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Abstract

Recently there has been increased interest in semi-
supervised classification in the presence of graph-
ical information. A new class of learning models
has emerged that relies, at its most basic level, on
classifying the data after first applying a graph
convolution. To understand the merits of this ap-
proach, we study the classification of a mixture
of Gaussians, where the data corresponds to the
node attributes of a stochastic block model. We
show that graph convolution extends the regime
in which the data is linearly separable by a factor
of roughly 1/+/D, where D is the expected de-
gree of a node, as compared to the mixture model
data on its own. Furthermore, we find that the
linear classifier obtained by minimizing the cross-
entropy loss after the graph convolution general-
izes to out-of-distribution data where the unseen
data can have different intra- and inter-class edge
probabilities from the training data.

1. Introduction

Semi-supervised classification is one of the most important
topics in machine learning and artificial intelligence. Re-
cently, researchers extended classification models to include
relational information (Hamilton, 2020), where relations are
captured by a graph. The attributes of the nodes capture
information about the nodes, while the edges of the graph
capture relations among the nodes. The reason behind this
trend is that many applications require the combination of
both the graph and the node attributes, such as recommen-
dation systems (Ying et al., 2018), predicting the properties
of compounds or molecules (Gilmer et al., 2017; Scarselli
et al., 2009), predicting states of physical objects (Battaglia
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et al., 2016), and classifying types of nodes in knowledge
graphs (Kipf & Welling, 2017).

The most popular models use graph convolution (Kipf &
Welling, 2017) where one averages the attributes of a node
with those of its neighbors.! This allows the model to make
predictions about a node using the attributes of its neighbors
instead of only using the node’s attributes. Despite the com-
mon perception among practitioners (Chen et al., 2019) that
graph convolution can improve the performance of models
for semi-supervised classification, we are not aware of any
work that studies the benefits of graph convolution in im-
proving classifiability of the data as compared to traditional
classification methods, such as logistic regression, nor are
we aware of any work on its generalization performance on
out-of-distribution data for semi-supervised classification.

To understand these issues, we study the performance of
a graph convolution on a simple classification model with
node attributes that are correlated with the class informa-
tion, namely semi-supervised classification for the contex-
tual stochastic block model (Binkiewicz et al., 2017; Desh-
pande et al., 2018). The contextual stochastic block model
(CSBM) is a coupling of the standard stochastic block model
(SBM) (Holland et al., 1983) with a Gaussian mixture model.
In this model, each class in the graph corresponds to a differ-
ent Gaussian component of the mixture model, which yields
the distribution for the attributes of the nodes. For a precise
definition of the model see Section 3. The CSBM allows us
to explore a range of questions related to linear separability
and, in particular, to probe how various methods perform as
one varies both the noise level of the mixture model, namely
the distance between the means, and the noise level of the
underlying graph, namely the difference between intra- and
inter-class edge probabilities. We focus here on the simple
case of two classes where the key issues are particularly
transparent. We expect that our methods apply readily to the
multi-class setting (see Section 6 for more on this).

Let us now briefly summarize our main findings. In the
following, let d be the dimension of the mixture model (the
number of attributes of a node in the graph), n the number

! Other types of graph convolution exist, for simplicity we focus
on averaging since it’s one of the most popular.
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of nodes, p and ¢ the intra- and inter-class edge probabilities
respectively, and D =~ n(p + q)/2 the expected degree of a
node. In our analysis we find the following:

+ If the means of the mixture model are at most O(1//d)
apart, then the data from the mixture model is not lin-
early separable and the minimal value of the binary
cross entropy loss on the sphere of radius R is bounded
away from 0 in a way that depends quantitatively on
this distance and the sizes of the labeled data-sets uni-
formly over R > 0.2

* If the means are at least @(1/v/d - D) apart, the graph
is not too sparse (p, ¢ = @(log®(n)/n)), and the noise
level is not too large ((p — ¢)/(p + ¢) = (1)), then
the graph convolution of the data is linearly separable
with high probability.

¢ Furthermore, if these conditions hold, then the mini-
mizer of the training loss achieves exponentially small
binary-cross entropy even for out-of-sample data with
high probability.

