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Abstract
We consider a novel challenge: approximating a
distribution without the ability to randomly sam-
ple from that distribution. We study how such
an approximation can be obtained using weight
queries. Given some data set of examples, a
weight query presents one of the examples to an
oracle, which returns the probability, according
to the target distribution, of observing examples
similar to the presented example. This oracle
can represent, for instance, counting queries to a
database of the target population, or an interface
to a search engine which returns the number of
results that match a given search.

We propose an interactive algorithm that itera-
tively selects data set examples and performs cor-
responding weight queries. The algorithm finds
a reweighting of the data set that approximates
the weights according to the target distribution,
using a limited number of weight queries. We
derive an approximation bound on the total vari-
ation distance between the reweighting found by
the algorithm and the best achievable reweighting.
Our algorithm takes inspiration from the UCB
approach common in multi-armed bandits prob-
lems, and combines it with a new discrepancy
estimator and a greedy iterative procedure. In
addition to our theoretical guarantees, we demon-
strate in experiments the advantages of the pro-
posed algorithm over several baselines. A python
implementation of the proposed algorithm and
of all the experiments can be found at https:
//github.com/Nadav-Barak/AWP

1. Introduction
A basic assumption in learning and estimation tasks is the
availability of a random sample from the distribution of
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interest. However, in many cases, obtaining such a ran-
dom sample is difficult or impossible. In this work, we
study a novel challenge: approximating a distribution with-
out the ability to randomly sample from it. We consider a
scenario in which the only access to the distribution is via
weight queries. Given some data set of examples, a weight
query presents one of these examples to an oracle, which
returns the probability, according to the target distribution,
of observing examples which are similar to the presented ex-
ample. For instance, the available data set may list patients
in a clinical trial, and the target distribution may represent
the population of patients in a specific hospital, which is
only accessible through certain database queries. In this
case, the weight query for a specific data set example can be
answered using a database counting query, which indicates
how many records with the same demographic properties
as the presented example exist in the database. A different
example of a relevant oracle is that of a search engine for
images or documents, which returns the number of objects
in its database that are similar to the searched object.

We study the possibility of using weight queries to find a
reweighting of the input data set that approximates the target
distribution. Importantly, we make no assumptions on the
relationship between the data set and the target distribution.
For instance, the data set could be sampled from a differ-
ent distribution, or be collected via a non-random process.
Reweighting the data set to match the true target weights
would be easy if one simply queried the target weight of
all the data set examples. In contrast, our goal in this work
is to study whether a good approximated weighting can be
found using a number of weight queries that is independent
of the data set size. A data set reweighted to closely match
a distribution is often used as a proxy to a random sam-
ple in learning and statistical estimation tasks, as done, for
instance, in domain adaptation settings (e.g., Bickel et al.
2007; Sugiyama et al. 2008; Bickel et al. 2009).

We consider a reweighting scheme in which the weights are
fully defined by some partition of the data set to a small
number of subsets. Given the partition, the weights of ex-
amples in each subset of the partition are uniform, and are
set so that the total weight of the subset is equal to its true
target weight. An algorithm for finding a good reweighting
should thus search for a partition such that within each of its
subsets, the true example weights are as close to uniform as
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possible. For instance, in the hospital example, consider a
case in which the hospital of interest has more older patients
than their proportion in the clinical trial data set, but within
each of the old and young populations, the makeup of the
patients in the hospital is similar to that in the clinical trial.
In this case, a partition based on patient ages will lead to an
accurate reweighting of the data set. The goal of the algo-
rithm is thus to find a partition which leads to an accurate
reweighting, using a small number of weight queries.

We show that identifying a good partition using only weight
queries of individual examples is impossible, unless almost
all examples are queried for their weight. We thus consider a
setting in which the algorithm has a limited access to higher
order queries, which return the total weight of a subset
of the data set. These higher-order queries are limited to
certain types of subsets, and the algorithm can only use a
limited number of such queries. For instance, in the hospital
example, higher-order queries may correspond to database
counting queries for some less specific demographic criteria.

To represent the available higher order queries for a given
problem, we assume that a hierarchical organization of the
input data set is provided to the algorithm in the form of a
tree, whose leaves are the data set examples. Each internal
node in the tree represents the subset of leaves that are its
descendants, and the only allowed higher-order queries are
those that correspond to one of the internal nodes. Given
such a tree, we consider only partitions that are represented
by some pruning of the tree, where a pruning is a set of
internal nodes such that each leaf has exactly one ancestor
in the set. A useful tree is one that includes a small pruning
that induces a partition of the data set into near-uniform
subsets, as described above.

