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Abstract

There has been a recent surge of interest in non-
parametric bandit algorithms based on subsam-
pling. One drawback however of these approaches
is the additional complexity required by random
subsampling and the storage of the full history
of rewards. Our first contribution is to show
that a simple deterministic subsampling rule, pro-
posed in the recent work of Baudry et al. (2020)
under the name of “last-block subsampling”, is
asymptotically optimal in one-parameter expo-
nential families. In addition, we prove that these
guarantees also hold when limiting the algorithm
memory to a polylogarithmic function of the time
horizon. These findings open up new perspec-
tives, in particular for non-stationary scenarios
in which the arm distributions evolve over time.
We propose a variant of the algorithm in which
only the most recent observations are used for
subsampling, achieving optimal regret guaran-
tees under the assumption of a known number of
abrupt changes. Extensive numerical simulations
highlight the merits of this approach, particularly
when the changes are not only affecting the means
of the rewards.

1. Introduction

In the K -armed stochastic bandit model, the learner repeat-
edly picks an action among K available alternatives and only
observes the rewards associated with her actions. By inter-
acting with the environment, the learner aims at maximizing
her expected sum of rewards and needs to sequentially adapt
her decision strategy in light of the information gained up
to now. In this model, over-confident policies are provably
suboptimal and a proper trade-off between exploitation and
exploration has to be found.
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2 Olivier Cappé?

Multi-armed bandits models have been used to address a
wide range of sequential optimization tasks under uncer-
tainty: online recommendation (Li et al., 2011; 2016), strate-
gic pricing (Bergemann & Vilimiki, 1996) or clinical trials
(Zelen, 1969; Vermorel & Mohri, 2005) to name a few. In
its standard formulation the multi-armed bandit model pos-
tulates that the distributions of the rewards obtained when
drawing the different arms remain constant over time. How-
ever, in some scenarios the stationary assumption is not
realistic. In clinical trials, the disease to defeat may mutate
and the initially optimal treatment could become subopti-
mal compared to another candidate (Gorre et al., 2001). In
strategic pricing problems, the price maximizing the profit
of a given asset can evolve with the introduction of a new
product on the market (Eliashberg & Jeuland, 1986). For on-
line recommendation systems, the preferences of the users
are likely to evolve (Wu et al., 2018) and collected data
becomes progressively obsolete.

During the past ten years, several works have considered
non-stationary variants of the multi-armed bandit model,
proposing methods that can be grouped into two main cat-
egories: they either actively try to detect modifications in
the distribution of the arms with changepoint detection algo-
rithms (Liu et al., 2017; Cao et al., 2019; Auer et al., 2019;
Chen et al., 2019; Besson et al., 2020) or they passively
forget past information (Garivier & Moulines, 2011; Raj &
Kalyani, 2017; Trovo et al., 2020). To some extent, all of
these methods require some knowledge on the distribution
to obtain theoretical guarantees.

To balance exploration and exploitation, the algorithms men-
tioned so far are based on one of the two standard building
blocks introduced in the bandit literature: Upper Confidence
Bound (UCB) constructions (Auer et al., 2002) or Thomp-
son Sampling (TS) (Thompson, 1933). However, there has
been a recent surge of interest for alternative non-parametric
bandit strategies (Kveton et al., 2019a;b; Riou & Honda,
2020). Instead of using prior information on the reward dis-
tributions as in Thompson sampling or of building tailored
upper-confidence bounds (Cappé et al., 2013) those meth-
ods only use the empirical distribution of the data. These
algorithms are non-parametric in the sense that the exact
same implementation can be used with different probability
distributions, while still achieving optimal regret guarantees
(in a sense to be defined in Section 2 below).
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In particular, subsampling algorithms (Baransi et al., 2014;
Chan, 2020; Baudry et al., 2020) have demonstrated their
potential thanks to their flexibility and strong theoretical
guarantees. From a high level perspective, they all rely on
the same two components. (1) subsampling: the arms that
have been pulled a lot are randomized by sampling only a
fraction of their history. (2) duels: the arms are pulled based
on the outcomes of duels between the different pairs of
arms. Note that the term duel, which we will also use in the
following, refers to the algorithmic principle of comparing
the arms two by two, based on their subsamples. It is totally
unrelated to the dueling bandit framework introduced by
Yue & Joachims (2009).

Scope and contributions In this paper, we build on the
Last-Block Subsampling Duelling Algorithm (LB-SDA) in-
troduced by Baudry et al. (2020) but for which no theoretical
guarantees were provided. This approach is of interest be-
cause of its simplicity and its computational efficiency com-
pared to other strategies based on randomized subsampling.
We first prove that for stationary environments LB-SDA is
asymptotically optimal in one-parameter exponential family
models and therefore matches the guarantees obtained by
Baudry et al. (2020) for randomized subsampling schemes.
The main technical challenge is to devise an alternative
to the diversity condition used in their work, which was
specifically designed for randomized subsampling schemes.