* On the other hand, if the means are O(1/+/dD), then
the convolved data is not linearly separable as well and
one obtains the same lower bound on the loss for fixed
radius as in the non-convolved setting.

In particular, we see that if the average degree is large
enough, then there is a substantial gain in the scale on which
the corresponding graph convolution can perform well as
compared to logistic regression. On the other hand, it is
important to note that if the noise level of the graph is very
high and the noise level of the data is small then the graph
convolution can be disadvantageous. This is also shown
empirically in our experiments in Subsections 5.3 and 5.4.

The rest of the paper is organized as follows: we review
recent literature on graph convolutions and (contextual)
stochastic block models in Section 2. In Section 3, we give a
precise definition of the semi-supervised contextual stochas-
tic block model. In Section 4 we present our results along
with a discussion. Finally, in Section 5 we present extensive
experiments which illustrate our results.

2. Previous Work

Computer scientists and statisticians have taken a fresh per-
spective on semi-supervised classification by coupling the
graph structure and node attributes, see, e.g., (Scarselli et al.,
2009; Cheng et al., 2011; Gilbert et al., 2012; Dang & Vi-
ennet, 2012; Giinnemann et al., 2013; Yang et al., 2013;
Hamilton et al., 2017; Jin et al., 2019; Mehta et al., 2019;

2t is easy to see that this is essentially sharp, that is, if the

means are w(4/log d/d)) apart then the data is linearly separable.

Klicpera et al., 2019). These papers focus largely on practi-
cal aspects of these problems and new graph-based machine
learning models.

On the other hand, there is a vast body of theoretical work on
unsupervised learning for stochastic block models, see, e.g.,
(Decelle et al., 2011; Massoulié, 2014; Mossel et al., 2018;
2015; Abbe & Sandon, 2015; Abbe et al., 2015; Bordenave
etal., 2015; Deshpande et al., 2015; Montanari & Sen, 2016;
Banks et al., 2016; Abbe & Sandon, 2018; Li et al., 2019;
Kloumann et al., 2017), as well as the recent surveys (Abbe,
2018; Moore, 2017). More recently, there has been work on
the related problem of unsupervised classification using the
contextual stochastic block model (Binkiewicz et al., 2017;
Deshpande et al., 2018). In their work, (Deshpande et al.,
2018; Lu & Sen, 2020) explore the fundamental thresh-
olds for correctly classifying a macroscopic fraction of the
nodes in the regime of linear sample complexity and large
but finite degree. Furthermore, they establish a conjecture
for the sharp threshold and characterize the threshold for
detection and weak recovery, showing that the average de-
gree need not be large, and the results hold for any degree
larger than 1. Their study, however, is largely focused on
the fundamental limits of unsupervised learning whereas the
work here is focused on understanding the relative merits
of graph convolutions over traditional learning methods for
semi-supervised learning.

Another line of work has been studying the power of graph
convolution models to distinguish graphs (Xu et al., 2019;
Garg et al., 2020; Loukas, 2020a), and the universality of
models that use graph convolution (Loukas, 2020b). In this
last paper and the references therein, the authors study the
expressive power of graph neural networks, i.e., the ability
to learn a hypothesis set. This, however, does not guaran-
tee generalization for unseen data. Another relevant work
that also studies semi-supervised classification using the
graphs generated by the SBM is (Chen et al., 2019). There,
the authors show that all local minima of cross entropy are
approximately global minima if the graphs follow an SBM
distribution. Their work, however, does not provide theoreti-
cal evidence for the learning benefits of graph convolution in
improving linear separability of data, neither do they show
generalization bounds for out-of-distribution data. In (Chien
et al., 2020; Zhu et al., 2020), the authors show that Multi-
Layer Perceptrons (MLPs) outperform standard GNNs on
heterophilic graphs. Our results agree with this observation,
and we provide theoretical results that characterize this rela-
tionship precisely for the contextual stochastic block models,
along with a generalization bound for out-of-distribution
settings.
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3. The Model

In this section we describe the CSBM (Deshpande et al.,
2018), which is a simple coupling of a stochastic block
model with a Gaussian mixture model.

