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Abstract

We design decentralized algorithms for regret
minimization in two sided matching markets with
one-sided bandit feedback that significantly im-
proves upon the prior works (Liu et al., 2020a;
Sankararaman et al., 2021; Liu et al., 2020b).
First, for general markets, for any ">0, we de-
sign an algorithm that achieves a O(log1+"(T ))
regret to the agent-optimal stable matching, with
unknown time horizon T , improving upon the
O(log2(T )) regret achieved in (Liu et al., 2020b).
Second, we provide the optimal ⇥(log(T )) regret
for markets satisfying uniqueness consistency –
markets where leaving participants don’t alter the
original stable matching. Previously, ⇥(log(T ))
regret was achievable (Sankararaman et al., 2021;
Liu et al., 2020b) in the much restricted serial

dictatorship setting, when all arms have the same
preference over the agents. We propose a phase
based algorithm, where in each phase, besides
deleting the globally communicated dominated
arms, the agents locally delete arms with which
they collide often. This local deletion is pivotal in
breaking deadlocks arising from rank heterogene-
ity of agents across arms. We further demonstrate
superiority of our algorithm over existing works
through simulations.

1. Introduction
Decentralized decision making by competing agents under
uncertainty, each one motivated by one’s own objective,
is a key feature in online market places, e.g. TaskRabbit,
UpWork, DoorDash. An emerging line of research (Aridor
et al., 2020; Johari et al., 2021; Liu et al., 2020a; Sankarara-
man et al., 2021; Liu et al., 2020b) in the field of multi-agent
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bandits is dedicated to understanding algorithmic principles
in the interplay of competition, learning and regret mini-
mization. The two-sided matching market (Gale & Shapley,
1962) is one such thread, where regret minimization is first
studied in (Liu et al., 2020a) with a centralized arbiter, and
in (Sankararaman et al., 2021; Liu et al., 2020b) at different
levels of decentralization.

We study the fully decentralized two-sided matching mar-
ket, comprising of N demand-side entities (a.k.a. agents)
and K supply-side entities (a.k.a. arms). Each entity has a
separate preference ranking of the opposite side agents, i.e.
each agent over K arms, and each arm over N agents, and
aims to match with the most preferred entity. In the bandit
setting, the agents lack prior knowledge of their respective
preferences, thus need to learn the preferences only through
their own past interactions, while the arms know their pref-
erences. In each round, every agent simultaneously chooses
an arm of their choice, and are either matched to their arm
of choice and receive a stochastic reward (reward defines
agents’ preference); or are blocked, are notified of this, and
receive no reward.

A matching between agents and arms is stable if there ex-
ist no pair of agents and arms that are not matched with
each other under the matching, prefer each other over their
current partners. When each participant knows its prefer-
ence and the agents propose to the arms across multiple
rounds, the system admits any stable matching as a Nash
equilibrium. Further, the agent-optimal stable matching is
the one, which yields the highest reward among multiple
possible stable matchings, to all agents (Gale & Shapley,
1962). Our objective is to design a uniform protocol for
the agents, which allows each agent to quickly find and
match with its agent-optimal arm, thus maximizing their
cumulative reward.

Under a restrictive special case, known as serial dictatorship,
where all arms have the same preference (Sankararaman
et al., 2021) shows it is possible for each agent to attain
O(NK log(T )) cumulative regret (the gap between optimal
and achieved reward) in T rounds. They rely on an Upper
confidence bound (UCB) based algorithm, called UCB-D3,
that uses strategic deletion of arms done through global com-
munication alongside UCB based explore-exploit. When
the decentralization is relaxed, and each agent observes the
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response of all the arms per round, (Liu et al., 2020b) de-
signs Collision Avoidance UCB (CA-UCB), which avoids
collision by arm deletion and reduced switching of arms.
This provides O(exp(N4) log2(T )) regret for each agent
with respect to an agent-pessimal stable matching. Under
agent-pessimal stable matching, all the agents obtain the
minimum reward among all stable matching, thus it is less
desirable than the agent-optimal stable matching. Moreover,
the relaxation of decentralization comes at the cost of pri-
vacy, and the possible lack of truthfulness of agents which
can hurt the performance, and discourage participation.

Our first contribution is to show through a simple phase
based explore then commit protocol each agent can achieve
O(K log1+"(T )) regret for any " > 0, for sufficiently large
time horizon T . We further focus on two-sided markets
that satisfy uniqueness consistency (UnqC) (Karpov, 2019),
where the stable match is robust —namely if any subset
of matched pairs of a stable match leave, the remaining
matches are still stable. This also relaxes the stringent re-
quirement of homogeneous preferences imposed by the se-
rial dictatorship model. Arguably, robustness to matches de-
parting the system and heterogeneity of preferences is a de-
sirable property in large dynamic markets such as TaskRab-
bit, InstaCart etc. Under UnqC, where UCB-D3 fails due to
heterogeneous arm ranking, we design UCB-D4 (UCB-D3
augmented with local deletions) that allows each agent to
achieve O(NK log(T )) regret. In local deletion, an agent
aggressively and locally removes the arms to which it col-
lides above a well designed threshold.

