθ(v,h)

∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v) [∇v log pθ(v,h)]

∂ log p̃θ(v)

∂θ

=Epθ(h|v)

[
∇v log pθ(v,h)

∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v) [∇v log pθ(v,h)]Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
=Covpθ(h|v)(∇v log pθ(v,h),∇θ log p̃θ(v,h)) = Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h)).
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Thereby, we have

∂∇v log pθ(v)

∂θ
=
∂∇v log p̃θ(v)

∂θ

=
∂∇v log p̃θ(v)

∂θ
+ Epθ(h|v)

[
∂∇v log pθ(h|v)

∂θ

]
+ Epθ(h|v)

[
∇v log pθ(h|v)

∂ log pθ(h|v)

∂θ

]
=Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
+ Epθ(h|v)

[
∇v log pθ(h|v)

∂ log pθ(h|v)

∂θ

]
=Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
+ Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h)).

B. The Tractability of the Commonly Used Divergences between Posteriors
The tractability of the KL divergence or the Fisher divergence between the variational posterior and the true posterior in
EBLVMs has been shown by Bao et al. (2020) and we restate the results for completeness. Besides, we also analyze the
tractability of the reverse KL divergence, the total variation distance (Pollard, 2005), the maximum mean discrepancy (Li
et al., 2017) and the Wasserstein distance (Arjovsky et al., 2017) between the two posteriors in EBLVMs.

The KL divergence is tractable. The gradient of the KL divergence between qφ(h|v) and pθ(h|v) w.r.t. φ is

∇φDKL(qφ(h|v)||pθ(h|v)) =∇φEqφ(h|v) log
qφ(h|v)

pθ(h|v)
= ∇φEqφ(h|v) log

qφ(h|v)pθ(v)Z(θ)

p̃θ(v,h)

=∇φEqφ(h|v) log
qφ(h|v)

p̃θ(v,h)
+((((((((
∇φ log pθ(v)Z(θ) = ∇φEqφ(h|v) log

qφ(h|v)

p̃θ(v,h)
.

The last term doesn’t depend on the partition function or the marginal distribution of an EBLVM and thereby is tractable.

The Fisher divergence is tractable. The Fisher divergence between qφ(h|v) and pθ(h|v) is

DF (qφ(h|v)||pθ(h|v)) =
1

2
Eqφ(h|v)||∇h log qφ(h|v)−∇h log pθ(h|v)||22

=
1

2
Eqφ(h|v)||∇h log qφ(h|v)−∇h log

p̃θ(v,h)

pθ(v)Z(θ)
||22

=
1

2
Eqφ(h|v)||∇h log qφ(h|v)−∇h log p̃θ(v,h)−((((((((

∇h log pθ(v)Z(θ)||22

=
1

2
Eqφ(h|v)||∇h log qφ(h|v)−∇h log p̃θ(v,h)||22.

Again, the last term doesn’t depend on the partition function or the marginal distribution of an EBLVM and thereby is
tractable. Furthermore, its gradient w.r.t. φ is tractable.

The reverse KL divergence is generally intractable. The gradient of the reverse KL divergence between qφ(h|v) and
pθ(h|v) w.r.t. φ is∇φDRKL(qφ(h|v)||pθ(h|v)) = ∇φEpθ(h|v) log pθ(h|v)

qφ(h|v) = −Epθ(h|v)∇φ log qφ(h|v). Since pθ(h|v)

is generally intractable, the reverse KL divergence is generally intractable.

The total variation distance is generally intractable. The gradient of total variation distance (Pollard, 2005) between
qφ(h|v) and pθ(h|v) w.r.t. φ is ∇φV (qφ(h|v), pφ(h|v)) = ∇φ 1

2Eqφ(h|v)|1 − pθ(h|v)
qφ(h|v) |. Since pθ(h|v) is generally

intractable, the total variation distance is generally intractable.

Maximum mean discrepancy is generally intractable. Given a kernel k, the gradient of the square of maximum mean
discrepancy (Li et al., 2017) between qφ(h|v) and pθ(h|v) w.r.t. φ is

∇φMk(qφ(h|v), pθ(h|v)) = ∇φ
(
Eh,h′∼qφ(h|v)k(h,h′) + Eh,h′∼pθ(h|v)k(h,h′)− 2Eh∼qφ(h|v),h′∼pθ(h′|v)k(h,h′)

)
= ∇φEh,h′∼qφ(h|v)k(h,h′)− 2Eh′∼pθ(h′|v)∇φEh∼qφ(h|v)k(h,h′).