Let (ex)pe[n be iid. Ber() random variables. Corre-
sponding to these, consider a stochastic block model con-
sisting of two classes Cy = {i € [n] : ¢, = 0} and
C1 = (C§ with inter-class edge probability ¢ and intra-
class edge probability p with no self-loops. In particular,
conditionally on (g;) the adjacency matrix A = (a;;) is
Bernoulli with a;; ~ Ber(p) if 4, j are in the same class
and a;; ~ Ber(g) if they are in distinct classes. Along with
this, consider X € R™*? to be the feature matrix such
that each row X; is an independent d-dimensional Gaus-
sian random vector with X; ~ N(u, 1) if i € Cy and
X; ~ N(v,iI)if i € Cy. Here p,v € R? are fixed
vectors with |||, ||| < 1 and I is the identity matrix.
Denote by CSBM(n, p, q, i, v) the coupling of a stochastic
block model with a two component Gaussian mixture model
with means p, v and covariance é[ as described above and
we denote a sample by (A, X) ~ CSBM(n,p, q, p,v).>
Observe that the marginal distribution for A is a stochastic
block model and that the marginal distribution for X is a two-
component Gaussian mixture model. In the rest of the paper,
we denote A = (@) to be the matrix A + I and D to be
the diagonal degree matrix for fl, sothat D;; = > jen] Q5
for all ¢ € [n]. Then the graph convolution of some data X
is givenby X = D1 AX.

For parameters w € R? and b € R, the label predictions
are given by y = (D' AXw + b1), where o (z) = (1 +
e~¥)~1 is the sigmoid function applied element-wise in
the usual sense. Note that we work in the semi-supervised
setting where only a fraction of the labels are available. In
particular, we will assume that for some fixed 0 < gy, 51 <
%, the number of labels available for class Cj is Sgn and
for class C4 is S1n. Let S = {i : y; is available} so that
|S| = (Bo + B1)n. The loss function we use is the binary
Cross entropy,

1

L(A X, (w,b)) = _E

> yilog git(1—y:) log(1—4i),
€S

ey
where y; is the given label of node 7, and j; is the predicted
label of node 7 (also, the i-th component of vector y). Ob-
serve that the binary cross-entropy loss used in Logistic
regression can be written as L(I, X, (w,b)).

*We note here that, we could also have considered o> T instead
of I/d, in which case all of our results still hold after rescaling
the thresholds appropriately. For example, if we took 0% = 1,
then the relevant critical thresholds for linear separability become
e — v|| ~ 1and || — v|| ~ 1/+/D for the mixture model and
the CSBM respectively.

4. Results

In this paper we have two main results. Our first result is
regarding the relative performance of the graph convolution
as compared to classical logistic regression. Here, there
are two types of questions to ask. The first is geometric
in nature, namely when is the data linearly separable with
high probability? This is a statement about the fundamental
limit of logistic regression for this data. The second is about
the output of the corresponding optimization procedure, the
minimizer of (1), namely whether or not it performs well in
classifying out-of-sample data.

Note that the objective function, while convex, is non-
coercive when the data are linearly separable. Therefore,
we introduce a norm-ball constraint and consider the follow-
ing problem:

OPT4(A,X,R) = min L(A,X,(w,b), (2

Iwl<R,
bER

where ||-|| is the £2-norm. The analogous optimization prob-
lem in the setting without graph structure, i.e., logistic re-
gression, is then OPT 4 (I, X, R). We find that graph con-
volutions can dramatically improve the separability of a
dataset and thus the performance of the regression. In partic-
ular, we find that by adding the graph structure to a dataset
and using the corresponding convolution, i.e., working with
AX as opposed to simply X, can make a dataset linearly
separable when it was not previously.

Our second result is about the related question of generaliza-
tion on out-of-distribution data. Here we take the optimizer,
(w*, b*), of problem (2) and we are interested in how well
it classifies data coming from a CSBM with the same means
but with a different number of nodes, n’, and different intra-
and inter-class edge probabilities, p’ and ¢’ respectively. We
find that (w*, b*) performs nearly optimally, even when the
values of n/, p’, and ¢’ are substantially different from those
in the training set.