1.1. Main Contributions

1. General markets. The best existing regret bound for
general stable matching due to (Liu et al., 2020b) obtains
a O(exp(N4) log2(T )) agent-pessimal regret under partial

decentralized feedback in time horizon T . The CA-UCB
algorithm is used where agents switch with very low fre-
quency to the arm with highest UCB index in a carefully
chosen subset. The slow switching allows for collision
avoidance but at a cost of high regret. Therefore, we de-
sign, phased ETC, a simple phase based algorithm, used
uniformly by agents, which sets up a protocol that allows
collision free exploration at the beginning of each phase.
Then using the Gale-Shapley (Gale & Shapley, 1962) algo-
rithm commits to a stable matching with their individual
estimated preference lists. We prove this algorithm achieves
a O(K log1+"(T )) agent-optimal regret under fully decen-

tralized feedback for any " > 0, by setting the exploration
duration based on ". Although our proposed algorithm beats
the state-of-the-art CA-UCB guarantees in many dimensions
– fully vs partially decentralized, agent optimal vs pessimal
regret, O(K log1+"(T )) vsO(exp(N4) log2(T )) – it suf-
fers from cold-start, i.e. it works for T = ⌦(exp(N/�2)),
where � is the minimum reward gap across all arms and

agents. This leaves open the quest for an optimal O(log(T ))
regret without the curse of cold-start.

2. Markets with uniqueness consistency. We next focus
on markets with uniqueness consistency (or UnqC in short),
where there is a unique and robust stable matching. In this
setting, the best known result (excluding serial dictatorship)
is O(exp(N4) log2(T )), achieved by CA-UCB. For serial
dictatorship, a special case of UnqC where all arms have the
same preference order, the best result, O((j � 1)K log(T ))
for agent ranked j for all arms, is obtained by UCB-D3.
UCB-D3, a phase based algorithm however, cannot incur
sub-linear regret when the preferences are heterogeneous
(empirically shown in the Section 6). We introduce UCB-
D4, a generalization of UCB-D3 that handles heterogeneous
arm preferences under uniqueness consistency, and achieves
the coveted O(log(T )) regret for any T = ⌦(N/�2), i.e.
without the cold-start problem. Our key algorithmic and
theoretical insights behind this result are as follows.

Algorithmic. UCB-D4 augments UCB-D3 with a local dele-

tion, where an agent in each phase deletes an arm locally if it
experiences collision more than a (�⇥phase length) times,
for an appropriate � > 0. The local deletion plays an impor-
tant role in eliminating deadlocks that can be created under
UCB-D3. In particular, consider the case when uniqueness
consistency holds. Here arms have heterogeneous prefer-
ences, and agent a and agent b can block each other from
exploring their non-stable matched arms. Interestingly, we
discover that such deadlocks do not occur when playing
the stable matched arms. Due to the specific nature of the
deadlock, if an agent ‘frequently’ collides with an arm it is
safe to delete that arm locally. The key is to carefully set the
threshold of local deletion. A small threshold can remove
the stable matched arm with constant probability due to the
stochastic feedback, thus incur linear regret. Whereas, a
large threshold deter the agent from getting out of the dead-
lock fast enough to achieve O(log(T )) regret. UCB-D4
with � < 1/K strikes the correct balance.

Theoretical. We introduce a dual induction proof-technique
linked with ↵-condition. The ↵-condition bestows two or-
ders: one among agents – left order, and one among arms
– right order. In the left order, the agents have their stable
matched arm as best arm once the stable matched arms for
higher order agents are removed. For the right order same
holds with the roles of agents and arms swapped. Our dual
induction uses these two orders. We show local deletion
ensures the arms inductively, following the right order, be-
come ‘available’ for their respective stable matched agents.
This allows the agents to inductively, following the left or-
der, identify and broadcast their respective stable matched
arm. The second induction, depends on first, and is driven
by global deletion of dominated arms, alongside deadlock
resolution due to local deletion.
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3. Empirical. We compare the performance of our algo-
rithms against CA-UCB, an algorithm for matching markets
under partial decentralization: the response of all arms per
round is visible. Our proposed phased ETC and UCB-D4
both work under full decentralization: only sees response
of the proposed arm. Extensive simulations show, despite
the restrictive feedback, phased ETC outperforms CA-UCB
in general instances, while UCB-D4 does so under unique-
ness consistency. We also empirically validate that UCB-D3
produces linear regret under uniqueness consistency.

1.2. Related Work

The field of bandit learning has a vast literature with multi-
ple textbooks on this subject (Lattimore & Szepesvári, 2020;
Bubeck & Cesa-Bianchi, 2012; Slivkins, 2019). Our work
falls in the multi-agent bandits setting, which is effective
in modelling applications like wireless networks (Avner &
Mannor, 2016; Darak & Hanawal, 2019), online advertis-
ing (Hillel et al., 2013), data-centers and search scheduling
(Sankararaman et al., 2019) where multiple decision mak-
ers interact causing an interesting interplay of competition,
learning and consensus (Boursier & Perchet, 2020; Brânzei
& Peres, 2019). The study of multi-agent bandits in two-
sided matching markets is initiated by (Liu et al., 2020a).
They study the centralized setting, when the agents pass on
their estimated preference to a single decision maker who
then proposes to the arms. In this setting, the authors de-
sign a UCB based protocol that completely avoids collision
(due to centralized proposals) and attains a O(NK log(T ))
regret with respect to the agent-pessimal stable matching.
The papers of (Sankararaman et al., 2021) and (Liu et al.,
2020b) are the closest to our work as both of them studies
decentralized (the latter only partially) two sided matching
markets. We have already mentioned their relation to this
work, and how we improve upon them. Two sided mar-
kets under full information, commonly known as the stable

marriage problem was introduced in the seminal work of
(Gale & Shapley, 1962) where they established the notion
of stability and provided the optimal algorithm to obtain a
stable matching. Our results rely on the recent combinato-
rial characterization, namely ↵-condition, of UnqC in stable
marriage problem by (Karpov, 2019). Further, in the eco-
nomics literature, uncertainty in two sided matching have
been studied recently in (Johari et al., 2021; Ashlagi et al.,
2019) in directions tangential to our work. We provide a
detailed related work in Appendix B.