Since pθ(h|v) is generally intractable, the maximum mean discrepancy is generally intractable.
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The Wasserstein distance is generally intractable. The Wasserstein distance (Arjovsky et al., 2017) between qφ(h|v)
and pθ(h|v) is W (qφ(h|v), pθ(h|v)) = 1

K sup
f :||f ||Lip≤K

Eqφ(h|v)f(h) − Epθ(h|v)f(h). Generally {f : ||f ||Lip ≤ K}

is approximated by a neural network fη with weight clipping and the Wasserstein distance is optimized by a bi-level
optimization (Arjovsky et al., 2017). The lower level problem requires samples from the generally intractable posterior
pθ(h|v). Thereby, the Wasserstein distance is generally intractable.

C. Proof of Theorem 1 and Theorem 2
Lemma 1. Suppose P,Q are two probability measures on Ω, and f : Ω → Rm, then we have ||EPf − EQf ||2 ≤
||f ||∞

√
2DKL(Q||P ), where ||f ||∞ , sup

ω∈Ω
||f(ω)||2.

Proof. Let S = (P +Q)/2, then P,Q are absolutely continuous w.r.t. S, and we have

||EPf − EQf ||2 =||
∫
fdP −

∫
fdQ||2 = ||

∫
f

dP

dS
dS −

∫
f

dQ

dS
dS||2 = ||

∫
f(

dP

dS
− dQ

dS
)dS||2

≤
∫
||f ||2 |

dP

dS
− dQ

dS
|dS ≤ ||f ||∞

∫
|dP
dS
− dQ

dS
|dS.

According to Pinsker’s inequality (Tsybakov, 2008), we have
∫
|dPdS −

dQ
dS |dS ≤

√
2DKL(Q||P ). Thereby, ||EPf −

EQf ||2 ≤ ||f ||∞
√

2DKL(Q||P ).

Theorem 1. (VaES, KL divergence) Suppose∇v log p̃θ(v,h) is bounded w.r.t. v,h and θ, then the bias of VaES(v;θ,φ)
can be bounded by the square root of the KL divergence between qφ(h|v) and pθ(h|v) up to multiplying a constant.

Proof. According to Lemma 1, we have

||Eqφ(h|v) [∇v log p̃θ(v,h)]− Epθ(h|v) [∇v log p̃θ(v,h)] ||2 ≤ sup
h
||∇v log p̃θ(v,h)||2

√
2DKL(qφ(h|v)||pθ(h|v)).

By the boundedness of ∇v log p̃θ(v,h), ∃A <∞,∀v,∀h,∀θ, ||∇v log p̃θ(v,h)||2 ≤ A. Let C =
√

2A, then

||Eqφ(h|v) [∇v log p̃θ(v,h)]−∇v log pθ(v)||2 = ||Eqφ(h|v) [∇v log p̃θ(v,h)]− Epθ(h|v) [∇v log p̃θ(v,h)] ||2

≤A
√

2DKL(qφ(h|v)||pθ(h|v)) = C
√
DKL(qφ(h|v)||pθ(h|v)).

Definition 1. Suppose A is a matrix, we define ||A||2 ,
√∑

i,j

A2
i,j .

Lemma 2. Suppose a, b are two vectors, then ||ab>||2 = ||a||2||b||2.

Proof. ||ab>||2 =
√∑

i,j

a2
i b

2
j = ||a||2||b||2.

Theorem 2. (VaGES, KL divergence) Suppose ∇v log p̃θ(v,h), ∇θ log p̃θ(v,h) and ∂∇v log p̃θ(v,h)
∂θ are bounded w.r.t.

v,h and θ, then the bias of VaGES(v;θ,φ) can be bounded by the square root of the KL divergence between qφ(h|v) and
pθ(h|v) up to multiplying a constant.

Proof. According to Thm. 1, ∃C1 <∞, s.t.

||Eqφ(h|v) [∇v log p̃θ(v,h)]−∇v log p̃θ(v)||2 ≤ C1

√
DKL(qφ(h|v)||pθ(h|v)).

Similarly, ∃C2 <∞, s.t.

||Eqφ(h|v) [∇θ log p̃θ(v,h)]−∇θ log p̃θ(v)||2 ≤ C2

√
DKL(qφ(h|v)||pθ(h|v)),
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and ∃C3 <∞, s.t.

||Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
||2 ≤ C3

√
DKL(qφ(h|v)||pθ(h|v)).

By the boundedness of ∇v log p̃θ(v,h) and ∇θ log p̃θ(v,h), ∇v log p̃θ(v,h)∂ log p̃θ(v,h)
∂θ is also bounded. Thereby,

∃C4 <∞, s.t.

||Eqφ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
||2

≤C4

√
DKL(qφ(h|v)||pθ(h|v)).