Let us now state our results more precisely. Given a sample
(A, X) ~ CSBM(n,p,q, p,v), we say that (X;)"_, is lin-
early separable if there is some unit vector v and scalar b
such that (X;, v)+b < Oforalli € Cpand (X;,v)+b> 0
for all 7 € (4, i.e., there is some hglf—space which correctly
classifies the data. We say that (X;);, is linearly separa-
ble if the same holds for X. Let us now define the scaling
assumptions under which we work. Define the following
quantity:
p—gq
L(p,q) = —.

#.9) p+q

Assumption 1. We say that n satisfies Assumption 1 if
w(dlogd) < n < O(poly(d)).

Assumption 2. We say that (p, q) satisfies Assumption 2 if

p,q =w(log®(n)/n) and T(p,q) =Q(1).
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Assumption 1 states that we have at least quasilinearly many
samples (i.e., nodes) and at most polynomially many such
samples in the dimension of the data. The need for the
poly(d) upper bound is, heuristically, for the following sim-
ple reasons: if n ~ exp(Cd) for C sufficiently large then
the dataset will hit essentially any point in the support of
the two Gaussians, even large deviation regions. As such
since there should be a large number of points from either
community which will lie on the “wrong” side of any lin-
ear classifier. In particular, our arguments will apply if we
relax this assumption to taking n to be subexponential in
d. Assumption 2 states that the CSBM is not too sparse but
such that there is a notable difference between the amount of
edges within a class as opposed to between different classes.
Assumptions of this latter type are similar to those in the
stochastic block model literature, see, e.g., (Abbe, 2018).

Finally, let B¢ = {z € R? : ||z|| < 1} denote the unit ball,
let ®(x) denote the cumulative distribution function of a
standard Gaussian. We then have the following.

Theorem 1. Suppose that n satisfies Assumption 1 and that
(p, q) satisfies Assumption 2. Fix 0 < B,/ < 1/2 and
let p,v € BY. Forany (A, X) ~ CSBM(n, p, q, u, V), we
have the following:

1. Forany K > 0 if | — v|| < K//d, then there are
some C', ¢ > 0 such that for d > 1

P((X;)ies is linearly separable) < C exp(—cd).
Furthermore, for any t > 0 there is a ¢ > 0 such that
for every R > 0,

K
OPT4(I, X, R) > 2(Bo A 51)‘5(*5(1 + 1)) log(2)

with probability 1 — exp(—cd).

log 7
2. 0f[|p —v|l :W(\/ﬁ

P((X;)ics is linearly separable) = 1 — 04(1),

), then

where 04(1) denotes a quantity that converges to 0 as
d — oo. Furthermore, with probability 1 — 04(1), we
have for all R > 0

OPTy(A, X, R)

< exp (= 5Tl = w1 = 04(1)).

3. Forany K > 0 if||p — v|| < K/+\/dn(p+ q)/2, then

P((X;)ies is linearly separable) = 04(1).

Furthermore, for any t > 0 with probability 1 — 04(1),
forall R > 0

OPT4(A, X, R) > Q(ﬂo/\ﬁl)@(—g(lﬁ)) log(2).

Let us briefly discuss the meaning of Theorem 1. The
first part of this theorem shows that if we consider a two-
component mixture of Gaussians in R% with the same vari-
ances but different means, then if the means are O(1/v/d)
apart, it is highly unlikely to linearly separate the data and
the minimal loss is order 1 with high probability. For the
second part we find that the convolved data, X =D 1AX s
is linearly separable provided the means are a bit more than
Q(1/+/d(n(p + q)/2)) apart and furthermore, on this scale
the loss decays exponentially in R||p — v||T". Consequently,
as n(p + ¢)/2 is diverging this regime contains the regime
in which the data (X;) is not linearly separable and logistic
regression fails to classify well. We note here that our argu-
ments show that this bound is essentially sharp, provided

R is chosen to be at least Q(+/d(n(p + ¢))/2). Finally the

third part shows that, analogously, the convolved data is not
linearly separable below the 1/+/dn(p + q)/2 threshold.

