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Abstract
In this paper we study a multi-arm bandit prob-
lem in which the quality of each arm is measured
by the Conditional Value at Risk (CVaR) at some
level α of the reward distribution. While existing
works in this setting mainly focus on Upper Con-
fidence Bound algorithms, we introduce a new
Thompson Sampling approach for CVaR bandits
on bounded rewards that is flexible enough to
solve a variety of problems grounded on physical
resources. Building on a recent work by Riou and
Honda (2020), we introduce B-CVTS for contin-
uous bounded rewards and M-CVTS for multi-
nomial distributions. On the theoretical side, we
provide a non-trivial extension of their analysis
that enables to theoretically bound their CVaR
regret minimization performance. Strikingly, our
results show that these strategies are the first to
provably achieve asymptotic optimality in CVaR
bandits, matching the corresponding asymptotic
lower bounds for this setting. Further, we illus-
trate empirically the benefit of Thompson Sam-
pling approaches both in a realistic environment
simulating a use-case in agriculture and on vari-
ous synthetic examples.

1. Introduction
Over the past few years, a number of works have focused on
adapting multi-armed bandit strategies (see e.g. Lattimore
and Szepesvari (2019)) to optimize an other criterion than
the expected cumulative reward. Sani et al. (2012), Vak-
ili and Zhao (2015), Vakili and Zhao (2016), Zimin et al.
(2014) consider a mean-variance criterion, (Szorenyi et al.,
2015) studies a quantile (Value-at-Risk) criterion, (Maillard,
2013) focuses on Entropic-value-at-risk. The Conditional
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Value at Risk (CVaR) as well as more generic coherent spec-
tral risk measures (Acerbi and Tasche, 2002) have received
specific attention from the bandit community (Galichet et al.
(2013); Galichet (2015); Cassel et al. (2018); Zhu and Tan
(2020); Tamkin et al. (2020); Prashanth et al. (2020) to cite
a few). Indeed, in a large number of application domains
(healthcare, agriculture, marketing,...), one needs to take
into account personalized preferences of the practitioner
that are not captured by the expected reward. We consider
an illustrative use-case in agriculture in section 4, where an
algorithm recommends planting dates to farmers.

The Conditional Value at Risk (CVaR) at level α ∈ [0, 1]
(see Mandelbrot (1997), Artzner et al. (1999)) is easily in-
terpretable as the expected reward in the worst α-fraction
of the outcomes, and hence captures different preferences,
from being neutral to the shape of the distribution (α = 1,
mean criterion) to trying to maximize the reward in the
worst-case scenarios (α close to 0, typically in finance or
insurance). It is further a coherent spectral measure in the
sense of Rockafellar et al. (2000), see Acerbi and Tasche
(2002)). Several definitions of the CVaR exist in the litera-
ture, depending on whether the samples are considered as
losses or as rewards. Brown (2007), Thomas and Learned-
Miller (2019) and Agrawal et al. (2020) consider the loss
version of CVaR. We here follow Galichet et al. (2013) and
Tamkin et al. (2020) who use the reward version, defined
for arm k with distribution νk as

CVaRα(νk) = sup
x∈R

{
x− 1

α
EX∼νk

[
(x−X)

+
]}

. (1)

This implies that the best arm is the one with the largest
CVaR. To simplify the notation we write cαk = CVaRα(νk)
in the sequel. Following e.g. Tamkin et al. (2020), for un-
known arm distributions ν = (ν1, . . . , νK) we measure the
CVaR regret at time T for some risk-level α of a sequential
sampling strategy A = (At)t∈N as

Rαν(T )=Eν

[
T∑
t=1

(
max
k

cαk−cαAt

)]
=

K∑
k=1

∆α
kEν [Nk(T )],(2)

where ∆α
k = maxk′ c

α
k′ − cαk is the gap in CVaR between

arm k and the best arm, and Nk(t) =
∑t
s=1 1(As = k) is

the number of selections of arm k up to round t. Other no-
tions of regret have been studied for risk-averse bandits, e.g.
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computing the risk metric of the full trajectory of observed
rewards (Sani et al. (2012); Cassel et al. (2018); Maillard
(2013)), but are less interpretable.

Related work At a high level, the multi-armed bandit
literature on the CVaR is largely inspired from adapting
the popular Upper Confidence Bounds (UCB) algorithms
(Auer et al. (2002)) for bounded distributions to work un-
der this criterion, hence rely on concentration tools for the
CVaR. Two main approaches can be distinguished: using an
empirical CVaR estimate plus a confidence bound as con-
sidered in MaRaB (Galichet et al. (2013); Galichet (2015),
U-UCB (Cassel et al., 2018), or exploiting the link between
the CVaR and the CDF to build an optimistic CDF as in
CVaR-UCB (Tamkin et al., 2020), resorting to the cele-
brated Dvoretzky–Kiefer–Wolfowitz (DKW) concentration
inequality (see Massart (1990)). Indeed DKW inequality
has been used for example by Brown (2007) and Thomas
and Learned-Miller (2019) to develop concentration inequal-
ities for the empirical CVaR of bounded distributions. These
strategies provably achieve a logarithmic CVaR regret in
bandit models with bounded distributions1, with a scaling
in K log T

α2∆ where ∆ is the smallest (positive) CVaR gap ∆α
k .