2. System Model
Agents and arms. We have N agents and K � N arms.
When agent j 2 [N ] is matched to arm k 2 [K] it receives
a reward sampled (independent of everything) from a latent
distribution with support [0, 1], and mean µjk 2 [0, 1]. We

assume that {µjk}j,k are all distinct. For each agent, the arm
means impose a preference order over the arms, with higher
means preferred over lower means. Similarly, every arm
k 2 [K] has a total preference order over the arms >arm(k);
for j, j0 2 [N ], if agent(j) >arm(k) agent(j

0) then arm k

prefers agent j over j0. When context is clear, we use j for
agent(j), and k for arm(k). For any subset of agents and
arms, the preference profile is the preference order of the
agents restricted to the given set of arms, and vice versa.
The game proceeds in T rounds (value of T unknown to the
agents) where every agent simultaneously plays one arm,
and is either matched to that arm or is notified that it was
not matched. In every round, each arm is matched to the
most preferred agent playing that arm in that round (if any).

Stable Matching. Given the preference order for agents and
arms, consider a matching denoted by the set k⇤

, j⇤, with
k
⇤
j denoting the matched arm for agent j, and j

⇤
k denoting

the matched agent for arm k. Under a stable-matching there
exist no two pairs (j, k) and (j0, k0) such that k = k

⇤
j and

k
0 = k

⇤
j0 , but µjk < µjk0 and agent(j) >arm(k0) agent(j

0)
– if agent j matches with k

0 both improve their position. An
agent-optimal stable match is unique and is one where all
agents obtain their respective best possible match among all
possible stable matchings (see, (Gale & Shapley, 1962)).

Decentralized bandit with no information. All agents
have common information, that we have N total agents and
K arms each labeled 1 through K. In each round, every
agent observes only the outcome of its action and cannot
observe the other agents’ play/outcome. Specifically, when
it is rejected by the arm it observes the collision signal,
otherwise it observes the reward obtained from the arm it
proposed to. Thus, our feedback structure is fully decen-

tralized where in each round, an agent’s decision to play an
arm to play can depend only on common information before
the start, its past actions and outcomes. Agents can how-
ever agree to a common protocol that map their observed
outcomes to arms in every round.

Agent optimal regret. Total reward obtained by any agent
is compared against that obtained by playing the agent op-
timal stable match in all rounds. Let Pj(t) 2 [K] be the
arm played by agent j in round t and Mj(t) 2 {0, 1} be
the indicator random variable denoting whether agent j was
matched to Pj(t). Let k⇤j be the agent-optimal stable match
of agent j. The T -round individual regret for an agent is

Rj(T ) = Tµjk⇤
j
� E

"
TX

t=1

Mj(t)µjPj(t)

#
.

The goal is to design a protocol that all agents follow to
minimize their individual regret.

We make a few important remarks on the model.

1. Feedback structure. Our feedback structure is same
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as (Sankararaman et al., 2021), and more restrictive than
the one proposed very recently in (Liu et al., 2020b) called
decentralized bandit with partial information (see also, Sec-
tion 6). In the latter, all the agents can observe the matching
between arms and agents in each round, alongside it’s own
reward or collision information. Further, the knowledge of
preference order of the arms is explicitly assumed.

2. Why agent optimal regret? Our rationale for this is to
compare against an oracle in which the arm-preferences of
the agents are common information known to all agents,
and each agent plays to maximize its individual total re-
ward. This corresponds to a repeated game, in which, the
set of pure strategy Nash equilibria corresponds to all agents
playing a particular stable match in all rounds. The optimal
equilibria that maximizes the reward for all agents simulta-
neously, corresponds to the agent-optimal stable matching.

3. Model generalizations. We focus on N  K, as for
N > K some agents will remain unmatched under full
information, and have 0 regret by definition. Our algorithms,
can be modified easily to handle such cases. Further, we
can admit any sub-Gaussian reward distribution with finite
mean in place of rewards supported on [0, 1], with minor
changes in our proof.

3. Achieving O(log(1+")(T )) Regret in
Matching Markets for " > 0

In this section, we give a simple Phased Explore then Com-
mit (ETC) style algorithm that obtains an asymptotic per-
agent regret of O(log1+"(T )) for any given " > 0. The algo-
rithm proceeds in phases of exponentially growing lengths,
with phase i lasting 2i rounds. In each phase i � 0, all
agents explore for the first i" rounds, and then subsequently
exploit by converging to a stable matching through the Gale-
Shapley strategy. The explorations are organized so that the
agents avoid collision, which can be done in a simple decen-
tralized fashion, where each agent gets assigned an unique
id in the range {1, · · · , N} (Algorithm 3 in Appendix A).
The pseudo-code for phased ETC is given in Algorithm 1.

The minimum reward gap across all arms and agents is
� = min{|µjk � µjk0 | : j 2 [N ], k, k0 2 [K]}.

Theorem 1. If every agent runs Algorithm 1 with input

parameter " > 0, then the regret of any agent j after T

rounds satisfies

R
(j)
T 

K(log2(T ) + 2)1+"

1 + "
+ (N2 +K)(log2(T ) + 2)

+ 2

⇣
(8/�2)1/"4(1+")/"+1

⌘

+ e
e�2 .

The proof is given in Appendix C. Several remarks are in
order now on the regret upper bound of phased-ETC.

Algorithm 1 Phased ETC Algorithm
1: Index INDEX-ESTIMATION()
2: for N + 1  t  T do
3: i blog2(t� 1)c
4: if t� 2i + 1  Kbi"c then
5: Play arm (t+ Index� 2i + 1) mod K

6: else
7: Play GALE-SHAPLEY-MATCHING (Gale &

Shapley, 1962) of Algorithm 5 with arm-
preference ordered by empirical means computed
using all the explore samples thus far.