We note here that these results hold here under Assumption
2, and in particular, under the assumption of I'(p, ¢) = Q(1).
This is to be compared to the work on community detection
for stochastic block models and CSBMs (Abbe et al., 2015;
Mossel et al., 2015; Massoulié, 2014; Mossel et al., 2018;
Deshpande et al., 2018) where the sharp threshold is at
(p — ¢)T'(p,q) = 1. Those works, however, are for the
(presumably) harder problems of unsupervised learning and
hold in a much sparser regime.

Let us now turn to the related question of generalization.
Here we are interested in the performance of the optimizer
of (2), call it (w*,b*) on out-of-distribution data and, in
particular, we are interested in an upper bound on the loss
achieved with respect to new data (A’, X”). We find that the
graph convolution performs well on any out-of-distribution
example. In particular, given that the attributes of the test ex-
ample are drawn from the same distribution as the attributes
of the training sample, the graph convolution makes accu-
rate predictions with high probability even when the graph
is sampled from a different distribution. More precisely, we
have the following theorem.

Theorem 2. Suppose that n and n' satisfy Assumption 1.
Suppose furthermore that the pairs (p, q) and (p',q') sat-
isfy Assumption 2. Fix 0 < 31,8 < 1/2 and p,v € B
Let (A, X) ~ CSBM(n,p,q, p,v). Let 0* = 0*(R) =
(W*(R),b*(R)) be the optimizer of (2). Then for any
sample (A', X') ~ CSBM(n/,p’, ¢, p, v) independent of
(A, X), there is a C' > 0 such that with probability 1 —o04(1)
we have that for all R > 0

LA X0 < Coxp (= S lu—vITG )1 - 0(1))

where the loss (1) is with respect to the full test set S = [n'].

Let us end by noting here that while we have stated our
result for generalization in terms of the binary-cross entropy,
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our arguments immediately yield that the number of nodes
misclassified by the half-space classifier defined by (w*, b*)
must vanish with probability tending to 1.

4.1. Proof sketch for Theorems 1 and 2

We now briefly sketch the main ideas of the proof of Theo-
rems 1 and 2. Let us start with the first.

To show that the data (X;)?_, is not linearly separable, we
observe that we can decompose the data in the form

ﬁv

where Z; ~ N(0,1) are iid. The key observation is that
when the means are O(1/+/d) apart then the intersection of
the high probability regions of the two components of the
mixture is most of the mass of both, so that no plane can
separate the high probability regions. To make this precise,
consider the Gaussian processes, g;(v) = (Z;, v). Linear
separability can be reduced to showing that for some unit
vector v, either the maximum of g;(v) for ¢ € Sy or the
minimum of g;(v) for ¢ € Sy is bounded above or below
respectively by an order 1 quantity over the entire sphere.
This is exponentially unlikely by direct calculation using
standard concentration arguments via an e—net argument. In
fact, this calculation also shows that for 0 < ¢ < ®(—K/2),
every hyperplane misclassifies at least nt of the data points
from each class with high probability, which yields the
corresponding loss lower bound.

Xi=(1—-e)p+ev+

For the convolved data, the key observation is that

pptgqv Zi ;

Xi ~ { pt+q + VdD;; i €Co
qu+tpr Zi ;

vtq T vaps €0

From this we see that, while the means move closer to
each other by a factor of (p — q)/(p + q), the variance
has reduced by a factor of D;; ~ (n(p + q)/2)~!. This
lowers the threshold for non-separability by the same factor.
Consequently, if the distance between the means is a bit
larger than 1/1/dn(p + q)/2 apart then we can separate the
data by the plane through the mid-point of the two means
whose normal vector is the direction vector from p to v
with overwhelming probability. More precisely, it suffices
to take as ansatz (W, b) given by
Woxv—p b= {(u+v,w)/2

To obtain a training loss upper bound, it suffices to evaluate
L(A, X,w,b). A direct calculation shows that this decays
exponentially fast with rate —RT'||p — v||/2 .