Main results: We give an algorithm that for any given
tree, finds a near-optimal pruning of size K using only
K − 1 higher order queries and O(K3/ε2) weight queries
of individual examples, where ε measures the total variation
distance of the obtained reweighting. The algorithm greedily
splits internal nodes until reaching a pruning of the requested
size. To decide which nodes to split, it iteratively makes
weight queries of examples based on an Upper Confidence
Bound (UCB) approach. Our UCB scheme employs a new
estimator that we propose for the quality of an internal
node. We show that this is necessary, since a naive estimator
would require querying the weight of almost all data set
examples. Our guarantees depend on a property of the
input hierarchical tree that we term the split quality, which
essentially requires that local node splits of the input tree
are not too harmful. We show that any algorithm that is
based on iteratively splitting the tree and obtains a non-
trivial approximation guarantee requires some assumption
on the quality of the tree.

To supplement our theoretical analysis, we also imple-

ment the proposed algorithm and report several experi-
ments, which demonstrate its advantage over several natu-
ral baselines. A python implementation of the proposed
algorithm and of all the experiments can be found at
https://github.com/Nadav-Barak/AWP.

Related work

In classical density estimation, the goal is to estimate the
density function of a random variable given observed data
(Silverman, 1986). Commonly used methods are based on
Parzen or Kernel estimators (Wand and Jones, 1994; Gold-
berger and Roweis, 2005), expectation maximization (EM)
algorithms (McLachlan and Krishnan, 2007; Figueiredo
and Jain, 2002) or variational estimation (Corduneanu and
Bishop, 2001; McGrory and Titterington, 2007). Some
works have studied active variants of density estimation.
In Ghasemi et al. (2011), examples are selected for kernel
density estimation. In Kristan et al. (2010), density esti-
mation in an online and interactive setting is studied. We
are not aware of previous works that consider estimating
a distribution using weight queries. The domain adapta-
tion framework (Kifer et al., 2004; Ben-David et al., 2007;
Blitzer et al., 2008; Mansour et al., 2009; Ben-David et al.,
2010) assumes a target distribution with scarce or unlabeled
random examples. In Bickel et al. (2007); Sugiyama et al.
(2008); Bickel et al. (2009), reweighting the labeled source
sample based on unlabeled target examples is studied. Trade-
offs between source and target labels are studied in Kpotufe
and Martinet (2018). In Berlind and Urner (2015), a labeled
source sample guides target label requests.

In this work, we assume that the input data set is organized
in a hierarchical tree, which represents relevant structures
in the data set. This type of input is common to many
algorithms that require structure. For instance, such an
input tree is used for active learning in Dasgupta and Hsu
(2008); Urner et al. (2013). In Slivkins (2011); Bubeck et al.
(2011), a hierarchical tree is used to organize different arms
in a multi-armed-bandits problem, and in Munos (2011)
such a structure is used to adaptively estimate the maximum
of an unknown function. In Kpotufe et al. (2015); Cortes
et al. (2020), an iterative partition of the domain is used for
active learning.

2. Setting and Notations
Denote by 1 the all-1 vector; its size will always be clear
from context. For an integer n, let [n] := {1, . . . , n}.
For a vector or a sequence x = (x(1), . . . , x(n)), let
‖x‖1 :=

∑
i∈[n] |x(i)| be the `1 norm of x. For a func-

tion f : X → R on a discrete domain X , denote
‖f‖1 :=

∑
x∈X |f(x)|.

The input data set is some finite set S ⊆ X . We assume
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that the examples in S induce a partition on the domain X ,
where the part represented by x ∈ S is the set of target exam-
ples that are similar to it (in some application-specific sense).
The target weighting of S is denotedw∗ : S → [0, 1], where
‖w∗‖1 = 1. w∗(x) is the probability mass, according to
the unknown target distribution, of the examples in the do-
main that are represented by x. For a set V ⊆ S, denote
w∗(V ) :=

∑
x∈V w

∗(x). The goal of the algorithm is to ap-
proximate the target weighting w∗ using weight queries, via
a partition of S into at most K parts, where K is provided
as input to the algorithm.

A basic weight query presents some x ∈ S to the oracle
and receives its weight w∗(x) as an answer. To define the
available higher-order queries, the input to the algorithm
includes a binary hierarchical tree T whose leaves are the
elements in S. For an internal node v, denote by Lv ⊆ S the
set of examples in the leaves descending from v. A higher-
order query presents some internal node v to the oracle, and
receives its weight w∗(Lv) as an answer. We note that the
algorithm that we propose below uses higher-order queries
only for nodes of depth at most K.

A reweighting algorithm attempts to approximate the target
weighting by finding a small pruning of the tree that induces
a weighting on S which is as similar as possible to w∗.
Formally, for a given tree, a pruning of the tree is a set of
internal nodes such that each tree leaf is a descendant of
exactly one of these nodes. Thus, a pruning of the input
tree T induces a partition on S. The weighting induced by
the pruning is defined so that the weights assigned to all the
leaves (examples) descending from the same pruning node v
are the same, and their total weight is equal to the true total
weight w∗(Lv). Formally, let Nv := |Lv|. For a pruning P
and an example x ∈ S, let A(P, x) be the node in P which
is the ancestor of x. The weighting wP : S → R+ induced
by the pruning P is defined as wP (x) := w∗A(P,x)/NA(P,x).