8: end if
9: end for

1. Comparison with CA-UCB. From an asymptotic view-
point (when T !1), our result improves upon the recent
result of (Liu et al., 2020b). Their proposed algorithm CA-
UCB, achieves a regret of O(log2(T )) with respect to the
agent-pessimal stable matching. Theorem 1 shows that,
even under our (restrictive) decentralized bandit model, the
phased ETC algorithm achieves O(log1+"(T )) regret with
respect to the agent-optimal stable matching.

2. Exponential dependence on gap. The constant in the
regret bound has an exponential dependence on ��2, which
limits it’s applicability to practical values of T . We note that,
the CA-UCB algorithm proposed in (Liu et al., 2020b), has
an exponential dependence on N

4 that is multiplied with the
log2(T ) term in their regret bound. It is an interesting open
problem, to obtain an algorithm, that obtains O(log1+"(T ))
regret for the general matching bandit case, without any
exponential dependence.

3. Comparison with Single Phase ETC. An ETC algorithm
was proposed in (Liu et al., 2020a), which requires the
knowledge of minimum reward gap (�) and the time hori-
zon (T ) to compute the necessary exploration. We remove
the dependence on the reward gap and time horizon by our
interleaved exploration and exploitation in the phased-ETC.

In the following section, we present UCB-D4 — UCB-D3
with Local Deletion, a decentralized algorithm that achieves
regret scaling as O

⇣
log(T )
�2

⌘
without any exponential de-

pendence on problem parameters, whenever the underlying
system satisfies uniqueness consistency.

4. Achieving O(log(T )) Regret under
Uniqueness Consistency

We first introduce the uniqueness consistency in stable
matching systems, and provide known combinatorial charac-
terization of such systems, before presenting our algorithm.

Uniqueness Consistency. The uniqueness consistency is an
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important subclass of graphs with unique stable-matching,
and is defined as below after (Karpov, 2019).
Definition 1 ((Karpov, 2019)). A preference profile satisfies

uniqueness consistency iff (i) there exists a unique stable

matching (k⇤
, j⇤); (ii) for any subset of arms or agents,

the restriction of the preference profile on this subset with

their stable-matched pair according to (k⇤
, j⇤) has a unique

stable matching.

The uniqueness consistency implies that even if an arbitrary
subset of agent leave the system with their respective stable
matched arms, we are left with a system with unique stable
matching among the rest of agents and arms. This allows for
any algorithm, which is able to identify at least one stable
pair in a unique stable-matching system, to iteratively lead
the system to the global unique stable matching.

Combinatorial characterization. In (Karpov, 2019), a
necessary and sufficient condition for the uniqueness con-
sistency of the stable matching system is established in the
form of ↵-condition (defined shortly). However, in order
to connect ↵-condition with the serial dictatorship studied
in (Sankararaman et al., 2021), we find it instructive to first
present the sequential preference condition (SPC) (Eeck-
hout, 2000), a generalization of serial dictatorship, before
defining the ↵-condition in full generality. The definition of
SPC (Eeckhout, 2000) (which is stated in terms of men and
women preferences) restated in our system where we have
agents and arms is as follows.

Let � denote a pair of permutations of [N ] and [K]. Then
[K]� = {a(�)1 , . . . , a

(�)
K } and [N ]� = {A(�)

1 , . . . , A
(�)
N }

denote permutations of the ordered sets [K] and [N ], respec-
tively. The k-th arm in [K]� is the a

(�)
k -th arm in [K], and

the j-th agent in [N ]� is the A
(�)
j -th agent in [N ].

Definition 2. Sequential preference condition (SPC) is sat-

isfied iff there is an order of agents and arms so that

8j 2 [N ]spc, 8k 2 [K]spc, k > j, : µjj > µjk, and

8k  N, 8j 2 [N ]spc, j > k : agent j⇤k >arm k agent j.

We next introduce a generalization of the SPC condition
known as ↵-condition. This was first introduced in (Kar-
pov, 2019) recently, and shown to be the weakest sufficient

condition for a market to admit an unique stable matching.
We again restate the definition from (Karpov, 2019) in our
scenario.
Definition 3. The ↵-condition is satisfied iff there is a sta-

ble matching (k⇤
, j⇤), a left-order of agents and arms

s.t. 8j 2 [N ]l, 8k > j, k 2 [K]l : µjk⇤
j
> µjk,

and a (possibly different) right-order of agents and arms

s.t. 8k < j  N, ak 2 [K]r, Aj 2 [N ]r :

agentAj⇤ak
>arm ak agentAj .

The following theorem in (Karpov, 2019) provides the char-
acterization of uniqueness consistency, where unacceptable
mates are absent (an unacceptable pair (j, k) means agent j
does not accept arm k, or the vice versa).1

Theorem 2 ((Karpov, 2019)). If there is no unacceptable

mates, then the ↵-condition is a necessary and sufficient

condition for the uniqueness consistency.

Without loss of generality, henceforth we consider the SPC
order to be identity, i.e. [N ]spc = [N ] and [K]spc = [K].
Again, without loss of generality we consider the left order
in the ↵-condition to be identity, i.e. [N ]l = [N ] and [K]l =
[K]. Therefore, for the rest of the paper we only deal with
arm order a(r)k = ak and agent order A(r)

j = Aj , for arm
k 2 [K] and agent j 2 [N ].

We end with a few remarks on these three systems.

1. Serial Dictatorship, SPC, and ↵-condition. As men-
tioned earlier, the ↵-condition generalizes SPC. SPC is sat-
isfied when the left order is identical to the right order in
↵-condition. Further, SPC generalizes serial dictatorship, as
the unique rank of the agents in the latter and their respec-
tive stable matched arms creates an SPC order. We present
examples of the three systems.