Let us now turn to Theorem 2. The key point here is to ob-
serve that the preceding argument in fact shows two things.
Firstly, the optimizer of the training loss, w*, must be close

to this ansatz and the corresponding b* must be such that
the pair (w*, b*) separates the data better than the ansatz.
Secondly, the ansatz we chose does not depend on the partic-
ular values of p and g. As such, it can be shown that (W, l~))
performs well on out-of-distribution data corresponding to
different values of p’ > ¢’. Combining these two observa-
tions then shows that (w*, b*) also performs well on the
out-of-distribution data.

5. Experiments

In this section we provide experiments to demonstrate our
theoretical results in Section 4. To solve problem (2) we
used CVX, a package for specifying and solving convex pro-
grams (Grant & Boyd, 2013; Blondel et al., 2008). Through-
out the section we set R = d in (2) for all our experiments.

5.1. Training and test loss against distance of means

In our first experiment we illustrate how the training and
test losses scale as the distance between the means increases
from nearly zero to 2/+/d. Note that according to Part 1
and Part 3 of Theorem 1, 1/1/0.5dn(p + ¢) and 1/+/d are
the thresholds for the distance between the means, below
which the data with and without graph convolution are not
linearly separable with high probability, respectively. For
this experiment we train and test on a CSBM with p = 0.5,
q = 0.1, d = 60, and n = 400 which is roughly equal to
0.85-d3/2, and each class has 200 nodes. We present results
averaged over 10 trials for the training data and 10 trials for
the test data. This means that for each value of the distance
between the means we have 100 combinations of train and
test data. The results for training loss are shown in Figure 1a
and the results of the test loss are shown in Figure 1b. We
observe that graph convolution results in smaller training
and test loss when the distance of the means is larger than
logn/ v/dn = 0.035, which is the threshold such that graph
convolution is able to linearly separate the data (Part 2 of
Theorem 1).

5.2. Training and test loss against density of graph

In our second experiment, we illustrate how the training and
test losses scale as the density of the graph increases while
maintaining the same signal to noise ratio for the graph. By
density we mean the value of the intra- and inter-class edge
probabilities p and ¢, since they both control the average
degree of each node in the graph. It is important to note that
our theoretical results are based on Assumption 2, which
states lower bounds for p, ¢ and I'(p, ¢). For this experiment
we train and test on a CSBM with ¢ = 0.2p where p varies
from 1/n to 0.5 and T'(p, ¢) ~ 0.6, d = 60, and n = 400
which is roughly equal to 0.85 - d*/2, and each class has
200 nodes. For this experiment we set the distance between
the means to 2/+/d. The results for training loss are shown
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Figure 1. Training and test loss with/without graph convolution
for increasing distance between the means. The vertical dashed
red and black lines correspond to the separability thresholds from
Parts 1 and 3 of Theorem 1, respectively. The green dashed line
with square markers illustrates the theoretical rate from Theorem 2.
The cyan dashed line with star markers corresponds to the lower
bound from Part 1 of Theorem 1. We train and test on a CSBM
with p = 0.5, ¢ = 0.1, n = 400 and d = 60. The y-axis is in
log-scale.

in Figure 2a and the results of the test loss are shown in
Figure 2b. In these figures we observe that the performance
of graph convolution improves as density increases. We also
observe that for p, ¢ < log?n /n, the performance of graph
convolution is as poor as that of standard logistic regression.

5.3. Out-of-distribution generalization

In this experiment we test the performance of the trained
classifier on out-of-distribution datasets. We perform this
experiment for two different distances between the means,
16/\/57 and 2/\/& We train on a CSBM with p;4i, = 0.5,
Grrain = 0.1, n = 400 and d = 60, and we test on CSBMs
with n = 400, d = 60 and varying py and q.; while
Drest > Gress- The results are shown in Figure 3%, In this
figure we observe what was studied in Theorem 2 that is,
out-of-distribution generalization to CSBMs with the same
means but different p and ¢ pairs. In particular, for small