However, the asymptotic optimality of these strategies is not
established. Strikingly, few works have tried to adapt to the
CVaR setting the asymptotically optimal bandit strategies
for the mean criterion that provably match the lower bound
on the regret given by (Lai and Robbins, 1985), such as
KL-UCB (Cappé et al., 2013), Thompson Sampling (TS)
(Thompson, 1933; Agrawal and Goyal, 2013; Kaufmann
et al., 2012) or IMED (Honda and Takemura, 2015). We
note that Zhu and Tan (2020) adapts TS to the slightly dif-
ferent risk-constrained setting introduced by Kagrecha et al.
(2020) for which the goal is to maximize the mean rewards
under the constraint that arms with a small CVaR are not
played too often. Unfortunately the analysis is limited to
Gaussian distributions and does not target optimality. (A TS
algorithm was also proposed by Zhu and Tan (2020) for the
mean-variance criterion.)

We believe the reason is two-fold: First, despite asymptotic
optimal strategies being appealing to improve practical per-
formances, such strategies were, until recently, relying on
assuming known parametric family (Honda and Takemura
(2010; 2015); Korda et al. (2013); Cappé et al. (2013) to
name a few), such as one-parameter exponential families,
deriving one specific algorithm for each family. Unfor-
tunately, assuming a simple parametric distributions may
not be meaningful to model complex, realistic situations.
Rather, the most accessible information to the practitioner

1Cassel et al. (2018) gives an upper bound on the proxy regret
of U-UCB, which is also valid for the smaller CVaR regret. For
completeness, we provide in Appendix F an analysis of U-UCB
specifically tailored to the CVaR regret.

is often whether or not the distribution is discrete, and for
the continuous case how it is bounded. That is typically
the case in applications such as agriculture, healthcare, or
resource management, when the reward distributions are
grounded on physical realities. Indeed the practitioner can
realistically assume that the support of the distributions is
known and bounded, with bounds that can be either natural
or provided by experts. For instance, in the use-case we
consider in section 4 the algorithm recommends planting
dates to farmers to maximize the yield of a maize field, that
is naturally bounded. Further, distributions in these settings
can have shapes that are not well captured by standard para-
metric families of distributions, as for instance they can be
multi-modal with an unknown number of modes that depend
on external factors unknown at the decision time (weather
conditions, illness, pests, . . . ). This suggests one may prefer
algorithms that can cover a variety of possible shapes for the
distributions, rather than targeting a specific known family.
UCB-type strategies assuming only boundedness are thus
handy even though not optimal.

Second, targeting asymptotic optimality for CVaR bandits
is challenging: Massart’s bound for DKW-inequality was
already a non-trivial result, solving a long-lasting open ques-
tion back at the time, and yet only provides a “Hoeffding
version" of the CDF concentration. Adapting this to work
e.g. with Kullback-Leibler, plus considering that the CVaR
writes as an optimization problem, makes the quest for a
tight analysis even more challenging, and providing regret
guarantees for a CVaR equivalent of kl-ucb and empirical
KL-UCB (Cappé et al., 2013) is an interesting direction
for future work. Looking at the CVaR community, recent
works (Kagrecha et al., 2019; Holland and Haress, 2020;
Prashanth et al., 2020) have developed new tools for CVaR
concentration. Unfortunately, they may not be adapted for
this purpose since they aim at capturing properties of heavy-
tail distributions in a highly risk-averse setup. The setting
considered in this paper is different, and applying the op-
timistic principle for CVaR bandits to achieve asymptotic
optimality may be a daunting task. This suggests the idea to
turn towards alternative methods, such as e.g. TS strategies.

As it turns out, two powerful variants of TS were introduced
recently by Riou and Honda (2020) for the mean criterion,
that enable to overcome the “parametric" limitation, in the
sense that these approaches reach the minimal achievable
regret given by the lower bound of Burnetas and Katehakis
(1996), respectively for discrete and bounded distributions.
This timely contribution opens the room to overcome the
two previous limitations and achieve the first provably opti-
mal strategy for CVaR bandit for such practitioner-friendly
assumptions.

Remark 1. In finance CVaR is often associated to heavy-
tail distributions. Other variants of bandits have been con-
sidered to deal with possibly heavy-tail distributions, or
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weak moment conditions: In (Carpentier and Valko, 2014),
the authors study regret minimization for extreme statistics
(the maximum), for Weibull of Frechet-like distributions. In
(Lattimore, 2017), a median-of-mean estimator is studied
to minimize regret for distributions with bounded kurtosis.
A CVaR strategy has been proposed for the different pure
exploration setting (Kagrecha et al., 2019; Agrawal et al.,
2020), under weak moment conditions. These works con-
sider a different setup and objective.