By the boundedness of ∇v log p̃θ(v,h) and ∇θ log p̃θ(v,h), we can assume C < ∞ is a constant that bounds
||∇v log p̃θ(v,h)||2 and ||∇θ log p̃θ(v,h)||2. Then, by the triangle inequality and Lemma. 2, we have

||Eqφ(h|v) [∇v log p̃θ(v,h)]Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v) [∇v log p̃θ(v,h)]Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

≤||Eqφ(h|v) [∇v log p̃θ(v,h)]

(
Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

])
||2

+ ||
(
Eqφ(h|v) [∇v log p̃θ(v,h)]− Epθ(h|v) [∇v log p̃θ(v,h)]

)
Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

=||Eqφ(h|v) [∇v log p̃θ(v,h)] ||2 ||Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

+ ||Eqφ(h|v) [∇v log p̃θ(v,h)]− Epθ(h|v) [∇v log p̃θ(v,h)] ||2 ||Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

≤(CC2 + CC1)
√
DKL(qφ(h|v)||pθ(h|v)).

Thereby,

||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))− Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))||2

≤||Eqφ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
||2

+ ||Eqφ(h|v) [∇v log p̃θ(v,h)]Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v) [∇v log p̃θ(v,h)]Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

≤(C4 + CC2 + CC1)
√
DKL(qφ(h|v)||pθ(h|v)).

As a result,

||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h)) + Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− ∂∇v log pθ(v)

∂θ
||2

=||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h)) + Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))− Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
||2

≤||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))− Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))||2

+ ||Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
||2

≤(C4 + CC2 + CC1 + C3)
√
DKL(qφ(h|v)||pθ(h|v)).
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D. Proof of Theorem 3 and Theorem 4
Definition 2. Suppose p is a probability density on Rn and g : Rn → Rn, we define Spg(x) , ∇x log p(x)>g(x) +
Tr(∇xg(x)).

Lemma 3. (Liu & Wang, 2016) Suppose p is a probability density on Rn and g : Rn → Rn is a function satisfying
lim

||x||→∞
p(x)g(x) = 0, then Ep(x) [Spg(x)] = 0.

Proof.

0 =

∫
∇x(p(x)g(x))dx =

∫
p(x)∇xg(x) + p(x)g(x)∇x log p(x)>dx = Ep(x)

[
∇xg(x) + g(x)∇x log p(x)>

]
.

Thereby,

0 = Tr(Ep(x)

[
∇xg(x) + g(x)∇x log p(x)>

]
) = Ep(x)

[
Tr(∇xg(x)) +∇x log p(x)>g(x)

]
= Ep(x) [Spg(x)] .

Lemma 4. Suppose p, q are probability densities on Rn and g : Rn → Rn satisfies lim
||x||→∞

q(x)g(x) = 0, we have

|EqSpg| ≤
√
Eq(x)||g(x)||2

√
DF (q||p)

Proof. By Lemma 3, we have EqSqg = 0. Thereby,

|EqSpg| = |EqSpg − EqSqg| = |Eq(x)g(x)>(∇x log p(x)−∇x log q(x))|

≤Eq(x)||g(x)|| ||∇x log p(x)−∇x log q(x)|| ≤
√

Eq(x)||g(x)||2Eq(x)||∇x log p(x)−∇x log q(x)||2

=
√
Eq(x)||g(x)||2

√
DF (q||p).

Definition 3. (Ley et al., 2013) Suppose p is a probability density defined on Rn and f : Rn → R is a function, we define
gpf as a solution of the Stein equation Spg = f − Epf .

Remark. The solution of the Stein equation exists. For example, let h = f − Epf , then

g1(x) =
1

p(x)

∫ x1

−∞
p(t, x2, · · · , xn)h(t, x2, · · · , xn)dt, g2(x) = · · · = gn(x) = 0

is a solution.

Definition 4. Suppose p, q are probability densities defined on Rn and f : Rn → Rm is a function, we say f satisfies the
Stein regular condition w.r.t. p, q iff ∀i ∈ Z ∩ [1,m], lim

||x||→∞
q(x)gpfi(x) = 0.

Definition 5. (Ley et al., 2013) Suppose p, q are probability densities defined on Rn and f : Rn → Rm is a function

satisfying the Stein regular condition w.r.t. p, q, we define κp,qf ,

√
Eq(x)

m∑
i=1

||gpfi(x)||22, referred to as the Stein factor of f

w.r.t. p, q.

Lemma 5. Suppose p, q are probability densities defined on Rn and f : Rn → Rm is a function satisfying the Stein regular
condition w.r.t. p, q, then we have ||Eqf − Epf ||2 ≤ κp,qf

√
DF (q||p).