“Note that the x-axis is g. Another option that is more aligned
with Theorem 2 is I'(prest, Grest), however, the log-scale collapses
all lines to one and the result is less visually informative.
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Figure 2. Training and test loss with/without graph convolution for
increasing density. The vertical dashed red line corresponds to the
lower bound of p and ¢ from Assumption 2. See the main text for
a detailed description of the experiment’s parameters. The y-axis
is in log-scale.

distance between the means, i.e., 2/ \/&, where the data are
close to being not linearly separable with high probability
(Part 1 Theorem 1), Figure 3a shows that graph convolution
results in much lower test error than not using the graph.
This happens even when gy, is close to py in the figure,
i.e., T'(Prests Qrese) from the bound in Theorem 2 is small.
Furthermore, in Figure 3b, we observe that for large distance
between the means, i.e., 16/ V/d, where the data are linearly
separable with high probability (Part 1 Theorem 1), and gy
is much smaller than preg (i-€., T'(Drest, Grest) is large), then
graph convolution has low test error, and this error is lower
than that obtained without using the graph. On the other
hand, in this regime for the means, as gy, approaches p;,
(i.e, as T'(Dresrs Qrest) decreases), the test error increases and
eventually it becomes larger than without the graph.

In summary, we observe that in the difficult regime where
the data are close to linearly inseparable, i.e., the means are
close but larger than 1/+/d, then graph convolution can be
very beneficial. However, if the data are linearly separable
and their means are far apart, then we get good performance
without the graph. Furthermore, if T'(Dsest, Gresr) i small then
the graph convolution can actually result in worse training
and test errors than logistic regression on the data alone.
In the supplementary material, we provide similar plots
for various training pairs pj.s and g;.,. We observe similar
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trends in those experiments.
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Figure 3. Out-of-distribution generalization. We train on a CSBM
with prain = 0.5, @irain = 0.1, n = 400 and d = 60. We test on
CSBMs with n = 400, d = 60 and varying ps and g While
Drest > Qresr and fixed means. The y-axis is in log-scale.

5.4. Out-of-distribution generalization on real data

In this experiment we illustrate the generalization perfor-
mance on real data for the linear classifier obtained by solv-
ing 2. In particular, we use the partially labelled real data to
train two linear classifiers, with and without graph convolu-
tion. We generate new graphs by adding inter-class edges
uniformly at random. Then we test the performance of the
trained classifiers on the noisy graphs with the original at-
tributes. Therefore, the only thing that changes in the new
unseen data are the graphs, the attributes remain the same.
Note that our goal in this experiment is not to beat cur-
rent baselines, but rather to demonstrate out-of-distribution
generalization for real data when we use graph convolution.

We use the popular real data Cora, PubMed and Wikipedi-
aNetwork. These data are publicly available and can be
downloaded from (Fey & Lenssen, 2019). The datasets
come with multiple classes, however, for each of our ex-
periments we do a one-v.s.-all classification for a single
class. WikipediaNetwork comes with multiple masks for
the labels, in our experiments we use the first mask. More-
over, this is a semi-supervised problem, meaning that only a
fraction of the training nodes have labels. Details about the
datasets are given in Table 1.

Table 1. Information about the datasets, 8o and $3; are defined in
Section 3. Note that for each dataset we only consider classes A
and B and we perform linear classification in a one-v.s.-all fashion.
Here, A and B refer to the original classes of the dataset. Results
for other classes are given in the supplementary material.