Contributions In this paper, we purposely focus on mini-
mizing the CVaR regret considering either distributions with
discrete, finite support, or with continuous and bounded sup-
port, as we believe this has great practical relevance and is
still a relatively unexplored topic in the literature. More pre-
cisely, we target first-order asymptotic optimality for these
(sometimes called “non-parametric") families and first de-
rive in Theorem 1 a lower-bound on the CVaR regret, adapt-
ing that of (Lai and Robbins, 1985; Burnetas and Katehakis,
1996) to the CVaR criterion. This simple result highlights
the right complexity term that should appear when deriv-
ing regret upper bounds. We then introduce in Section 2
B-CVTS for CVaR bandits with bounded support, and M-
CVTS for CVaR bandits with multinomial arms, adapting
the strategies proposed by Riou and Honda (2020) for the
CVaR. We provide in Theorem 2 and Theorem 3 the regret
bound of each algorithm, proving asymptotic optimality
of these strategies. Up to our knowledge, these are the
first results showing asymptotic optimality of a Thompson
Sampling based CVaR regret minimization strategy. As ex-
pected, adapting the regret analysis from Riou and Honda
(2020) is non-trivial; we highlight the main challenges of
this adaption in section 3.3. For instance, one of the key
challenge was to handle boundary crossing probability for
the CVaR, and another difficulty comes in the analysis of the
non-parametric B-CVTS due to regularity properties of the
Kulback-Leibler projection. In Section 4, we provide a case
study in agriculture, making the well-established DSSAT
agriculture simulator (Hoogenboom et al., 2019) available
to the bandit community, and highlight the benefits of using
strategies based on Thompson Sampling in this CVaR ban-
dit setting against state-of-the-art baselines: We compare
to U-UCB and CVaR-UCB2 as they showcase two funda-
mentally different approaches to build a UCB strategy for a
non-linear utility function. The first one is closely related to
UCB, the second one exploits properties of the underlying
CDF, which may generalize to different risk metrics. As
claimed in Tamkin et al. (2020), our experiments confirm
that CVaR-UCB generally performs better than U-UCB.
However, both TS strategies outperform UCB algorithms
that tend to suffer from non-optimized confidence bounds.
We complete this study with more classical experiments on

2MaRaB is similar to U-UCB but enjoys weaker guarantees.

synthetic data that also confirm the benefit of TS.

2. Thompson Sampling Algorithms
We present two novel algorithms based on Thompson Sam-
pling and targeting the lower bound of Theorem 1 on the
CVaR-regret, for any specified value of α ∈ (0, 1]. These
algorithms are inspired by the first algorithms based on
Thompson Sampling matching the Burnetas and Katehakis
lower bound for bounded distributions in the expectation
setting, recently proposed by Riou and Honda (2020).

Notations We introduce the notation Cα(X , p) for the
CVaR of the distribution of support X and probability
p ∈ P |X |, where Pn denotes the probability simplex of
size n. For a multinomial arm k we denote its known sup-
port Xk = (x1

k, . . . , x
Mk

k ) for some Mk ∈ N, and its true
probability vector pk. We also define N i

k(t) as the number
of times the algorithm has observed xik for arm k before
the time t. For general bounded distributions we denote νk
the distribution of arm k and introduce Xk,t the set of its
observed rewards before time t, augmented with a known
upper bound Bk for the support of νk. We further intro-
duce Dn as the uniform distribution on the simplex Pn,
corresponding to the Dirichlet distribution Dir((1, ..., 1)).

M-CVTS Thompson Sampling (or posterior sampling) is
a general Bayesian principle that can be traced back to the
work of Thompson (1933), and that is now investigated for
many sequential decision making problems (see Russo et al.
(2018) for a survey). Given a prior distribution on the ban-
dit model, Thompson Sampling is a randomized algorithm
that selects each arm according to its posterior probability
of being optimal. This can be implemented by drawing a
possible model from the posterior distribution, and acting
optimally in the sampled model. For multinomial distribu-
tion M-CVTS (Multinomial-CVaR-Thompson-Sampling),
described in Algorithm 1, follows this principle. For each
arm k, pk is assumed to be drawn from DMk

, the uniform
prior on PMk . The posterior distribution at a time t is
Dir(βk,t), with βk,t = (N i

k(t) + 1)i∈{1,...,Mk}. At time
t, M-CVTS draws a sample wk,t ∼ Dir(βk,t) for each
arm k and computes cαk,t = Cα(Xk, wk,t). Then, it selects
At = argmaxkc

α
k,t. For α = 1, this algorithm coincides

with the Multinomial Thompson Sampling algorithm of
Riou and Honda (2020).

B-CVTS We further introduce the B-CVTS algorithm (for
Bounded-CVaR-Thompson-Sampling) for general bounded
distributions. B-CVTS, stated as Algorithm 2, bears some
similarity with a Thompson Sampling algorithm, although
it does not explicitly use a prior distribution. The algorithm
retains the idea of using a noisy version of νk, obtained by
a random re-weighting of the previous observations. Hence,
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Algorithm 1 M-CVTS
Input: Level α, horizon T , K, supports X1, . . . ,XK
Init.: t← 1, ∀k ∈ {1, ...,K}, βk = (1, . . . , 1)︸ ︷︷ ︸

Mk
for t ∈ {2, . . . , T} do

for k ∈ {1, . . . ,K} do
Draw wk ∼ Dir(βk).