Proof. By Lemma 4, we have |Eqfi − Epfi| = |Eq(fi − Epfi)| = |EqSpgpfi | ≤
√

Eq(x)||gpfi(x)||22
√
DF (q||p).

Thereby, ||Eqf − Epf || =
√

n∑
i=1

|Eqfi − Epfi|2 ≤
√

n∑
i=1

Eq(x)||gpfi(x)||22 DF (q||p) = κp,qf
√
DF (q||p).

Theorem 3. (continuous h, VaES) Suppose (1) ∀(v,θ,φ), ∇v log p̃θ(v,h) as a function of h satisfies the Stein regular
condition w.r.t. pθ(h|v) and qφ(h|v) and (2) the Stein factor of∇v log p̃θ(v,h) as a function of h w.r.t. pθ(h|v), qφ(h|v)
is bounded w.r.t. v,θ and φ, then the bias of VaES(v;θ,φ) can be bounded by the square root of the Fisher divergence
between qφ(h|v) and pθ(h|v) up to multiplying a constant.
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Proof. It can be directly derived from Lemma 5.

Theorem 4. (continuous h, VaGES) Suppose (1) ∀(v,θ,φ), ∇v log p̃θ(v,h), ∇θ log p̃θ(v,h),
∇v log p̃θ(v,h)∂ log p̃θ(v,h)

∂θ and ∂∇v log p̃θ(v,h)
∂θ as functions of h satisfy the Stein regular condition w.r.t. pθ(h|v) and

qφ(h|v) and (2) the Stein factors of∇v log p̃θ(v,h),∇θ log p̃θ(v,h),∇v log p̃θ(v,h)∂ log p̃θ(v,h)
∂θ and ∂∇v log p̃θ(v,h)

∂θ as
functions of h w.r.t. pθ(h|v), qφ(h|v) are bounded w.r.t. v,θ and φ, (3)∇v log p̃θ(v,h) and∇θ log p̃θ(v,h) are bounded
w.r.t. v,h and θ, then the bias of VaGES(v;θ,φ) can be bounded by the square root of the Fisher divergence between
qφ(h|v) and pθ(h|v) up to multiplying a constant.

Proof. According to Lemma 5, ∃C1 <∞, s.t.

||Eqφ(h|v) [∇v log p̃θ(v,h)]−∇v log p̃θ(v)||2 ≤ C1

√
DF (qφ(h|v)||pθ(h|v)),

∃C2 <∞, s.t.

||Eqφ(h|v) [∇θ log p̃θ(v,h)]−∇θ log p̃θ(v)||2 ≤ C2

√
DF (qφ(h|v)||pθ(h|v)),

∃C3 <∞, s.t.

||Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
||2 ≤ C3

√
DF (qφ(h|v)||pθ(h|v)),

and ∃C4 <∞, s.t.

||Eqφ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
||2

≤C4

√
DF (qφ(h|v)||pθ(h|v)).

By the boundedness of ∇v log p̃θ(v,h) and ∇θ log p̃θ(v,h), we can assume C < ∞ is a constant that bounds
||∇v log p̃θ(v,h)||2 and ||∇θ log p̃θ(v,h)||2. After establishing the above bounds w.r.t. the Fisher divergence, the rest
proof is exactly the same as Theorem 2. For completeness , we restate the proof as follows. By the triangle inequality and
Lemma. 2, we have

||Eqφ(h|v) [∇v log p̃θ(v,h)]Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v) [∇v log p̃θ(v,h)]Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

≤||Eqφ(h|v) [∇v log p̃θ(v,h)]

(
Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

])
||2

+ ||
(
Eqφ(h|v) [∇v log p̃θ(v,h)]− Epθ(h|v) [∇v log p̃θ(v,h)]

)
Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

=||Eqφ(h|v) [∇v log p̃θ(v,h)] ||2 ||Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

+ ||Eqφ(h|v) [∇v log p̃θ(v,h)]− Epθ(h|v) [∇v log p̃θ(v,h)] ||2 ||Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

≤(CC2 + CC1)
√
DF (qφ(h|v)||pθ(h|v)).