The quality of a weighting wP is measured by the total
variation distance between the distribution induced by wP
and the one induced by w∗. This is equivalent to the `1
norm between the weight functions (see, e.g., Wilmer et al.,
2009). Formally, the total variation distance between two
weight functions w1, w2 : S → R+ is

dist(w1, w2) := max
S′⊆S

|w1(S′)− w2(S′)|

≡ 1

2

∑
x∈S
|w1(x)− w2(x)| ≡ 1

2
‖w1 − w2‖1.

For a node v, define Dv :=
∑
x∈Lv

|w∗v/Nv − w∗(x)|. The
discrepancy of wP (with respect to w∗) is

DP := 2dist(wP , w
∗) = ‖wP − w∗‖1 =

∑
v∈P

Dv.

Intuitively, this measures the distance of the weights in each

pruning node from uniform weights. More generally, for
any subset G of a pruning, define DG :=

∑
v∈G Dv. We

also call DG,Dv the discrepancy of G, v, respectively. The
goal of the algorithm is thus to find a pruning P with a low
discrepancy wP , using a small number of weight queries.

3. Estimating the Discrepancy
As stated above, the goal of the algorithm is to find a prun-
ing with a low discrepancy. A necessary tool for such an
algorithm is the ability to estimate the discrepancy Dv of a
given internal node using a small number of weight queries.
In this section, we discuss some challenges in estimating the
discrepancy and present an estimator that overcomes them.

First, it can be observed that the discrepancy of a node can-
not be reliably estimated from basic weight queries alone,
unless almost all leaf weights are queried. To see this, con-
sider two cases: one in which all the leaves in Lv have an
equally small weight, and one in which this holds for all
but one leaf, which has a large weight. The discrepancy Dv
in the first case is zero, while it is large in the second case.
However, it is impossible to distinguish between the cases
using basic weight queries, unless they happen to include
the heavy leaf. A detailed example of this issue is provided
in Appendix B.

To overcome this issue, the algorithm uses a higher order
query to obtain the total weight of the internal node w∗v ,
in addition to a random sample of basic weight queries of
examples in Lv. However, even then, a standard empiri-
cal estimator of the discrepancy, obtained by aggregating
|w∗v/Nv − w∗(x)| over sampled examples, can have a large
estimation error due to the wide range of possible values
(see example in Appendix B). We thus propose a different
estimator, which circumvents this issue. The lemma be-
low gives this estimator and proves a concentration bound
for it. In this lemma, the leaf weights are represented by
w = (w1, . . . , wn) and the discrepancy of the node is D(w).
In more general terms, this lemma gives an estimator for the
uniformity of a set of values.

Lemma 3.1. Let w = (w1, . . . , wn) be a sequence of non-
negative real values with a known ‖w‖1. Let W := ‖w‖/n,
and D(w) := ‖w−W ·1‖1. LetU be a uniform distribution
over the indices in [n], and suppose that m i.i.d. samples
{Ii}i∈[m] are drawn from U . Denote Zi := wIi for i ∈ [m],
and Z := (Z1, . . . , Zm). Let the estimator for D(w) be:

D̂(w) := ‖w‖1 +
n

m
(‖Z−W · 1‖1 − ‖Z‖1).

Then, with a probability at least 1− δ,

|D(w)− D̂(w)| ≤ ‖w‖1
√

2 ln(2/δ)/m.

Proof. Let Z ′i = |Zi − W | − Zi. If Zi ≥ W , we have
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Z ′i = −W . Otherwise, 0 ≤ Zi < W , and therefore Z ′i =
W − 2Zi ∈ [−W,W ].

Combining the two cases, we get P[Z ′i ∈ [−W,W ]] = 1.
Thus, by Hoeffding’s inequality, with a probability at least
1− δ, we have

|E[Z ′1]− 1

m

∑
i∈[m]

Z ′i| ≤W ·
√

2 ln(2/δ)/m, and

E[Z ′1] =
1

n
(‖w −W · 1‖1 − ‖w‖1) =

1

n
(D(w)− ‖w‖1).

In addition,
1

m

∑
i∈[m]

Z ′i =
1

m
(‖Z−W ·1‖1−‖Z‖1) =

1

n
(D̂(w)−‖w‖1).

Therefore, with a probability at least 1− δ,∣∣D(w)− ‖w‖1 − (D̂(w)− ‖w‖1)
∣∣ ≤ nW√2 ln(2/δ)/m

= ‖w‖1
√

2 ln(2/δ)/m,

as claimed.