Compute ck,t = Cα(Xk, wk).
Pull arm At = argmaxk∈{1,...,K}ck,t.

Receive reward rt,At .
Update βAt(j) = βAt(j) + 1, for j as rt,At = xjk

at a time t the index used by the algorithm for an arm k
is simply ck,t = Cα(Xk,t, wk,t), where wk,t ∼ DNk(t) is
drawn uniformly at random in the simplex P |Xk,t|. B-CVTS
then selects the arm At = argmaxkck,t. For α = 1, this
algorithm coincides with the Non Parametric Thompson
Sampling of Riou and Honda (2020) (NPTS). NPTS can
be seen as an algorithm that computes for each arm a ran-
dom average of the past observations. Our extension to
CVAR-bandits required to interpret this operation as the
computation of the expectation of a random perturbation
of the empirical distribution, which can be replaced by the
computation of the CVaR of this new distribution. Note that
this idea generalizes beyond using the CVaR, that can be
replaced with any criterion.

Algorithm 2 B-CVTS
Input: Level α, horizon T , K, upper bounds B1, . . . , BK
Init.: t = 1, ∀k ∈ {1, ...,K}, Xk = {Bk}, Nk = 1
for t ∈ {2, . . . , T} do

for k ∈ {1, . . . ,K} do
Draw wk ∼ DNk

Compute ck,t = Cα(Xk, wk)

Pull arm At = argmaxk∈{1,...,K}ck,t.
Receive reward rt,At .
Update XAt = XAt ∪ {rt,At}, NAt = NAt + 1.

Remark 2. Interestingly, B-CVTS also applies to multino-
mial distributions (that are bounded). The resulting strategy
differs from M-CVTS due to the initialization step using the
knowledge of the support in M-CVTS.

3. Regret Analysis
In this section we prove, after defining this notion, that M-
CVTS and B-CVTS are asymptotically optimal in terms of
the CVaR regret for the distributions they cover.

3.1. Asymptotic Optimality in CVaR bandits

Lai and Robbins (1985) first gave an asymptotic lower
bound on the regret for parameteric distribution, that was
later extended by Burnetas and Katehakis (1996) to more

general classes of distributions. We present below an intu-
itive generalization of this result for CVaR bandits.

Definition 1. Let C be a class of probability distributions,
α ∈ (0, 1], and KL(ν, ν′) be the KL-divergence between
ν ∈ C and ν′ ∈ C. For any ν ∈ C and c ∈ R, we define

Kα,Cinf (ν, c) := inf
ν′∈C,ν′ 6=ν

{KL(ν, ν′) : CVaRα(ν′) ≥ c} .

Theorem 1 (Regret Lower Bound in CVaR bandits). Let
α ∈ (0, 1]. Let F = F1 × · · · × FK be a set of bandit
models ν = (ν1, . . . , νK) where each νk belongs to the
class of distribution Fk. Let A be a strategy satisfying
Rαν(A, T ) = o(T β) for any β > 0 and ν ∈ F . Then for
any ν ∈ D, for any sub-optimal arm k, under the strategy
A it holds that

lim
T→+∞

Eν [Nk(T )]

log T
≥ 1

Kα,Fkinf (νk, c?)
,

where c? = maxi∈[K] CVaRα(νi).

Using (2), this result directly yields an asymptotic lower
bound on the regret. The proof of Theorem 1 follows from
a classical change-of-distribution argument, as that of any
lower bound proof in the bandit literature. We detail it in
Appendix D.1, following the proof of Theorem 1 in Garivier
et al. (2019) originally stated for α = 1. We discuss in
Appendix D.2 how this lower bound yields a weaker regret
bound expressed in terms of the CVaR gaps (by Pinsker).

In the next section we prove that M-CVTS matches the
lower bound for the set of multinomial distribution when
the support is known, and that B-CVTS matches the lower
bound for the set of continuous bounded distribution with a
known upper bound. Hence, under these hypotheses, the two
algorithms are asymptotically optimal. Despite the recent
development in CVaR bandits literature, to our knowledge
no algorithm has been able to match this lower bound yet.
These results are of particular interest because they show
that this bound is attainable for CVaR bandit algorithms, at
least for bounded distributions.

3.2. Regret Guarantees for M-CVTS and B-CVTS

Our main result is the following regret bound for M-CVTS,
showing that it is matching the lower bound of Theorem 1
for multinomial distributions.

Theorem 2 (Asymptotic Optimality of M-CVTS). Let ν be
a bandit model with K arms, where the distribution of each
arm k ∈ {1, . . . ,K} is multinomial with known support
Xk ⊂ RMk for some Mk ∈ N. The regret of M-CVTS
satisfies

Rν(T ) ≤
∑

k:∆α
k>0

∆α
k log T

Kα,Xkinf (νk, cα1 )
+ o(log T ) .
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We then provide a similar result for B-CVTS, for bounded
and continuous distributions with a known upper bound.