Furthermore, we show that, without additional changes,
these guarantees still hold for a variant of the algorithm
using a limited memory of the observations of each arm. We
prove that storing €2 ((log T")?) observations instead of 7" is
sufficient to ensure the asymptotic guarantees, making the
algorithm more tractable for larger time horizons. To the
best of our knowledge, this paper is the first to propose an
asymptotically optimal subsampling algorithm with poly-
logarithmic storage of rewards under general assumptions.

Building a subsampling algorithm based on the most recent
observations makes it an ideal candidate for a passively for-
getting policy. Our third contribution is to propose a natural
extension of the LB-SDA strategy to non-stationary environ-
ments. By limiting the extent of the time window in which
subsampling is allowed to occur, one obtains a passively
forgetting non-parametric bandit algorithm, which we refer
to as Sliding Window Last Block Subsampling Duelling
Algorithm (SW-LB-SDA). To analyze the performance of
this algorithm, we assume an abruptly changing environ-
ment in which the reward distributions change at unknown
time instants called breakpoints. We show that SW-LB-
SDA guarantees a regret of order O(/I'rT log(T)) for
any abruptly changing environment with at most 'z break-
points, thus matching the lower bounds from Garivier &
Moulines (2011), up to logarithmic factors. The only re-
quired assumption is that, during each stationary phase, the

reward distributions belong to the same one-parameter expo-
nential family for all arms. Due to its non-parametric nature,
this algorithm can thus be used in many scenarios of interest
beyond the standard bounded-rewards / change-in-the-mean
framework. We discuss some of these scenarios in Section 5,
where we validate numerically the potential of the approach
by comparing it with a variety of state-of-the-art algorithms
for non-stationary bandits.

2. Preliminaries

The algorithms to be presented below are designed for the
stochastic K-armed bandit model, which is the most studied
setting in the bandit literature. We introduce in this section
the two variants of this basic model that will be considered in
the paper: stationary and abruptly changing environments.

Stationary environments When the environment is sta-
tionary, the K arms are characterized by the reward distribu-
tions (v)k<x and their associated means (1 )k< ., With
W = maxpeqi,.. k) Hr denoting the highest expected re-
ward. We denote by (Y}, ) sen the i.i.d. sequence of rewards
from arm k. Following Chan (2020), our algorithm operates
in successive rounds, whose length varies between 1 and
K time steps. At each round r, the leader denoted £(r) is
defined and (K — 1) duels with the remaining arms called
challengers are performed. Denoting by Ny (r) the number
of pulls of arm % up to the round  the leader is the arm that
has been most pulled. Namely,

Lr) = argmaxke{l)wK}Nk(r) . (D

When several arms are candidate for the maximum number
of pulls, the one with the largest sum of rewards is chosen.
If this is still not sufficient to obtain a unique arm, the
leader is chosen at random among the arms maximizing both
criteria. At round r, a subset A, C {1,..., K} is selected
by the learner based on the outcomes of the duels against
£(r). Next, all arms in A,. are drawn, yielding Y}, y, () for
k € A,, where Ni(r) =Y _ 1(k € Ay).

The regret is defined as the expected difference between
the highest expected reward and the rewards collected by
playing the sequence of arms (A¢)¢<7:

> Wt - uAt)] -
t=1

For distributions in one-parameter exponential families, the
lower bound of Lai & Robbins (1985) states that no strategy
can systematically outperform the following asymptotic
regret lower bound

Rr=E

*
hminf& > § TR
T—oo log(T) KL (g, po*)

ki <p*
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Abruptly changing environments In Section 4, we con-
sider abruptly changing environments. The number of break-
points up to time 7', denoted I'7, is defined by

T-1

I'r = Z {3k, vi s # Viypg1}-

t=1

The time instants (¢1,...,tr,) associated to these break-
points define I'p + 1 stationary phases where the reward
distributions are fixed. Note that in this model, the change
do not need to affect all arms simultaneously. In such en-
vironments, letting py = maxyeq1,.. K} pk,¢ denote the
best arm at time ¢, the performance of a policy is measured
through the dynamic regret defined as

T
> (ui - MAJ] :

t=1

Rr=E

We will explain how to extend the notion of leader to this
setting in Section 4.

In the non-stationary case, the lower bound for the regret
takes a different form: for any strategy, there exists an
abruptly changing instance such that E[Rr] = Q(v/TTr)
(Garivier & Moulines, 2011; Seznec et al., 2020). Note that
in the bandit literature, there is also another, more general,
way of characterizing non-stationary environments based
on a variational distance introduced by Besbes et al. (2014).
In this work, we however only consider the case of abruptly
changing environments.