4. Main result: the AWP algorithm
We propose the AWP (Approximated Weights via Pruning)
algorithm, listed in Alg. 1. AWP uses weight queries to find
a pruning P , which induces a weight functionwP as defined
in Section 2. AWP gets the following inputs: a binary tree
T whose leaves are the data set elements, the requested
pruning size K ≥ 2, a confidence parameter δ ∈ (0, 1),
and a constant β > 1, which controls the trade-off between
the number of weight queries requested by AWP and the
approximation factor that it obtains. Finding a pruning with
a small discrepancy while limiting the number of weight
queries involves several challenges, since the discrepancy of
any given pruning is unknown in advance, and the number of
possibilities is exponential in K. AWP starts with the trivial
pruning, which includes only the root node. It iteratively
samples weight queries of leaves to estimate the discrepancy
of nodes in the current pruning. AWP decides in a greedy
manner when to split a node in the current pruning, that is,
to replace it in the pruning with its two child nodes. It stops
after reaching a pruning of size K.

We first provide the notation for Alg. 1. For a node v in
T , Mv is the number of weight queries of examples in Lv
requested so far by the algorithm for estimating Dv. The
sequence of Mv weights returned by the oracle for these
queries is denoted zv . Note that although an example in Lu
is also in Lv for any ancestor v of u, weight queries used
for estimating Dv are not reused for estimating Du, since
this would bias the estimate. AWP uses the estimator for Dv
provided in Lemma 3.1. In AWP notation, the estimator is:

D̂v := w∗v +
Nv
Mv

(‖zv −
w∗v
Nv
· 1‖1 − ‖zv‖1). (1)

AWP iteratively samples weight queries of examples for
nodes in the current pruning, until it can identify a node
which has a relatively large discrepancy. The iterative sam-
pling procedure takes inspiration from the upper-confidence-
bound (UCB) approach, common in best-arm-identification
problems (Audibert et al., 2010); In our case, the goal is
to find the best node up to a multiplicative factor. In each
iteration, the node with the maximal known upper bound
on its discrepancy is selected, and the weight of a random
example from its leaves is queried. To calculate the upper
bound, we define

∆v := w∗v ·
√

2 ln(2Kπ2M2
v /(3δ))/Mv. (2)

We show in Section 5 that |Dv − D̂v| ≤ ∆v with a high
probability. Hence, the upper bound for Dv is set to D̂v+∆v .
Whenever a node from the pruning is identified as having
a large discrepancy in comparison with the other nodes, it
is replaced by its child nodes, thus increasing the pruning
size by one. Formally, AWP splits a node if with a high
probability, ∀v′ ∈ P \ {v},Dv ≥ Dv′/β.

The factor of β trades off the optimality of the selected
node in terms of its discrepancy with the number of queries
needed to identify such a node and perform a split. In
addition, it makes sure that a split can be performed even if
all nodes have a similar discrepancy. The formal splitting
criterion is defined via the following Boolean function:

SC(v, P )=

{
β(D̂v −∆v)≥ max

v′∈P\{v}
D̂v′ + ∆v′

}
. (3)

To summarize, AWP iteratively selects a node using the UCB
criterion, and queries the weight of a random leaf of that
node. Whenever the splitting criterion holds, AWP splits
a node that satisfies it. This is repeated until reaching a
pruning of size K. In addition, when a node is added to the
pruning, its weight is queried for use in Eq. (1).

We now provide our guarantees for AWP. The properties of
the tree T affect the quality of the output weighting. First,
the pruning found by AWP cannot be better than the best
pruning of size K in T . Thus, we guarantee an approxima-
tion factor relative to that pruning. In addition, we require
the tree to be sufficiently nice, in that a child node should
have a somewhat lower discrepancy than its parent. For-
mally, we define the notion of split quality.

Definition 4.1 (Split quality). Let T be a hierarchical tree
for S, and q ∈ (0, 1). T has a split quality q if for any two
nodes v, u in T where u is a child of v, we have Du ≤ qDv .

This definition is similar in nature to other tree quality
notions, such as the taxonomy quality of Slivkins (2011),
though the latter restricts weights and not the discrepancy.
We note that Def. 4.1 could be relaxed, for instance by allow-
ing different values of q in different tree levels. Nonetheless,
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Algorithm 1 AWP: Approximated weighting of a data set
via a low-discrepancy pruning

1: Input:A binary tree T with examples as leaves; Maxi-
mum pruning size K ≥ 2; δ ∈ (0, 1); β > 1.

2: Output:Po: A pruning of T with a small DPo

3: Initializations: P ← {The root node of T};
4: For all nodes v in T : zv ← (),Mv ← 0.
5: while |P | < K do
6: B Select a node to sample from
7: Set vs ← argmaxv∈P (D̂v + ∆v).
8: Draw uniformly random example x from Lvs
9: Query the true weight of x, w∗(x).