Theorem 3 (Asymptotic Optimality of B-CVTS). Let ν
be a bandit model with K arms, where for each arm
k ∈ {1, . . . ,K} its distribution νk belongs to Bk, the set
of continuous bounded distributions, and its supports Xk
satisfies Xk ⊂ [0, Bk] for some known Bk > 0. Then the
regret of B-CVTS on ν satisfies

Rν(T ) ≤
∑

k:∆α
k>0

∆α
k log T

Kα,Bkinf (νk, cα1 )
+ o(log T ) .

We postpone the detailed proofs of Theorem 2 and Theo-
rem 3 respectively to Appendix B and Appendix C, and we
highlight their main ingredients in this section. First, using
Equation (2) it is sufficient to upper bound E[Nk(T )] for
each sub-optimal arm k. To ease the notation we assume
that arm 1 is optimal. Our analysis follows the general out-
line of that of Riou and Honda (2020), but requires several
novel elements that are specific to CVaR bandits. First, the
proof leverages some properties of the function Kαinf for the
sets of distributions we consider. Secondly, it requires novel
boundary crossing bounds for Dirichlet distributions that
we detail in Section 3.3.

The first step of the analysis is almost identical for the two
algorithms and consists in upper bounding the number of
selections of a sub-optimal arm by a post-convergence term
(Post-CV) and a pre-convergence term (Pre-CV). The first
term controls the probability that a sub-optimal arm over-
performs when its empirical distribution is “close" to the
true distribution of the arm, while the second term considers
the alternative case. To measure how close two distributions
are we use the L∞ distance for multinomial distributions,
while for general continuous arms we use the Levy distance
(See Appendix A for definitions and details). We state the
decomposition in Equation 3 below for a generic distance
d(Fk,t, Fk) between the empirical cdf of the arm at a time t
and its true cdf. As in Section 2 we write cαk,t for the index
assigned to arm k by the algorithm at time t. Then, for any
ε1 > 0 and ε2 > 0 we define the events

C+
t,k = {At = k, ck,t ≥ cα1 − ε1, d(Fk,t, Fk) ≤ ε2} ,
C−t,k = {At = k, ck,t < cα1 − ε1}

∪ {At = k, d(Fk,t, Fk) ≥ ε2} .

As {ck,t ≥ cα1−ε1, d(Fk,t, Fk) ≤ ε2} is the complementary
set of {ck,t < cα1 − ε1} ∪ {d(Fk,t, Fk) > ε2} we obtain

E[Nk(T )] ≤ E

[
T∑
t=1

1(C+
t,k)

]
︸ ︷︷ ︸

(Post-CV)

+E

[
T∑
t=1

1(C−t,k)

]
︸ ︷︷ ︸

(Pre-CV)

. (3)

For an arm k satisfying the hypothesis of Theorem 2, for all
ε > 0 we show that the corresponding Post-Convergence
term of M-CVTS satisfies

(Post-CV) ≤ (1 + ε) log T

Kα,Xkinf (νk, cα1 )
+O(1) , (4)

while for an arm k satisfying the hypothesis of Theorem 3,
for all ε > 0 the corresponding Post-Convergence term of
B-CVTS satisfies

(Post-CV) ≤ log T

Kα,Bkinf (νk, cα1 )− ε
+O(1) . (5)

Finally, for both algorithms the Pre-Convergence term is
asymptotically negligible for the families of distribution
they cover, namely

(Pre-CV) = O(1) . (6)

We detail these results in Appendix B and Appendix C. In
the next section we present some novel technical tools that
we introduced in order to prove these results.

3.3. Technical challenges and tools

The proofs of (4), (5) and (6) follow the outline of Riou
and Honda (2020), respectively for Multinomial Thompson
Sampling and Non Parametric Thompson Sampling. How-
ever, replacing the linear expectation by the CVaR that is
non-linear, causes several technical challenges that make
the adaptation non-trivial. This is particularly true for the
boundary crossing probabilities for Dirichlet random vari-
ables, that we define and analyze in this section. Our results
aim at replacing the Lemma 13, 14, 15 and 17 of Riou and
Honda (2020) in the proofs of Theorem 2 and Theorem 3.

Boundary crossing probabilities In this paragraph we
highlight the construction of boundary crossing probabilities
for Dirichlet random variables, which consists in providing
upper and lower bounds of some terms of the form

Pw∼Dir(β) (Cα(X , w) ≥ c) ,

for some known support X = (x1, . . . , xn), parameter β ∈
Rn+ of the Dirichlet distribution, and some real value c that
will be defined in context. We introduce the set

SαX (c) = {p ∈ Pn : Cα(X , p) ≥ c} ,

following the notations of Section 2 for Cα(X , p). Thanks
to the expression of the CVaR in Equation (1) we have

SαX (c) = ∪nm=1Sαm,X (c) , (7)
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where we defined for all m ∈ {1, . . . , n} the sets

Sαm,X (c)=

{
p ∈ Pn, xm−

1

α

n∑
i=1

pi (xm − xi)+ ≥ c

}
.