Thereby,

||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))− Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))||2

≤||Eqφ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∇v log p̃θ(v,h)

∂ log p̃θ(v,h)

∂θ

]
||2

+ ||Eqφ(h|v) [∇v log p̃θ(v,h)]Eqφ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
− Epθ(h|v) [∇v log p̃θ(v,h)]Epθ(h|v)

[
∂ log p̃θ(v,h)

∂θ

]
||2

≤(C4 + CC2 + CC1)
√
DF (qφ(h|v)||pθ(h|v)).
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As a result,

||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h)) + Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− ∂∇v log pθ(v)

∂θ
||2

=||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h)) + Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))− Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
||2

≤||Covqφ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))− Covpθ(h|v)(∇v log p̃θ(v,h),∇θ log p̃θ(v,h))||2

+ ||Eqφ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
− Epθ(h|v)

[
∂∇v log p̃θ(v,h)

∂θ

]
||2

≤(C4 + CC2 + CC1 + C3)
√
DF (qφ(h|v)||pθ(h|v)).

E. Consistency between Dm
F and DF

Theorem 5. Suppose lim
||v||→∞

pD(v)(∇v log pθ(v) − ∇v log pD(v)) = 0 and Ep(ε)

[
εε>

]
= I , then Dm

F (pD||pθ) =

DF (pD||pθ), where DF (pD||pθ) = 1
2EpD(v)||∇v log pθ(v)−∇v log pD(v)||22 is the Fisher divergence between pD and pθ .

Proof. By the assumption Ep(ε)

[
εε>

]
= I , we have Ep(ε)

[
ε>∇vf(v)ε

]
= Tr(∇vf(v)). Thereby, Dm

F (pD||pθ) =

max
f∈F

EpD(v)

[
∇v log pθ(v)>f(v) + Tr(∇vf(v))− 1

2 ||f(v)||22
]
.

Suppose f ∈ F , i.e., f is a function from Rd to Rd and lim
||v||→∞

pD(v)f(v) = 0, by the Stein’s identity, we have

EpD(v)

[
∇v log pD(v)>f(v) + Tr(∇vf(v))

]
= 0. Thereby, we have

EpD(v)

[
∇v log pθ(v)>f(v) + Tr(∇vf(v))− 1

2
||f(v)||22

]
=EpD(v)

[
∇v log pθ(v)>f(v) + Tr(∇vf(v))− 1

2
||f(v)||22

]
− EpD(v)

[
∇v log pD(v)>f(v) + Tr(∇vf(v))

]
=EpD(v)

[
(∇v log pθ(v)−∇v log pD(v))>f(v)− 1

2
||f(v)||22

]
≤1

2
EpD(v)

[
||∇v log pθ(v)−∇v log pD(v))||22

]
= DF (pD||pθ).

The equality is achieved when f(v) = ∇v log pθ(v)−∇v log pD(v), which is a function in F by assumption. As a result,
Dm

F (pD||pθ) = DF (pD||pθ).
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F. Additional Experimental Details
F.1. Learning EBLVMs with KSD

Additional setting. We generate 60,000 samples for training and 10,000 samples for testing on checkerboard. The dimension
of h is 4. We use the Adam optimizer and the learning rate is 10−3. We train 100,000 iterations and the batch size is 100.
The log-likelihood is estimated by annealed importance sampling (Salakhutdinov & Murray, 2008), where we use 2,000
samples and 2,000 middle states to estimate the log-partition function. We run 1,000 steps Gibbs sampling to sample from
GRBMs. The variational parameter φ is updated for K = 5 times on each minibatch.

F.2. Learning EBLVMs with Score Matching

F.2.1. COMPARISON IN GRBMS

Following BiSM (Bao et al., 2020), we split 1,400 images for training, 300 images for validation and 265 images for testing
on Frey face1; we generate 60,000 samples for training and 10,000 samples for testing on checkerboard; the dimension
of h is 400 on Frey face and 4 on checkerboard; we use the Adam optimizers with learning rates 2 × 10−4 for training
on Frey face and 10−3 for training on checkerboard; we train 20,000 iterations on Frey face and 100,000 iterations on
checkerboard; the batch size is 100 for both datasets; we select the best model trained on Frey face according to the validation
log-likelihood. The log-likelihood is estimated by annealed importance sampling (Salakhutdinov & Murray, 2008), where
we use 2,000 samples and 2,000 middle states to estimate the log-partition function. We run 1,000 steps Gibbs sampling to
sample from GRBMs. The time comparison on Frey face is conducted on 1 GeForce GTX 1080 Ti GPU with 2,000 training
iterations. The number of samples from qφ(h|v) is L = 2 and the variational parameter φ is updated for K = 5 times on
each minibatch by default.

F.2.2. LEARNING DEEP EBLVMS

E(v,h)

v

f h

fh

g1:ResNet

g2: additive coupling layer

g3: MLP

Figure 1. The structure of the deep EBLVM.