10: Mvs ←Mvs + 1, zvs ← zvs ◦ w∗(x).
11: B Decide whether to split a node in the pruning:
12: while ∃v ∈ P s.t. SC(v, P ) holds (Eq. (3)) do
13: Let vR, vL be children of such a v.
14: Set P ← P \ {v} ∪ {vR, vL}.
15: Query w∗vR ; set w∗vL ← w∗v − w∗vR .
16: end while
17: end while
18: return Po := P .

we prove in Appendix A that greedily splitting the node
with the largest discrepancy cannot achieve a reasonable
approximation factor without some restriction on the input
tree, and that this also holds for other types of greedy algo-
rithms. It is an open problem whether this limitation applies
to all greedy algorithms. Note also that even in trees with a
split quality less than 1, splitting a node might increase the
total discrepancy; see Section 5 for further discussion. Our
main result is the following theorem.

Theorem 4.2. Suppose that AWP gets the inputs T , K ≥ 2,
δ ∈ (0, 1), β > 1 and let Po be its output. Let Q be a prun-
ing of T of size K with a minimal DQ. With a probability at
least 1− δ, we have:

• If T has split quality q for some q < 1, then

DPo
≤ 2β(

log(K)

log(1/q)
+ 1)DQ.

• AWP requests K − 1 weight queries of internal nodes.

• AWP requests Õ((1 + 1
β−1 )2K3 ln(1/δ)/D2

Po
) weight

queries of examples.1

Thus, an approximation factor with respect to the best
achievable discrepancy is obtained, while keeping the num-
ber of higher-order weight queries minimal and bounding
the number of weight queries of examples requested by the
algorithm. The theorem is proved in the next section.

1The Õ notation hides constants and logarithmic factors; These
are explicit in the proof of the theorem.

5. Analysis
In this section, we prove the main result, Theorem 4.2. First,
we prove the correctness of the definition of ∆v given in Sec-
tion 4, using the concentration bound given in Lemma 3.1
for the estimator D̂v . The proof is provided in Appendix C.
Lemma 5.1. Fix inputs T,K, δ, β to AWP. Recall that P
is the pruning updated by AWP during its run. The follow-
ing event holds with a probability at least 1 − δ on the
randomness of AWP:

E0 := {At all times during the run of AWP,

∀v ∈ P, |Dv − D̂v| ≤ ∆v}.
(4)

Next, we bound the increase in discrepancy that could be
caused by a node split. Even in trees with a split quality less
than 1, a split could increase the discrepancy of the pruning.
The next lemma bounds this increase, and shows that this
bound is tight. The proof is provided in Appendix D.
Lemma 5.2. Let r be the root of a hierarchical tree and let
P be a pruning of this tree. Then DP ≤ 2Dr. Moreover, for
any ε > 0, there exists a tree with a split quality q < 1 and
a pruning P of size 2 such that DP ≥ (2− ε)Dr.

We now prove the two main parts of Theorem 4.2, starting
with the approximation factor of AWP. In the proof of the
following lemma, the proof of some claims is omitted. The
full proof is provided in Appendix E.
Lemma 5.3. Fix inputs T,K, δ, β to AWP, and suppose that
T has a split quality q ∈ (0, 1). Let Po be the output of AWP.
Let E0 be the event defined in Eq. (4). In any run of AWP in
which E0 holds, for any pruning Q of T such that |Q| = K,
we have DPo ≤ 2β( log(K)

log(1/q) + 1)DQ.

Proof. Let Q be some pruning such that |Q| = K. Partition
Po into R,Pa and Pd, where R := Po ∩ Q, Pa ⊆ Po is
the set of strict ancestors of nodes in Q, and Pd ⊆ Po is
the set of strict descendants of nodes in Q. Let Qa ⊆ Q
be the ancestors of the nodes in Pd and let Qd ⊆ Q be the
descendants of the nodes in Pa, so thatR,Qd andQa form a
partition of Q. First, we prove that we may assume without
loss of generality that Pa, Pd, Qa, Qd sets are non-empty.

Claim 1: If any of the sets Pa, Pd, Qa, Qd is empty then
the statement of the lemma holds.

The proof of Claim 1 is deferred to Appendix E. Assume
henceforth that Pa, Pd, Qa, Qd are non-empty. Let r be
the node with the smallest discrepancy out of the nodes
that were split by AWP during the entire run. Define θ :=
|Pa| · Dr/DQa

if DQa
> 0 and θ := 0 otherwise.

Claim 2: DPo ≤ max(2, βθ)DQ.

Proof of Claim 2: We bound the discrepancies of Pd and
of Pa separately. For each node u ∈ Qa, denote by P (u)
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the descendants of u in Pd. These form a pruning of the
sub-tree rooted at u. In addition, the sets {P (u)}u∈Qa form
a partition of Pd. Thus, by the definition of discrepancy and
Lemma 5.2,

DPd
=
∑
u∈Qa

DP (u) ≤
∑
u∈Qa

2Du = 2DQa
. (5)

Let P be the pruning when AWP decided to split node r. By
the definition of the splitting criterion SC (Eq. (3)), for all
v ∈ P \{r}, at that time it held that β(D̂r−∆r) ≥ D̂v+∆v .
SinceE0 holds, we have Dr ≥ D̂r−∆r and D̂v+∆v ≥ Dv .
Therefore, ∀v ∈ P \ {r}, βDr ≥ Dv .