This set is closed and convex, hence SαX (c) is closed, and
is the finite union of convex sets (but is not convex). These
properties are crucial to prove the results of this section.

Bounded support size We first study the case when the
size of the support is |X | = M , for some known M ∈ N
and when the considered distributions are the frequency of
each observation in X out of n ∈ N many observations,
which we represent by the set

QMn =

{
(β, p) ∈ N∗n × PM : p =

β

n

}
.

We then express bounds for boundary crossing probabilities
on this set, in terms of n and M , where n should be con-
sidered much larger than M . Lemma 1 and 2 respectively
provide an upper and lower bound on such probabilities.

Lemma 1 (Upper Bound). For any (β, p) ∈ QMn , for any
c > Cα(X , p), it holds that

Pw∼Dir(β)(w∈SαX (c)) ≤ C1MnM/2 exp(−nKα,Xinf (p, c)) ,

for some constant C1.

Lemma 2 (Lower Bound). For any (M,n) ∈ N2 and
(β, p) ∈ QMn , if n is large enough it holds that

Pw∼Dir(β) (w ∈ SαX (c)) ≥ C2

exp
(
−nKα,Xinf (p, c)

)
n

3M
2 +1

,

for some constant C2 =
(

1√
2π

)M
e−(M+1)/12.

The details of the proofs of these two results are to be found
in Appendix E. Lemma 1 hinges on the Lemma 13 of Riou
and Honda (2020) (see Appendix E), while the proof of
Lemma 2 shares the core idea of the proof sketch of their
Lemma 14. For both results we exploit the convexity of the
sets Sαm,X (c) (equation (7)). Lemma 2 is used in the proof
of M-CVTS only. On the other hand, Lemma 1 is a core
component of the proof of both M-CVTS and B-CVTS due
to the quantization arguments used in the latter.

General support size We now detail some results that are
specifically designed for the regret analysis of B-CVTS. For
this reason, we consider a support X = (x1, . . . , xn) and
the Dirichlet distribution Dn defined in Section 2. Here
we focus on the Dirichlet sample, hence the support X is
known. We further denote uX the uniform distribution on
X , and Cα(X ) its CVaR. We first establish an upper bound.

Lemma 3. Let X = (x0, . . . , xn) ⊂ [0, B]n+1 for some
known B > 0 and n ∈ N, assuming that x0 = B. For any
c > Cα(X ), and any η > 0 small enough it holds that

Pw∼Dn(Cα(X , w) ≥ c) ≤ B

η
exp−N(Kαinf (uX ,c)−ηC(B,α,c)) ,

for some constant C(B,α, c).

We prove this result in Appendix E. It relies on deriving the
dual form of the functional Kαinf for discrete distributions,
that is a result of independent interest.

Lemma 4. If a discrete distribution F supported on X
satisfies EF

[
(y−c)α
(y−X)+

]
< 1, then for any c > CVaRα(F ) it

holds that

Kαinf(F, c) = inf
y∈X

max
λ∈[0, 1

α(y−c) )
g(y, λ,X) ,

with g(y, λ,X) = EF [log(1− λ((y − c)α)− (y −X)+)].

If EF
[

(y−c)α
(y−X)+

]
≥ 1, then for any c > CVaRα(F )

Kαinf(F, c) = inf
y∈X

EF
(

(y −X)+

(y − c)α

)
.

The detailed proof of this result is provided in Appendix D,
where we also show that this expression matches the result
of Honda and Takemura (2010) for α = 1, and is similar
to the one obtained by (Agrawal et al., 2020)[Theorem 6]
for a more complex set of distributions (which is hence less
explicit). Furthermore, Agrawal et al. (2020)[Lemma 4]
prove the continuity of Kα,Xinf under this condition, which
is required in several part of our proofs. We propose a
simplified proof of this result for the restriction to bounded
distribution in Appendix D.

The last result we report in this section is a lower bound on
the probability that a noisy CVaR in B-CVTS exceeds the
CVaR of the empirical distribution.

Lemma 5. Assume that X = (x1, . . . , xn) and x1 < · · · <
xn, then xdnαe is the empirical α quantile of the set and x1

its minimum, and it holds that

Pw∼Dn (Cα(X , w) ≥ Cα(X )) ≥ 1

25n3
(xdnαe − x1) .

This result is proved in Appendix E. Let us remark that in
all the results presented in this section we consider a fixed
support X , while in B-CVTS the support is random and
evolves with the time. This causes several challenges in the
proof. In particular, the use of Lemma 5 in Appendix C.2.2
is not sufficient in itself to conclude and additional work is
required to handle the random support.
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Remark 3. The results presented in this section contains
most of the difficulty induced by the replacement of the ex-
pectation by the CVaR in the proofs. Extending these results
to other criterion is an interesting future work and may
help generalize the Non Parametric Thompson Sampling
algorithms to broader settings.

4. Experiments
In this section we report the results of experiments on the
algorithms presented in the previous sections, first on syn-
thetic examples, and then on a use-case study in agriculture
based on the DSSAT agriculture simulator.