H Info./Dataset Cora  PubMed Wiki.Net. H

# nodes 2708 19717 2277
# attributes 1433 500 2325

Bo, class A 5.0e—2 2.5e—3 4.7e—1

B, class A 5.6e—2 4.8e—3 4.9e—1

Bo, class B 4.8¢—2 3.3e—3 4.7e—1

(1, class B 9.2e—2 2.5e—3 4.7e—1

| — v, class A 7.0e—1 1.0e—1  3.6e—1

| —vl,class B 9.4e—1 7.2e—2  3.0e—1

The results for this experiments are presented in Figure 4.
We present results for classes A and B for each dataset. This
set of experiments is enough to demonstrate good and bad
performance when using graph convolution. The results for
the rest of the classes are presented in the supplementary
material. The performance for other classes is similar. Note
in the plots that in this figure the y-axis (Test error) mea-
sures the number of misclassified nodes> over the number of
nodes in the graph. In all sub-figures in Figure 4 except for
Figure 4c we observe that graph convolution has lower test
error than without the graph convolution. However, as we
add inter-class edges (noise increases), then graph convolu-
tion can be disadvantageous. Also, there can be cases like
in Figure 4c where graph convolution is disadvantageous
for any level of noise. Interestingly, in the experiment in
Figure 4c the test errors with and without graph convolution
are low (roughly ~ 0.080). This seems to imply that the
dataset is close to being linearly separable with respect to the
given labels. However, the dataset seems to be nearly non-
separable after the graph convolution, since adding noise to
the graph results in larger test error.

6. Conclusion and Future Work

In this work we study the benefits of graph convolution
for the problem of semi-supervised classification of data.
Using the contextual stochastic block model we show that
graph convolution can transform data which is not linearly
separable into data which is linearly separable. However,
we also show empirically that graph convolution can be
disadvantageous if the intra-class edge probability is close

SWe do not plot the loss on the y-axis because the test loss does
not differ much between using and not using graph convolution.
However, the number of misclassified nodes differs significantly
as shown in Figure 4. As noted after Theorem 2, our argument for
the bound on the loss immediately yields a bound on the number
of misclassified nodes.



Graph Convolution: Improved Linear Separability and Out-of-Distribution Generalization

0.125
0,120 &~ o0 0-o-p-I-e-0-0-0
50115 §° 055
50.110] 5 0.050]
$0.105 B0.04s,
F0.100
0.095
0.090

0.060| &0 —o=-e= o= o= o= o— o e—e-g g8

—e~ Without graph conv. " 0.040
With graph conv. 0.035)

-e~ Without graph conv.
With graph conv.

0 10 20 30 40 50 0 10 20 30 40 50
P 4

(a) Cora, class A (b) Cora, class B

0.110 B s S Sl S S St

0.105 N
. 50.25

o =

go00 50.24]
3 0.095| E 0.23
= 0.090 -e- Without graph conv.

With graph conv.

—e- Without graph conv. Fo22
0085 With graph conv. 0.21
0.080

1 2 3 1 5 3 7 0 1 2 3 4 5 6 7

(c) PubMed, class A (d) PubMed, class B

0.18f ST TeTme s memmem Al | | emme - R I T e ]

L 017
o

°
®

5016

Test error
o
[
5

=
$0.15]

0.141 -e~ Without graph conv.
With graph conv. 0.12]

°
N

-e~ Without graph conv.
With graph conv.

0.13

0 1 2 3 4 5 0 1 2 3 a4
2 P

(e) WikipediaNetwork, class A (f) WikipediaNetwork, class B

Figure 4. Test loss as the number of nodes increases. The test error
measures the number of misclassified nodes over the number of
nodes in the graph. Moreover, p denotes the ratio of added inter-
class edges over the number of inter-class edges of the original
graph. The y-axis is in log-scale.

to the inter-class edge probability. Furthermore, we show
that a classifier trained on the convolved data can generalize
to out-of-distribution data which have different intra- and
inter-class edge probabilities.

Our work is only the first step in understanding the effects of
graph convolution for semi-supervised classification. There
is still a lot of future work to be done. Below we indicate
two questions that need to be addressed.

1. Graph neural networks (Hamilton, 2020) have recently
dominated practical aspects of relational machine learn-
ing. A lot of these models utilize graph convolution in
the same way that we do in this paper. However, the key
point of these models is to utilize more than 1 layers
in the graph neural network. It is still an open ques-
tion to understand the benefits of graph convolution
for these highly non-linear models for semi-supervised
node classification.

2. Our analysis holds for graphs with average number
of neighbors at least w(log? n). Since a lot of large-
scale data consist of sparse graphs it is still an open
question to extend our results to sparser graphs where
the average number of neighbors per node is O(1).

We end by noting here that while we only study the two
class setting, we expect that our arguments extend to the k-

class setting with &k = O(1) with only minor modifications
under natural assumptions.
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