Additional setting. Following BiSM (Bao et al., 2020), we split 60,000
samples for training on MNIST, 50,000 samples for training on CIFAR10
and 182,637 samples for training on CelebA; the dimension of h is 50;
we use the Adam optimizers with learning rates 10−4 for training on
MNIST and 5 × 10−5 for training on CIFAR10 and CelebA; we train
100,000 iterations on MNIST and 300,000 iterations on CIFAR10 and
CelebA; the batch size is 100 for all datasets. g1 consists of a 6k-
layer ResNet, where k = 2, 3, 3 for MNIST, CIFAR10 and CelebA
respectively and g3 is an MLP containing one fully connected layer. The
structure of the deep EBLVM is shown in Fig. 1. The number of samples
from qφ(h|v) is L = 2 and the variational parameter φ is updated for
K = 5 times on each minibatch. Following a similar protocol with
Song & Ermon (2019); Li et al. (2019); Bao et al. (2020), we save
one checkpoint every 5000 iterations and select the best CIFAR10 and
CelebA models according to the FID score on 1000 samples. The FID
score reported in Section 4.2 in the full paper is estimated on 50,000
samples using the official code2.

Hyperparamter selection. Since we compare with BiSM (Bao et al., 2020), we use the same hyperparameters as BiSM
when they can be shared (e.g., the model types and structures, the divergence to learn qφ(h|v), the dimensions of h, the
batch size, the optimizers and corresponding learning rates). As for L (the number of samples from qφ(h|v), we find it
enough to set it to 2 (the minimal number of samples required in a sample covariance matrix) in our considered models.
As for K, we set it to 5, so that it will ensure the convergence of training qφ(h|v) and meanwhile have an acceptable
computation cost. As for the step size and the standard deviation of the noise in Langevin dynamics, we grid search the
optimal one, as shown in Tab. 1. We find that the optimal step size is approximately proportional to the dimension of h,
perhaps because Langevin dynamics converges to its stationary distribution slower when h has a higher dimension. The
standard deviation can work in range [10−4, 10−2].

1http://www.cs.nyu.edu/˜roweis/data.html
2https://github.com/bioinf-jku/TTUR
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Table 1. Grid search of the step size and the standard deviation of the noise in Langevin dynamics under different dimensions of h. We
use the CIFAR10 dataset. The result is represented by the FID score on 1000 samples.

(a) dimension(h) = 20

10−4 10−3 10−2

1× 10−3 diverge diverge diverge
2× 10−3 56.42 54.87 54.46
4× 10−3 55.90 58.07 54.55
6× 10−3 56.48 55.09 57.03
10× 10−3 diverge diverge diverge

(b) dimension(h) = 50

10−4 10−3 10−2

2.5× 10−3 diverge diverge diverge
5× 10−3 56.74 57.55 58.19
10× 10−3 55.74 54.71 58.01
15× 10−3 58.03 60.52 56.18
25× 10−3 diverge diverge diverge

(c) dimension(h) = 100

10−4 10−3 10−2

10× 10−3 diverge diverge diverge
20× 10−3 56.57 60.04 56.31
30× 10−3 diverge diverge diverge

Sampling. Since we compare with BiSM (Bao et al., 2020), we use the same sampling algorithm as BiSM. For deep
EBLVMs, we first randomly select a training data point and inference its approximate posterior mean; we then sample from
p(v|h) with h equal to the approximate posterior mean using the annealed Langevin dynamics technique (Li et al., 2019).
The temperature range is [1, 100] and the step size is 0.02 in annealed Langevin dynamics.

Devices and training time. The time and memory consumption of VaGES with different batch sizes (BS) is displayed
in Tab. 2. We also include that of BiSM. The time and memory consumption in deep EBLVMs of VaGES and BiSM is
consistent with GRBMs (see Fig. 3 in the full paper). Besides, training an EBLVM takes about 2.8 times as long as training
an EBM (the one trained by MDSM in Tab. 1 (a) in the full paper). The additional cost is reasonable, since (i) the EBLVM
improves the expressive power (see Tab. 1 (a) in the full paper) based on a similar model structure and a comparable amount
of parameters (244MB for the EBLVM and 238MB for the EBM), and (ii) the EBLVM enables manipulation in the latent
space (see Fig. 4 in the full paper).

Table 2. Training time of 2k iterations/memory consumption on GeForce RTX 2080 Ti in deep EBLVMs. L=2,K=5.