4.1. Preliminary Experiments

We first performed various experiments on synthetic data in
order to check the good practical performance of M-CVTS
and B-CVTS on settings that are simple to implement and
are good illustrative examples of the performance of the
algorithms. Due to space limitation, we report a complete
description of the experiments and and an analysis of the
results in Appendix G. We tested the TS algorithms on speci-
fied difficult instances and on randomly generated problems,
against U-UCB and CVaR-UCB.

As an example of experiment with multinomial arms, we
report in Table 1 the results of an experiment with 103 ran-
domly generated problems with 5 arms drawn uniformly
at random in P |X |, where X = [0, 0.1, 0.2, . . . , 1], for
α ∈ {10%, 50%, 90%} and an horizon 104. These experi-
ments confirm the benefits of TS over UCB approaches, as
M-CVTS significantly outperforms its competitors for all
levels of the parameter α. We also tested the algorithms
with fixed instances (see Tables 5-8), with the same results,
and further illustrated the asymptotic optimality of M-CVTS
in Figures 7 and 8 by representing the lower bound pre-
sented in Section 3 along with the regret of the algorithm in
logarithmic scale.

We also tested B-CVTS on different problems, using trun-
cated gaussian mixtures (TGM). The results are presented
in Tables 9-12, and again show the merits of the TS ap-
proach. We also performed an experiment with a small
level α = 1% (Table 13) and show that B-CVTS keeps the
same level of performance in this case, while the other algo-
rithm stay in the linear regime for the horizon we consider.
Finally, we also experimented more arms (K = 30) and
randomly generated TGM problems and report the results
in Table 2. The means and variance of each arm satisfy
(µk, σk) ∼ U([0.25, 1]10× [0, 0.1]10), and the probabilities
of each mode are drawn uniformly, pk ∼ D19.

These very good results with synthetic data and its theoreti-
cal guarantees motivate using the B-CVTS algorithm in the
real-world application we introduce in the next section.

Table 1: CVaR regret at time T = 104, averaged over 103

random instances with 5 multinomial arms supported on
X = [0.1, 0.2, . . . , 1]

α U-UCB CVAR-UCB M-CVTS

10% 633.1 219.7 38.8
50% 368.8 187.9 48.9
90% 188.5 186.2 42.7

Table 2: Results for TGM arms with 10 modes, at T =
10000 averaged over 400 random instances with K = 30,
α = 5% (results: mean (std)).

T U-UCB CVaR-UCB B-CVTS

10000 2149.9 (263) 2016.0 (265) 210.9 (6.4)
20000 4276.4 (538) 3781.3 (521) 237.1 (15.4)
40000 8493.4 (1085) 6894.1 (985) 263.5 (17.9)

4.2. Bandit application in Agriculture

Motivation Let us consider a farmer who must decide on
a planting date (action) for a rainfed crop. Farmers have
been reported to primarily seek advice that reduces uncer-
tainty in highly uncertain decision making (McCown, 2002;
Hochman and Carberry, 2011; Evans et al., 2017). Planting
date is an example of such a decision as it will influence
the probabilities of favorable meteorologic events during
crop cultivation. These events are highly uncertain due to
the length of crop growing cycles (e.g. 3 to 6 months for
grain maize). For instance, because of the stochastic nature
of the rainfalls and temperatures, a farmer will observe a
range of different crop yields from year to year for the same
planting date, all other technical choices being equal. Thus,
assuming that the environment is stationary, each planting
date corresponds to an underlying, unknown yield distribu-
tion, which can be modeled as an arm in a bandit problem.
Depending on her profile, a farmer may be more or less
risk averse, and the Conditional Value at Risk can be used
to personalize her level of risk-aversion. For instance, a
small-holder farmer looking for food security may seek to
avoid very poor yields compromising auto-consumption (e.g
α ≤ 20%), while a market-oriented farmer may be more
prone to risky choices in order to increase her profit but still
not risk neutral (e.g α = 80%). Yield distributions are sup-
posed to be bounded. Indeed, a finite yield potential can be
defined under non-stressing conditions for a given crop and
environment (Evans and Fischer, 1999; Tollenaar and Lee,
2002). Observed yields can be modeled as following Von
Liebig’s law of minimum (Paris, 1992): limiting factors will
determine how much of the yield potential can be expressed.
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Figure 1: Empirical simulated yields and respective CVaRs
at 20% estimated after 106 samples in DSSAT environment.