1. This system is Serial dictatorship, SPC, and ↵-condition

agent : a : 1 > 2 > 3, b : 1 > 2 > 3, c : 2 > 1 > 3,

arm : 1 : a > b > c, 2 : a > b > c, 3 : a > b > c.

2. This system is not Serial dictatorship as arms do not have
a unique rank. But it satisfies SPC and ↵-condition, with a
valid SPC order {(a, 1), (b, 2), (c, 3)}.

agent : a : 1 > 2 > 3, b : 1 > 2 > 3, c : 2 > 1 > 3,

arm : 1 : a > b > c, 2 : a > b > c, 3 : a > c > b.

3. The third system is not Serial dictatorship or SPC as there
is no SPC order. But it satisfies ↵-condition as a valid left
order is {(a, 1), (b, 2), (c, 3)}, and the corresponding right
order is {(b, 2), (c, 3), (1, a)}.

agent : a : 1 > 2 > 3, b : 1 > 2 > 3, c : 2 > 1 > 3,

arm : 1 : b > c > a, 2 : b > a > c, 3 : b > c > a.

Currently, the ↵-condition is the weakest sufficient condi-
tion for uniqueness of stable matching. Necessary condition
for the uniqueness of stable matching remains elusive and
is a long standing open problem in combinatorics.

2. Stable matching under SPC and ↵-condition. The def-
inition of SPC implies that the unique stable matching is

1(Karpov, 2019) state the theorem for a system with same
number of men and women. However, the theorem readily extends
to our system where we have K arms and N agents with N  K.
Indeed, the unmatched (N �K) arms do not influence the stable
matching under any arbitrary restriction of the preference profile.
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obtained when, under the SPC order, for every i  N , the
agent i is matched to the arm i. Furthermore, under ↵-
condition for any j 2 [N ], the agent j is matched with arm
j, and the agent Aj is matched with the arm aj in the stable
matching. We present a proof in the Appendix E.

4.1. UCB-D4: UCB Decentralized Dominate-Delete
with Local Deletions

In this section, we describe our main algorithm. The al-
gorithm applies a novel technique called local deletions
that interleaves with the phased global deletion strategy of
UCB-D3 algorithm proposed in (Sankararaman et al., 2021).
Algorithm 2 describes this algorithm in detail.

Algorithm 2 UCB-D4 algorithm (for an agent j)

1: Input: Parameters � 2 (0, 1/K), and � > 1
2: Set Index(j) INDEX-ESTIMATION()
3: Global deletion Gj [0] = �, 8j 2 [N ]
4: for phase i = 1, 2, . . . do
5: Reset the collision counters Cjk[i] = 0, 8k 2 [K]
6: Delete dominated arms, Aj [i] [K] \Gj [i� 1]
7: if t < 2i +N +NK(i� 1) then
8: Local deletion Lj [i] {k : Cjk[i] � d�2ie}
9: Play an arm Pj(t) 2

arg max
k2Aj [i]\Lj [i]

✓
bµk,j(t�1)+

q
2� log(t)
Nk,j(t�1)

◆

10: if Arm k = Pj(t) is matched then
11: Update estimate bµk,j , and matching count Nk,j

12: else
13: Increase collision counter Cjk[i] Cjk[i] + 1
14: end if
15: else if t = 2i +N +NK(i� 1) then
16: Oj [i] most matched arm so far in phase i

17: Gj [i] COMMUNICATION(i, Oj [i])
18: end if
19: end for

The index of each agent j, namely Index(j), is set as the rank
of this agent for the arm 1, which can be learned accurately
in N rounds and in a distributed way (details in Algorithm 3
in Appendix A).

At a high-level, the algorithm proceeds in phases as follows.
At each phase i, every agent j first updates its set of active
arms for the phase given by Aj [i] by removing all the arms
in the global dominated set Gj [i� 1]. Then for the next 2i
time-steps, every agent plays the arm with the highest UCB
from its active set Aj [i]. Here, µ̂jk(t) denotes the estimated
mean reward for, and Njk(t) the number of matches with,
arm k by agent j at the end of round t. Whenever the
agent collides with an arm at least d�2ie times (tracked
by collision counters Cjk[i]), it removes this arm from the
active set.

Finally, in the last NK steps of this phase, each agent par-
ticipates in a communication protocol (Algorithm 4 in Ap-
pendix A) to update the global dominated sets Gj [i]. In the
rounds from (K ⇥ (Index(j)� 1)) to (K ⇥ Index(j)� 1),
agent j proposes to the K arms in round robin order, and
adds the rejected arms to its globally dominated set Gj [i].
In the remaining rounds, it proposes to its most played arm
in phase i, i.e., arm Oj [i]. We show that the globally domi-
nated set Gj [i] = {Oj0 [i] : j0 >Oj0 [i] j}.

5. Main Results
We now present our main result in Theorem 3 which show
that UCB-D4 attains near optimal logarithmic regret when
the stable matching satisfies uniqueness consistency.

System parameters. We introduce the following defini-
tions first that will be used in the regret upper bound:
1. The blocking agents for agent j 2 [N ] and arm k 2 [K],
Bjk := {j0 : agent(j0) >arm(k) agent(j)}.

2. The dominated arms for agent j 2 [N ], Dj := {k⇤j0 :
j
0  j � 1}.

3. The blocked non-dominated arms for agent j 2 [N ],
Hj = {k : 9j0 2 Bjk : k /2 Dj [Dj0}.

4. The max blocking agent for agent j 2 [N ] Jmax(j) =
max (j + 1, {j0 : 9k 2 Hj , j

0 2 Bjk}) .