Dataset Setting VaGES BiSM (N=0) BiSM (N=2) BiSM (N=5)

CIFAR10 1GPU BS=64 24m/5.8GB 19m/6.8GB 25m/7.8GB 34m/9.5GB
2GPUs BS=100 35m/8.2GB 28m/11.1GB 43m/13.2GB 66m/16.4GB

CelebA 1GPU BS=16 26m/8.0GB 21m/7.9GB 26m/9.2GB 35m/10.2GB
6GPUs BS=100 90m/52.4GB 67m/51.9GB 100m/58.7GB 124m/60.1GB

F.3. Evaluating EBLVMs with Exact Fisher Divergence

Additional setting. The GRBM is initialized as a standard Gaussian distribution by letting b = 0, c = 0,W = 0, σ = 1,
so we can get accurate samples from it. We get 20,000 samples from the initial GRBM, and split 16,000 samples for training,
2,000 samples for validation and 2,000 samples for testing. We use the Adam optimizer and the learning rate is 2× 10−4.
We train 20,000 iterations and the batch size is 100. The number of samples from qφ(h|v) is L = 1 and the variational
parameter φ is updated for K = 5 times on each minibatch. qφ(h|v) is a Bernoulli distribution parametermized by a fully
connected layer with the sigmoid activation and we use the Gumbel-Softmax trick (Jang et al., 2017) for reparameterization
of qφ(h|v) with 0.1 as the temperature. D is the KL divergence to learn qφ(h|v). fη is a multilayer perceptron (MLP) with
2 hidden layers and each layer has the same width.

F.4. Numerical Validation of Theorems

In the two posteriors pθ(h|v) and qφ(h|v), we fix v, θ and only vary φ to plot the relationship between the biases and the
divergences. As for v, we randomly select a sample from the Frey face training dataset and fix v as the sample. As for
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θ, we randomly initialize it with the uniform noise and don’t change it anymore. As for φ, we initialize it such that the
variational posterior qφ(h|v) is equal to the true posterior pθ(h|v). After initialization, we perturb φ with an increasing
Gaussian noise level and record the corresponding biases and divergences.

The dimension of h is 400. As for the GRBM, qφ(h|v) is a Bernoulli distribution parametermized by a fully connected
layer with the sigmoid activation. As for the Gaussian model, qφ(h|v) is a Gaussian distribution parametermized by a fully
connected layer.

G. Additional Results
G.1. Learning EBLVMs with KSD

The density of the checkerboard dataset is shown in Fig. 2 (a). The densities of GRBMs learned by KSD, VaGES-KSD
and IS-KSD are shown in Fig. 2 (b-h). Our VaGES-KSD is comparable to the KSD baseline and is better than the IS-KSD
baseline. The result is consistent with the test log-likelihood results in Figure 2 in the full paper.

(a) Data density (b) VaGES-KSD (L=2) (c) VaGES-KSD (L=5) (d) VaGES-KSD (L=10)

(e) KSD (f) IS-KSD (L=2) (g) IS-KSD (L=5) (h) IS-KSD (L=10)

Figure 2. Density plots of GRBMs trained by KSD, VaGES-KSD and IS-KSD. L is the number of samples from qφ(h|v).
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G.2. Learning EBLVMs with Score Matching

G.2.1. COMPARISON IN GRBMS

We compare with DSM (Vincent, 2011), BiSM (Bao et al., 2020), CD-based methods (Hinton, 2002; Tieleman, 2008)
and noise contrastive estimation (NCE)-based methods (Gutmann & Hyvärinen, 2010; Rhodes & Gutmann, 2019) on the
checkerboard dataset. In Fig. 3, we plot the test log-likelihood of different methods under the same setting. The result of
VaGES-DSM is similar to CD, DSM and BiDSM and slightly better than PCD and NCE-based methods after convergence.
The convergence speed of VaGES-DSM is faster than BiDSM. Besides, we show the densities of GRBMs learned by these
methods in Fig. 4. The performance of VaGES-DSM is similar to CD, DSM and BiDSM and better than PCD, NCE and
VNCE, which agrees with the test log-likelihood results after convergence in Fig. 3.

Figure 3. Comparison of different methods on checkerboard. The test log-likelihood is averaged over 10 runs.

(a) Data density (b) CD (c) PCD (d) NCE

(e) VNCE (f) DSM (g) VaGES-DSM (h) BiDSM

Figure 4. Density plots of GRBMs trained by different methods on checkerboard.
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G.2.2. LEARNING DEEP EBLVMS

Sample quality. We show samples from EBLVMs learned on MNIST, CIFAR10 and CelebA in Fig. 5. We also evaluate the
Inception Score on CIFAR10 and VaGES gets 7.53, which is better than baselines such as VAE-EBLVM (Han et al., 2020)
(7.17) and EBM (Du & Mordatch, 2019) (6.78).

(a) MNIST (b) CIFAR10

(c) CelebA
Figure 5. Samples from EBLVMs.



Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models: Appendix

Interpolation in the latent space. We show more interpolation results in Fig. 6.

(a) MNIST (b) CIFAR10

(c) CelebA

Figure 6. Interpolation of annealed Langevin dynamics trajectories in the latent space in EBLVMs.
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Sensitivity analysis. We study how hyperparameters influence the performances of VaGES-SM in deep EBLVMs. The
result is shown in Tab. 3. Increasing the number of convolutional layers will improve the performance, while the dimension
of h, the number of h sampled from qφ(h|v) and the noise level in Langevin dynamics don’t affect the result very much.
Setting both the number of times updating φ and the number of Langevin dynamics steps to 5 is enough for a stable training.
Besides, we also try using the KL divergence to learn the variational posterior and get a FID of 29.13, which doesn’t affect
the result very much.

Table 3. Sensitivity analysis on different hyperparameters (evaluated by FID ↓ on CIFAR10). Div means the training diverges.

(a) Dimensions of h

20 50 100

FID 26.55 28.09 27.78

(b) # convolutional layers

12 18 24

FID 36.17 28.09 25.98

(c) # h sampled from qφ(h|v)

2 5 10

FID 28.09 31.21 29.26

(d) Noise level in Langevin dynamics

10−4 10−3 10−2

FID 28.09 25.83 30.47

(e) # times updating φ (K)
# Langevin dynamics steps (C)

C

FID
0

5
10

15

K
0

Div
Div

Div
Div

5
Div

28.09
27.88

10

Div
29.52

15

Div

H. Additional Attempts on Improving Estimates
We can directly apply the control variate technique (Owen, 2013) to VaES. By noticing that

Eqφ(h|v)∇v log qφ(h|v) =

∫
qφ(h|v)

∇vqφ(h|v)

qφ(h|v)
dh = ∇v

∫
qφ(h|v)dh = 0, (3)

we can subtract ∇v log qφ(h|v) from VaES without changing the value of the expectation, and the resulting variational
estimate is

VaES-CV(v;θ,φ) =
1

L

L∑
i=1

∇v log
p̃θ(v,hi)

qφ(hi|v)
, hi

i.i.d∼ qφ(h|v). (4)

When the variational posterior qφ(h|v) is equal to the true posterior pθ(h|v), VaES-CV(v;θ,φ) = ∇v log p̃θ(v,h)
pθ(h|v) =

∇v log p̃θ(v) is exactly equal to the score function and has zero bias and variance. Empirically, we study how the control
variate influences the performance over different objectives on the checkerboard dataset in GRBMs. As shown in Fig. 7, the
control variate only marginally improves the performance of VaGES-KSD and makes no difference to VaGES-DSM. As a
result, we don’t make the control variate a default technique in VaES, since it will introduce some extra computation, while
the improvement is marginal.

Figure 7. How the control variate (CV) influences the performance over different objectives on the checkerboard dataset in GRBMs. The
test log-likelihood is averaged over 10 runs.
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I. An Introduction to BiSM
BiSM (Bao et al., 2020) approximates the score function via variational inference first:

∇v log p(v;θ) = ∇v log
p̃(v,h;θ)

p(h|v;θ)
−∇v logZ(θ) = ∇v log

p̃(v,h;θ)

p(h|v;θ)
,

and then gets the gradient of a certain objective via solving a complicated bi-level optimization problem:

min
θ∈Θ
JBi(θ,φ

∗(θ)), JBi(θ,φ) = Eq(v,ε)Eq(h|v;φ)F
(
∇v log

p̃(v,h;θ)

q(h|v;φ)
, ε,v

)
,

where Θ is the hypothesis space of the model, F depends on the certain objective, q(v, ε) is the joint distribution of the data
and additional noise and φ∗(θ) is defined as follows:

φ∗(θ) = arg min
φ∈Φ

G(θ,φ), with G(θ,φ) = Eq(v,ε)D (q(h|v;φ)||p(h|v;θ)) .

BiSM uses gradient unrolling to solve the problem, where the lower level problem φ∗(θ) is approximated by the output of N
steps gradient descent on G(θ,φ) w.r.t. φ, which is denoted by φN (θ). Finally, the model is updated with the approximate
gradient∇θJBi(θ,φ

N (θ)), whose bias converges to zero in a linear rate in terms of N when G is strongly convex. The
gradient unrolling requires an O(N) time and memory.

Gradient unrolling of small steps is of large bias and that of large steps is time and memory consuming. Thus, BiSM
with 0 gradient unrolling suffers from an additional bias besides the variational approximation. Instead, VaGES directly
approximates the gradient of score function and its bias is controllable as presented in Sec. 2.2 in the full paper.
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