Setting Planting date decision-making support requires
extensive testing prior to any real-life application, due the
potential impact of wrong action-making, particularly in
subsistence farming. For this reason, we consider the prob-
lem of facing many times the decision of a planting date
in the DSSAT3 simulator, to make an in silico decision.
DSSAT, standing for Decision Support System for Agrotech-
nology Transfer, is a world-wide crop simulator, supporting
42 different crops, with more than 30 years of development
(Hoogenboom et al., 2019). We specifically address maize
planting date decision, as maize is a crucial crop for global
food security (Shiferaw et al., 2011). Each simulation is
assumed to be realistic, and starts from the same field ini-
tial conditions as ground measured. The simulator takes
as input historical weather data, field soil measures, crop
specific genetic parameters and a given crop management
plan. Modeling is based on simulations of atmospheric, soil
and plants compartments and their interactions. In the con-
sidered experiments, after a decision is made on planting
date in the simulator, daily stochastic meteorologic features
are generated according to historical data (Richardson and
Wright, 1984) and injected in the complex crop model. At
the end of crop cycle, a maize grain yield is measured to eval-
uate decision-making. We parameterized the crop-model
under challenging rainfed conditions on shallow sandy soils,
i.e. with poor water retention and fertility. Such experiment
intends to be representative of realistic conditions faced
by small-holder farmers under heavy environmental con-
straints, such as in Sub-Saharan Africa. Thus, this setting
can help picturing how CVaR bandits may perform in real-
world conditions. For the sake of the experiments, we built
a bandit-oriented Python wrapper to DSSAT that we made
available4 to the bandit community for reproducibility.

3DSSAT is an Open-Source project maintained by the DSSAT
Foundation, see https://dssat.net/.

4 https://github.com/rgautron/DssatBanditEnv

Experiments We test bandit performances on the 4 armed
DSSAT environment described in Table 3. To illustrate the
non-parametric nature of these distributions, we report in
Figure 1 estimations of their density obtained with Monte-
Carlo simulations, as well as of their CVaRs. The resulting
distributions are typically multi-modal, with one of their
mode very close to zero (years of bad harvest), and with
upper tails that cannot be properly characterized. However
the practitioner can realistically assume that the distributions
are upper-bounded, due to the physical constraints of crop-
farming. The yield upper-bound is set to 10 t/ha thanks to
expert knowledge for the considered conditions.

Table 3: Empirical yield distribution metrics in kg/ha esti-
mated after 106 samples in DSSAT environment

day (action). CVaRα
5% 20% 80% 100% (mean)

057 0 448 2238 3016
072 46 627 2570 3273
087 287 1059 3074 3629
102 538 1515 3120 3586

The presented DSSAT environment advocates for the use
of algorithms specifically designed for CVaR bandits, as
the optimal arm can change depending on the value of the
parameter α. Our experiment consists in running 64 trajecto-
ries for three algorithms U-UCB, CVaR-UCB and B-CVTS
defined in Section 2. Experiments are carried out with an
horizon of 104 time steps, and we compare the results for
each algorithm for α ∈ {5%, 20%, 80%} to see how the
parameter impacts their performance. Indeed we want a
strategy to perform well on all α choices, allowing to freely
model any farmer’s risk aversion level. As shown in Figure 2
and Table 4, B-CVTS appears to be consistently better than
its UCB counterparts in DSSAT environment for all tested
α values, which is encouraging for real-life applications.

Table 4: Empirical yield regrets at horizon 104 in t/ha in
DSSAT environment, for 1040 replications. Standard devia-
tions in parenthesis.

α U-UCB CVaR-UCB B-CVTS
5% 3128 (3) 760 (14) 192 (11)
20% 4867 (11) 1024 (17) 202 (10)
80% 1411 (13) 888 (13) 287 (12)

Further experiments are reported in Appendix G. In particu-
lar we increase the number of arms, and empirically study
the effect of over-estimating the support upper-bound: our
results show that a "prudent" bound has little effect of the
performance of the algorithms in the settings we consider.
This property is of particular interest for the practitioner,

https://dssat.net/
https://github.com/rgautron/DssatBanditEnv
https://dssat.net/
https://github.com/rgautron/DssatBanditEnv
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as a proper tuning of the support upper bound is the main
limitation of the use of B-CVTS (and all bandit algorithms
available for this problem). In most applications grounded
on physical reality, the availability of such prudent upper-
bound estimate is likely, and sufficient to ensure the practical
performance of the B-CVTS algorithm.
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Figure 2: Regret comparison in DSSAT environment, aver-
aged over 1040 experiment replications.

Perspectives This first set of experiments using a chal-
lenging realistic crop simulator is promising, and motivates
to further investigate the use of B-CVTS algorithm for crop-
management support and other problems that can be mod-
eled as CVaR bandits. B-CVTS enjoys appealing theoretical
guarantees, and thanks to its simplicity and competitive
empirical performances may be a good candidate for prac-
titioners. In order to address real-world crop-management
challenges, many questions remain to be considered, e.g.
how to optimally generate mini-batches of recommenda-
tions to an ensemble of farmers in a semi-sequential proce-
dure (in order to account for the long feedback time), how to
incorporate distribution priors on crop-management options
that could be pre-learnt in silico and refining them adaptively

in the real world (thus, minimizing random exploration in
the real world), how to include contextual information such
as soil characteristics and local weather forecasts, or how
handle non-stationarity, incorporating climate change pro-
gressive impact on an optimal planting date. Furthermore,
the simplicity of the Non-Parametric Thompson Sampling
algorithms make them appealing for generalization to other
risk-aware settings, e.g risk-constrained (maximizing the
mean under a condition on the CVaR) or with other risk met-
rics (mean-variance, entropic risk, etc). All of these open
questions make interesting challenges for future works.
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