5. The right-order mapping for ↵-condition for agent j 2
[N ] is lr(j) so that Alr(j) = j with Aj as defined in Defini-
tion 3. We define the lrmax(j) = max{lr(j0) : j0  j}.

6. The gaps of each agent j, is given as �jk = (µjk⇤
j
�µjk)

which can be negative for some arms k. We define �min =
min{�jk : j 2 [N ], k 2 [K],�jk > 0} as the minimum
positive gap across arms and agents.

Some comments are due on some of the above definitions.
The dominated arms is defined similar to (Sankararaman
et al., 2021). These arms may have higher mean, hence
higher long term UCB, than the agent’s stable matched arm.
If not removed, the agent will incur linear regret due to
collision from these arms which are played by blocking
agents in steady state. The blocked non-dominated arms are
absent in serial dictatorship, but in the SPC and ↵-condition
they emerge due to heterogeneity of arm preference orders.
These arms are not necessarily removed during the global
deletion (i.e. through the set Gj [i] in UCB-D4), and may
create a deadlock for an agent where the agent keeps playing
these arms without exploring them due to collisions.

Regret bounds. We present the O(log(T )) regret bound for
the systems following uniqueness consistency in Theorem 3.

Theorem 3. For a stable matching instance satisfying

↵-condition (Definition 3), suppose each agent follows

UCB-D4 (Algorithm 2) with � > 1 and � 2 (0, 1/K).
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Further, let

f↵(j) = lrmax(j) + j, i
⇤ = max{8, i1, i2},

i1 = min{i : (N � 1) 10�i
�2

min
< �2(i�1)},

and i2 = min{i : (N � 1 +NK(i� 1))  2i+1}.

Then the regret for an agent j 2 [N ] is upper bounded by

E[Rj(T )] 
X

k/2Dj[k⇤
j

8�
�jk

⇣
log(T ) +

q
⇡
� log(T )

⌘

| {z }
sub-optimal match

+
X

k/2Dj

X

j02Bjk:k/2Dj0

8�µk⇤
j

�2
j0k

⇣
log(T ) +

q
⇡
� log(T )

⌘

| {z }
collision

+ (K � 1 + |Bjk⇤
j
|) log2(T )| {z }

communication

+O

⇣
N2K2

�2
min

+ (�|Hj |f↵(Jmax(j)) + f↵(j)� 2)2i
⇤
⌘

| {z }
transient phase, independent of T

.

Furthermore, if the system satisfies SPC (Definition 2) the T

independent term in the above regret bound can be replaced

by O

⇣
N2K2

�2
min

+ (�|Hj |Jmax(j) + j � 1)2i
⇤
⌘

.

We conclude with some remarks about our main result.

Scaling of regret bounds. Our regret bounds in Theorem 3
are desirable for the following reasons.
1. Dependence on the arm gaps and horizon. Our regret
upper bound is near optimal in the arm gaps and horizon,
as it matches with the regret lower bound of ⌦

⇣
log(T )
�2

min

⌘
in

Corollary 6 of (Sankararaman et al., 2021).
2. Polynomial dependence. The constant term associated
with the regret bound is polynomial in all the system param-
eters, including the minimum gap, as

2i
⇤
= O

⇣
max

n
N

��2
min

log( N
��2

min
), NK log(NK)

o⌘
.

Hence, UCB-D4 regret bounds, under uniqueness consis-
tency, has no exponential dependence on system parameters.
3. Dependence on preference profile. The preference profile
influences the regret mainly in three ways. First, each agent
deletes the dominated arms Dj so incurs no long term regret
for those arms. The first term in the regret bound scales
as (K � j). Second, for any agent and any non-dominated
arms (which are not globally deleted) the blocking agents
during exploration creates collision leading to the second
term scaling as at most |Hj \ Dj |. Finally, the constant in
the regret bound scales linearly with the order of the agent
and all of its blocking agents (j + Jmax(j)) in SPC. For the
uniqueness consistency, the constant depends on both the

left and right order (f↵(j) = j+ lrmax(j)) of the agent and
all of its blocking agents (f↵(j) + f↵(Jmax(j))).

Local deletion threshold. The local deletion threshold is set
as � ⇥ phase length +⇥(1) with � < 1/K. Increasing the
threshold leads to higher regret until local deletion vanishes.
This happens as more collision is allowed until an arm is
deleted. But higher threshold allows for quick detection of
the stable matched arm. However, decreasing the threshold
leads to a more aggressive deletion leading to lower regret
from collision per phase, at a cost of longer detection time
for the stable matched arm. In particular, if instead we set
local deletion threshold as ⇥(polylog(phase length)) then
the constant 2i

⇤
becomes exponential, i.e. exp(N/�2

min).
At one extreme, for � � 1/K, the global deletion may
stop freezing as the stable matched arm for an agent is not
guaranteed to emerge as the most matched arm. In the other
extreme, for a threshold of ⇥(log(phase length)) with large
enough probability the stable matched arm may get locally
deleted. In both extremes, the UCB-D4 ceases to work.

5.1. Key Insights into the Proof of Theorem 3

The full proof of Theorem 3 is presented in the Appendix E.
We first present why UCB-D3 (Sankararaman et al., 2021)
that works for the serial dictatorship setting fails under SPC.

Deadlocks beyond serial dictatorship. Under SPC while
running UCB-D3 (Sankararaman et al., 2021) the blocked

non-dominated arms cause deadlock where two agents are
unable to sample their respective best stable matched arm
leading to linear regret. This is best explained by an example.
Let us consider the 3 agent (a, b, and c), and 3 arm (1, 2,
and 3) system with the preference lists given as

agent : a : 1 > 2 > 3, b : 2 > 1 > 3, c : 3 > 1 > 2,

arm : 1 : a > b > c, 2 : a > b > c, 3 : a > c > b.