Now, any node v′ ∈ Po \ P is a descendant of some node
v ∈ P . Since T has split quality q for q < 1, we have
Dv′ ≤ Dv. Therefore, for all v′ ∈ Po, Dv′ ≤ βDr. In
particular, DPa

≡
∑
v∈Pa

Dv ≤ β|Pa|Dr. Since all nodes
inQa were split by AWPDQa

= 0 implies Dr = 0, therefore
in all cases DPa

≤ βθDQa
. Combining this with Eq. (7),

we get that

DPo
= DR + DPd

+ DPa
≤ DR + 2DQa

+ βθDQa

≤ max(2, βθ)DQ,

which completes the proof of Claim 2.

It follows from Claim 2 that to bound the approximation
factor, it suffices to bound θ. Let P ′d be the set of nodes both
of whose child nodes are in Pd and denote n := |P ′d|. In
addition, define

α :=
log(1/q)

log(|Pa|) + log(1/q)
≤ 1.

We now prove that θ ≤ 2/α by considering two comple-
mentary cases, n ≥ α|Pa| and n < α|Pa|. The following
claim handles the first case.

Claim 3: if n ≥ α|Pa|, then θ ≤ 2/α.

Proof of Claim 3: Each node in P ′d has an ancestor in Qa,
and no ancestor in P ′d. Therefore, P ′d can be partitioned to
subsets according to their ancestor in Qa, and each such
subset is a part of some pruning of that ancestor. Thus, by
Lemma 5.2, DP ′d ≤ 2DQa

. Hence, for some node v ∈ P ′d,
Dv ≤ 2DQa

/n. It follows from the definition of r that
Dr ≤ 2DQa

/n. Hence, θ ≤ 2|Pa|/n. Since n ≥ α|Pa|, we
have θ ≤ 2/α as claimed.

We now prove this bound hold for the case n < α|Pa|. For
a node v with an ancestor in Qa, let lv be the path length
from this ancestor to v, and define L :=

∑
v∈P ′d

lv . We start
with an auxiliary Claim 4.

Claim 4: L ≥ |Pa| − n.

The proof of Claim 4 is deferred to Appendix E. We use
Claim 4 to prove the required upper bound on θ in Claim 5.

Claim 5: if n < α|Pa|, then θ ≤ 2/α.

Proof of Claim 5: It follows from Claim 4 that for some
node v ∈ P ′d, lv ≥ (|Pa| − n)/n = |Pa|/n − 1 > 0,
where the last inequality follows since n < α|Pa| < |Pa|.
Letting u ∈ Qa be the ancestor of v in Qa, we have by
the split quality q of T that Dv ≤ Du · q

|Pa|
n −1. Since

u ∈ Qa, we have Du ≤ DQa
. In addition, Dr ≤ Dv by

the definition of r. Therefore, Dr ≤ DQa
· q
|Pa|
n −1. Since

n < |Pa|α and q < 1, from the definition of α, θ we have
θ ≤ |Pa|q

|Pa|
n −1 ≤ 1 ≤ 2/α. This proves Claim 5.

Claims 3 and 5 imply that in all cases, θ ≤ 2/α. By Substi-
tuting α, we have that

θ ≤ 2(
log(|Pa|)
log(1/q)

+ 1) ≤ 2(
log(K)

log(1/q)
+ 1).

Placing this upper bound in the statement of Claim 2 con-
cludes of the lemma.

Next, we prove an upper bound on the number of weight
queries requested by AWP.

Lemma 5.4. Let β > 1. Consider a run of AWP in whichE0

holds, and fix some iteration. Let P be the current pruning,
and for a node v in T , denote

αv :=
β

β − 1
· w∗v

maxu∈P Du
.

Then in this iteration, the node vs selected by AWP satisfies
Mvs < 22α2

vs(ln(α4
vsK/δ) + 10).

Proof. Recall that the next weight query to be sampled by
AWP is set to vs ∈ argmaxv∈P (D̂v + ∆v). First, if some
nodes v ∈ P have Mv = 0, they will have ∆v = ∞, thus
one of them will be set as vs, in which case the bound
on Mvs trivially holds. Hence, we assume below that for
all v ∈ P , Mv ≥ 1. Denote Dmax := maxv∈P Dv. Let
u ∈ argmaxv∈P D̂v be a node with a maximal estimated
discrepancy. Since E0 holds, for all v ∈ P we have D̂v +
∆v ≥ Dv. Thus, by definition of vs, D̂vs + ∆vs ≥ Dmax

which implies D̂u ≥ D̂vs ≥ Dmax −∆vs . Therefore,

β(D̂u −∆u) = D̂u + (β − 1)D̂u − β∆u

≥ D̂u + (β − 1)(Dmax −∆vs)− β∆u.

Denote θ := (β − 1)Dmax/(2β), and assume for contradic-
tion that ∆vs ≤ θ. By the definitions of u and vs, we have
∆u ≤ ∆vs ≤ θ. Thus, from the inequality above and the
definitions of θ, u, vs,

β(D̂u −∆u) ≥ D̂u + (β − 1)(Dmax − θ)− βθ (6)

= D̂u + θ ≥ D̂vs + ∆vs ≥ max
z∈P\{u}

(D̂z + ∆z),
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implying that SC(u, P ) holds. But this means that the pre-
vious iteration should have split this node in the pruning,
a contradiction. Therefore, ∆vs > θ. Since by Eq. (2),
∆vs ≡ w∗vs

√
2 ln(2Kπ2M2

vs/(3δ))/Mvs , it follows that

Mvs <
2w∗vs

2

θ2
· ln(

2Kπ2M2
vs

3δ
).

Denoting φ = 4w∗vs
2/θ2, µ =

√
2Kπ2/(3δ), this is equiv-

alent to Mvs < φ ln(µMvs). By Lemma F.1 in Appendix F,
this implies Mvs < eφ ln(eµφ). Noting that φ = 16α2

v and
bounding constants, this gives the required bound.

Lastly, we combine the lemmas to prove the main theorem.

Proof of Theorem 4.2. Consider a run in which E0 holds.
By Lemma 5.1, this occurs with a probability of 1− δ. If T
has a split quality q < 1, the approximation factor follows
from Lemma 5.3. Next, note that AWP makes a higher-order
query of a node only if it is the right child of a node that was
split in line 1 of Alg. 1. Thus, it makes K − 1 higher-order
weight queries. This proves the first two claims.

We now use Lemma 5.4 to bound the total number of
weight queries of examples under E0. First, we lower
bound maxv∈P Dv for any pruning P during the run of
AWP. Let u ∈ argmaxv∈Po

Dv. By the definition of u, we
have Du ≥ DPo

/K. Now, at any iteration during the run of
AWP, some ancestor v of u is in P . By Lemma 5.2, we have
Dv ≥ Du/2. Therefore, maxv∈P Dv ≥ DPo/(2K). Thus,
by Lemma 5.4, at any iteration of AWP, vs is set to some
node in P that satisfies Mvs < 22α2

vs(ln(α4
vsK/δ) + 10),

where αvs := β
β−1 ·

2Kw∗v
DPo

. Hence, AWP takes at most
Tv := 22α2

vs(ln(α4
vsK/δ) + 10) + 1 samples for node v,

and so the the total number of example weight queries taken
by AWP is at most

∑
v∈V Tv, where V is the set of nodes

that participate in P at any time during the run. To bound
this sum, note that for any pruning P during the run of
AWP, we have

∑
v∈P w

∗
v = 1. Hence,

∑
v∈P w

∗
v
2 ≤ 1.

Since there are K different prunings during the run, we
have

∑
v∈V w

∗
v
2 ≤ K. Substituting αv by its definition and

rearranging, we get that the total number of example weight
queries by AWP is Õ((1 + 1

β−1 )2K3 ln(1/δ)/D2
Po

).

6. Experiments
We report experiments that compare AWP to several natural
baselines. The full results of the experiments described
below, as well as results for additional experiments, are
reported in Appendix H. A python implementation of the
proposed algorithm and of all the experiments can be found
at https://github.com/Nadav-Barak/AWP. The
implementation can be easily run on a standard personal
computer, with the longest runs taking a few hours.

The implementation of AWP includes two practical improve-
ments: First, we use an empirical Bernstein concentration
bound (Maurer and Pontil, 2009) to reduce the size of ∆v

when possible; This does not affect the correctness of the
analysis. See Appendix G for details. Second, for all algo-
rithms, we take into account the known weight values of
single examples in the output weighting, as follows. For v ∈
Po, let Sv be the examples in Lv whose weight was queried.
Given the output pruning P , we define the weighting w′P
as follows. For x ∈ Sv , w′P (x) := w∗(x); for x ∈ Lv \ Sv ,
we set w′P (x) := (w∗v −

∑
x∈Sv

w∗(x))/(Nv − |Sv|). In
all the plots, we report the normalized output distance
dist(w′P , w

∗) = ‖w′P − w∗‖1/2 ∈ [0, 1], which is equal to
half the discrepancy of w′P .