This system satisfies SPC with the agent optimal stable
matching {(a, 1), (b, 2), (c, 3)}, but it is not a serial dicta-
torship. If we run the UCB-D3 algorithm in (Sankararaman
et al., 2021) then the agent a matches with arm 1,and agent
b and c both delete arm 1 using global deletion. However,
without additional coordination, with non negligible prob-
ability, agent b may not match with arm 3 (collision with
agent c), and agent c may not match with arm 2 (collision
with agent b). No further global deletion is guaranteed re-
sulting in a deadlock, hence linear regret (see, Section 6).

We first focus on the proof for SPC condition before tackling
↵-condition, as the latter builds on the former.

Proof Sketch for SPC. There are two main components of
the proof, inductive freezing of stable matching pairs, and
vanishing of local deletion, both in expected constant time.

Inductive freezing of stable matching pairs. Local deletion
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of arms with more than (� ⇥ phase length) collisions, for
� < 1/K, ensures the agent ranked 1 (under SPC) removes
all the blocked non-dominated arms, thus it never gets stuck
in a deadlock. This gives agent 1 opportunity to detect arm
1 as its most matched arm in expected constant time, as
in the presence of arm 1, agent 1 matches with any non-
deleted sub-optimal arm O(log(phase length)) times with
high probability under UCB dynamics. Note that agent
1 never deletes arm 1 (either globally or locally) due to
the SPC condition. Agent 2 next deletes dominated arm 1,
and for similar reasons as above matches most with arm 2.
The proof is completed using an induction over the agents
following the SPC order, where in agent j freezing happens
in O(ji⇤) phases.

Constant time vanishing of local deletion. We estab-
lish that the local deletion vanishes in expected constant
time. Indeed, when all the agents settle to their respec-
tive stable matched arms, the sub-optimal play is limited
to O(log(phase length)), hence total collision to blocked
non-dominated arm is also logarithmic in phase length. This
leads to the vanishing of local deletion, which requires (�⇥
phase length) collisions, with an extra O(�|Hj |Jmax(j)2i

⇤
)

regret, where Jmax(j) is the maximum blocking agent.

Stable regime. The terms that grow with T as O(log(T ))
are accounted for by keeping count of expected (1) num-
ber of sub-optimal matches, (2) number of collisions from
blocking agents, and (3) the regret due to communication
sub-phases.

Uniqueness consistency - A tale of two orders. When
moving from SPC instances to uniqueness consistency
(equivalently ↵-condition due to Theorem 2) we no longer
have the simple inductive structure that we leverage in the
proof sketch of SPC. Under ↵-condition we have two orders
instead. The left order states when arm 1 to arm (j � 1)
are removed agent j has arm j as the most preferred arm.
Whereas, the right order states when agent A1 to agent
A(k�1) (recall {A1, . . . , AN} is a separate permutation of
the agents) are removed arm ak prefers agent Ak. Global
deletion here must follow left order. However, unlike SPC
the set of blocking agents for agent 1 and arm 1 (i.e. B11)
is nonempty. Thus, agent 1 cannot get matched with arm 1
majority of time unless the agents in B11 stop playing arm
1. We next show how this is resolved.

Proof Sketch of ↵-condition. We show due to local dele-
tion an inductive warmup of stable matching pairs precedes
the two phases mentioned in the proof sketch of SPC.

Inductive warmup of stable matching pairs. We begin with
an observation that holds for every stable matching: for any
two stable matching pair (j, k), (j0, k0), the arm k is either
sub-optimal (has mean reward lesser than k

0) for agent j0,

or arm k prefers agent j over agent j0. Hence, in our system,
for any 2  j  N , either (a) arm aj (stable matched
arm for agent Aj) is suboptimal for agent A1, or (b) arm
aj prefers Aj over A1. In case (b) arm A1 never causes
collision in aj for agent Aj . Now suppose case (a) holds.
Due to ↵-condition, the agent A1 is the most preferred for
arm a1. Therefore, arm a1 is always available to agent A1,
and a1 has higher mean than aj . This implies the UCB
algorithm plays arm aj only O(log(phase length)) times
with high probability in any phase. Once this happens, arm
a2 is almost always available to A2, and the induction sets
in. This is used to prove Aj is warmed up in O(ji⇤) phases,
or agent j is warmed up in O(lr(j)i⇤) phases. Once agent
1 is warmed up the inductive freezing starts as it matches
with arm 1. The rest closely follows the proof of SPC.

6. Numerical Simulations
In this section, we present our numerical simulations with 5
agents and 6 arms. Additional results with larger instances
are deferred to the Appendix F.

Baselines. We use two baselines with their own feedback.
1. Centralized UCB (UCB-C) is proposed in (Liu et al.,
2020a) for the centralized feedback setting, where each
agent in every round submits it’s preference order (based on
UCB indices) to a centralized agent who assigns the agent
optimal matching under this preference, and the rewards are
observed locally.
2. Collision Avoidance UCB (CA-UCB) is proposed in (Liu
et al., 2020b) for the decentralized with partial information

setting where at each round all agents observe the player
matched to each arm, but rewards are observed locally.

The centralized setting is the most relaxed where no colli-
sion happens, followed by the partial decentralized setting
where each round the matching of arms can be learned
without any collision. Both are relaxed compared to our
decentralized with no information setting where any global
information can be obtained only through collisions.

Results. We generate random instances to compare the
performance of UCB-C, CA-UCB and UCB-D4 in their
respective settings. Since (Liu et al., 2020b) does not men-
tion how to set their hyper-parameter �, we report the best
result by running a grid search over �. For UCB-D4, we
use � = 1/2K and � = 2. We simulate all the algorithms
on the same sample paths, for a total 50 sample paths and
report mean, 75% and 25% agent-optimal regret.