To fairly compare AWP to the baselines, they were allowed
the same number of higher-order weight queries and basic
weight queries as requested by AWP for the same inputs. The
baselines are non-adaptive, thus the basic weight queries
were drawn uniformly from the data set at the start of their
run. We tested the following baselines: (1) WEIGHT: It-
eratively split the node with the largest weight. Use basic
weight queries only for the final calculation of w′P . The
rationale here is to get a finer resolution pruning in more im-
portant parts of the data set. However, this can lead to wasted
resources on parts of the tree which are both high weight
and low-discrepancy and an unbounded approximation fac-
tor, as proved in Appendix A. (2) UNIFORM: Iteratively
split the node v with the largest D̂v, the estimator used by
AWP, but without adaptive queries. (3) EMPIRICAL: Same
as UNIFORM, except that instead of D̂v, it uses the naive
empirical estimator, n

|Sv|
∑
x∈Sv

|w∗v(x)/Nv −w∗(x)| (See
Section 3).

We ran several types of experiments, all with inputs δ =
0.05 and β = 4. Note that β defines a trade-off between the
number of queries and the quality of the solution. There-
fore, its value represents user preferences and not a hyper-
parameter to be optimized. For each experiment, we report
the average normalized output distance over 10 runs, as a
function of the pruning size. Error bars, displayed as shaded
regions, show the maximal and minimal normalized dis-
tances obtained in these runs. For each input data set, we
define an input hierarchical tree T and test several target
distributions, which determine the true weight function w∗.

In the first set of experiments, the input data set was Adult
(Dua and Graff, 2017), which contains∼ 45,000 population
census records (after excluding those with missing values).
We created the hierarchical tree via a top-down procedure,
in which each node was split by one of the data set attributes,
using a balanced splitting criterion. Similarly to the hospital
example given in Section 1, the higher-order queries (inter-
nal nodes) in this tree require finding the proportion of the
population with a specific set of demographic characteris-

https://github.com/Nadav-Barak/AWP
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tics, which could be obtained via a database counting query.
For instance, a higher-order query could correspond to the
set of single government employees aged 45 or higher. To
generate various target distributions, we partitioned the data
set into ordered bins, where in each experiment the partition
was based on the value of a different attribute. The target
weights were set so that each example in a given bin was
N times heavier than each example in the next bin. We ran
this experiment with values N = 2, 4. Some plots are given
in Figure 1. See Appendix H for full details and results.

The rest of the experiments were done on visual data sets,
with a tree that was generated synthetically from the input
data set using Ward’s method (Müllner, 2011), as imple-
mented in the scipy python package.

First, we tested the MNIST (LeCun and Cortes, 2010) train-
ing set, which contains 60,000 images of hand-written digits,
classified into 10 classes (digits). The target distributions
were generated by allocating the examples into ordered bins
based on the class labels, and allocating the weights as in
the Adult data set experiment above, again with N = 2, 4.
We tested three random bin orders. See Figure 1 for some
of the results. See Appendix H for full details and results.

Lastly, we ran experiments using an input data set and target
distribution based on data set pairs commonly studied in
domain adaptation settings (e.g., Gong et al. 2012; Hoff-
man et al. 2012; Ding et al. 2015). The input data set was
Caltech256 (Griffin et al., 2007), with 29,780 images of
various objects, classified into 256 classes (not including the
singular “clutter” class). In each experiment, the target dis-
tribution was determined by a different data set as follows:
The target weight w∗ of each image in the Caltech256 data
set was set to the fraction of images from the target data set
that have this image as their nearest neighbor. We used two
target data sets: (1) The Office data set (Saenko et al., 2010),
of which we used the 10 classes that also exist in Caltech256
(1410 images); (2) The Bing data set (Alessandro Bergamo,
2010a;b), which includes 300 images in each Caltech256
class. For Bing, we also ran experiments where images
from a single super-class from the taxonomy in Griffin et al.
(2007) were used as the target data set. See Figure 1 for
some of the results, and Appendix H for full results.

In all experiments, except for a single configuration, AWP
performed better than the other algorithms. In addition,
UNIFORM and EMPIRICAL behave similarly in most ex-
periments, with UNIFORM sometimes being slightly better.
This shows that our new estimator is empirically adequate,
on top of its crucial advantage in getting a small ∆v. We
note that in our experiments, the split quality q was usually
close to one. This shows that AWP can be successful even
in cases not covered by Theorem 4.2. We did find that the
average splitting values were usually lower, see Appendix I.
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Figure 1. Some of the experiment results. Full results are pro-
vided in Appendix H. Top to Bottom: Adult data set, bins as-
signed by marital status, N = 4; MNIST: N = 2, N = 4; The
Caltech→Office experiment.
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7. Conclusions
In this work, we studied a novel problem of approximat-
ing a distribution via weight queries, using a pruning of a
hierarchical tree. We showed, both theoretically and experi-
mentally, that such an approximation can be obtained using
an efficient interactive algorithm which iteratively constructs
a pruning. In future work, we plan to study the effectiveness
of our algorithm under more relaxed assumptions, and to
generalize the input structure beyond a hierarchical tree.
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