Figure 1 shows that in a general instance phased ETC outper-
forms CA-UCB even with a restricted feedback, whereas,
as expected, UCB-C outperforms phased ETC. Figure 2
shows that when uniqueness condition holds UCB-D4, de-
spite the restricted feedback, outperforms CA-UCB, while
it is comparable to the centralized UCB-C.
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Linear Regret of UCB-D3 in SPC. Figure 3 shows that
even when the SPC condition holds, UCB-D3 may result in
linear regret, emphasizing the importance of UCB-D4.

Figure 1. A general instance with N = 5, and K = 6. Regret:
UCB-C (blue) < Phased-ETC (orange) < CA-UCB (green).

Figure 2. An ↵-condition instance with N = 5, and K = 6. Re-
gret: UCB-C (blue) < UCB-D4 (green) < CA-UCB (orange).

Figure 3. Linear regret of UCB-D3 for an SPC instance.
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A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 32:

Annual Conference on Neural Information Processing

Systems 2019, NeurIPS 2019, December 8-14, 2019,

Vancouver, BC, Canada, pp. 12048–12057, 2019.
URL https : / / proceedings.neurips.cc /
paper / 2019 / hash /
c4127b9194fe8562c64dc0f5bf2c93bc -
Abstract.html.

Boursier, E. and Perchet, V. Selfish robustness and
equilibria in multi-player bandits. In Abernethy,
J. D. and Agarwal, S. (eds.), Conference on Learn-

ing Theory, COLT 2020, 9-12 July 2020, Virtual Event

[Graz, Austria], volume 125 of Proceedings of Ma-

chine Learning Research, pp. 530–581. PMLR, 2020.
URL http://proceedings.mlr.press/v125/
boursier20a.html.

Brânzei, S. and Peres, Y. Multiplayer bandit learn-
ing, from competition to cooperation. arXiv preprint

arXiv:1908.01135, 2019.

Bubeck, S. and Cesa-Bianchi, N. Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems. Foun-

dations & Trends in Machine Learning, 2012.

Buccapatnam, S., Tan, J., and Zhang, L. Information sharing
in distributed stochastic bandits. In 2015 IEEE Confer-

ence on Computer Communications (INFOCOM), pp.
2605–2613. IEEE, 2015.

Chawla, R., Sankararaman, A., Ganesh, A., and Shakkottai,
S. The gossiping insert-eliminate algorithm for multi-
agent bandits. In Chiappa, S. and Calandra, R. (eds.), The



Beyond squared log(T) Regret for Decentralized Bandits in Matching Bandits

23rd International Conference on Artificial Intelligence

and Statistics, AISTATS 2020, 26-28 August 2020, On-

line [Palermo, Sicily, Italy], volume 108 of Proceedings

of Machine Learning Research, pp. 3471–3481. PMLR,
2020. URL http://proceedings.mlr.press/
v108/chawla20a.html.

Dai, X. and Jordan, M. I. Learning strategies in decentral-
ized matching markets under uncertain preferences. arXiv

preprint arXiv:2011.00159, 2020.

Darak, S. J. and Hanawal, M. K. Multi-player multi-armed
bandits for stable allocation in heterogeneous ad-hoc net-
works. IEEE Journal on Selected Areas in Communica-

tions, 37(10):2350–2363, 2019.

Dubey, A. and Pentland, A. S. Cooperative multi-agent ban-
dits with heavy tails. In Proceedings of the 37th Interna-

tional Conference on Machine Learning, ICML 2020, 13-

18 July 2020, Virtual Event, volume 119 of Proceedings

of Machine Learning Research, pp. 2730–2739. PMLR,
2020. URL http://proceedings.mlr.press/
v119/dubey20a.html.

Eeckhout, J. On the uniqueness of stable marriage match-
ings. Economics Letters, 69(1):1–8, 2000.

Gale, D. and Shapley, L. S. College admissions and the sta-
bility of marriage. The American Mathematical Monthly,
69(1):9–15, 1962.

Hillel, E., Karnin, Z. S., Koren, T., Lempel, R., and
Somekh, O. Distributed exploration in multi-armed
bandits. In Burges, C. J. C., Bottou, L., Ghahramani,
Z., and Weinberger, K. Q. (eds.), Advances in Neural

Information Processing Systems 26: 27th Annual

Conference on Neural Information Processing Systems

2013. Proceedings of a meeting held December 5-8, 2013,

Lake Tahoe, Nevada, United States, pp. 854–862, 2013.
URL https : / / proceedings.neurips.cc /
paper / 2013 / hash /
598b3e71ec378bd83e0a727608b5db01 -
Abstract.html.

Johari, R., Kamble, V., and Kanoria, Y. Matching while
learning. Operations Research, 2021.

Kalathil, D., Nayyar, N., and Jain, R. Decentralized learning
for multiplayer multiarmed bandits. IEEE Transactions

on Information Theory, 60(4):2331–2345, 2014.

Karpov, A. A necessary and sufficient condition for unique-
ness consistency in the stable marriage matching problem.
Economics Letters, 178:63–65, 2019.

Kolla, R. K., Jagannathan, K., and Gopalan, A. Collab-
orative learning of stochastic bandits over a social net-
work. IEEE/ACM Transactions on Networking, 26(4):
1782–1795, 2018.

Landgren, P., Srivastava, V., and Leonard, N. E. Distributed
cooperative decision making in multi-agent multi-armed
bandits. Automatica, 125:109445, 2021.

Larrnaaga, M., Ayesta, U., and Verloop, I. M. Dynamic
control of birth-and-death restless bandits: Application to
resource-allocation problems. IEEE/ACM Transactions

on Networking, 24(6):3812–3825, 2016.
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