3. LB-SDA in Stationary Environments

In this section we detail the subsampling strategy used in the
LB-DSA algorithm and obtain asymptotically optimal regret
guarantees for its performance. In Section 3.3, we consider
the variant of LB-SDA in which the memory available to
the algorithm is strongly limited.

3.1. Last Block Sampling

Compared to the algorithms analyzed in (Baudry et al.,
2020) where the sampler is randomized, we consider a de-
terministic sampler. At round r, the duel between arm
k # £(r) and the leader consists in comparing the aver-
age reward from arm k with the average reward computed
only from the last Ny (r) observations of the leader. The
challenger k thus wins its duel if

Vi Ne(r) = Y—E(r),Ng(T)(r)—Nk(r)—&-l:Ng(T)(r) , 2

where Yy, ;.; = jj 7 2h—; Yi.n denotes the average com-

puted on the j — 7 + 1 observations of arm k between its
i-th and j-th pull, and Y} ,, is a shortcut for Y3 1.,.

At each round, the set A, includes all of the challengers
that have defeated the leader, according to Equation (2), as

well as under-explored arms for which Ny (r) < 4/log(r).
If A, is empty, only the leader is pulled. Combining these
elements gives LB-SDA detailed below.

Algorithm 1 LB-SDA

Input: K arms, horizon T’

Initialization: t < 1,7 + 1,Vk € {1,..., K}, N, < 0
while ¢t < T do

A+ {}, £ + leader(N,Y)
if » = 1 then
| A<« {1,..., K} (Draw each arm once)
else
fork £¢e{l,..,K}do
if N < /log(r) or Y n, > Yo N,—N+1:N,
then
| A+ AU{k}
if | A| = 0 then
L A« {6}
for k € Ado
Pull arm k, observe reward Y, n, 41, Ni < Ni+1,
t+—t+1
Lr«r+1

Baransi et al. (2014) propose interesting arguments explain-
ing why subsampling methods work. Essentially, if the
sampler allows enough diversity in the duels, the probabil-
ity of repeatedly selecting a suboptimal arm is small. On
the sampler side, this condition is satisfied when out of a
large number of duels between two arms there is a reason-
able amount of them with non-overlapping subsamples. We
prove that last block sampling satisfies such property. The
second requirement concerns the distribution of the arms,
and has been formulated by Baransi et al. (2014) who intro-
duced the balance function of a family of distributions. In
particular, Chan (2020) shows that introducing an asymp-
totically negligible sampling obligation of y/log r is enough
to make subsampling suitable when the arms come from
the same one-parameter exponential family of distributions.
Namely, if each arm has at least v/log r samples at round r,
the diversity of duels will guarantee each arm to be pulled
enough. This exploration rate does not have to be tuned
and is not detrimental in practice : for an horizon of, say,
T = 109 it only forces each arm to be sampled at least 4
times.

3.2. Regret Analysis of LB-SDA

We consider that the arms come from the same one-
parameter exponential family of distributions Pg, i.e., that
there exists a function g : R X © — R such that any arm &
has a density of the form

gk(CL’) = g(l‘7 974?) = eekx_qj(gk)g(xa O) )



On Limited-Memory Subsampling Strategies for Bandits

where ¥(0y,) = log [ [ €”*®g(x, 0) dz]. This assumption is
standard in the literature and covers a broad range of bandits
applications. The exact knowledge of the family of distri-
butions of the arms (e.g Bernoulli, Gaussian with known
variance, Poisson, etc.) can be used to calibrate algorithms
like Thompson Sampling (Kaufmann et al., 2012), KL-UCB
(Cappé et al., 2013) or IMED (Honda & Takemura, 2015) in
order to reach asymptotic optimality. Recently, subsampling
algorithms like SSMC (Chan, 2020) and RB-SDA (Baudry
et al., 2020) have been proved to be optimal without know-
ing exactly Pg. This means that the same algorithm can run
on Bernoulli or Gaussian distributions and achieve optimal-
ity. We first prove that LB-SDA matches these theoretical
guarantees. We denote kl(p, p’) the Kullback-Leibler diver-
gence between two distributions of mean p and ' in the
exponential family Pg.

Theorem 1 (Asymptotic optimality of LB-SDA). For any
bandit model v = (vq,...,vk) C Pg where Pg is any
one-parameter exponential family of distributions, the regret
of LB-SDA satisfies, for all € > 0,

R(T)< Y

ki <p*

1+e

m log(T) + C(v,e) ,

where C(v, €) is a problem-dependent constant.

Proof sketch We assume without loss of generality that
there is a unique optimal arm denoted k*. The analysis of
Chan (2020) and Baudry et al. (2020) shows that for any
SDA algorithm the number of pulls of a suboptimal arm
may be bounded as follow.

Lemma 1 (Lemma 4.1 in Baudry et al. (2020)). For any
suboptimal arm k # k*, the expected number of pulls of k
is upper bounded by

1+e¢
E[Np(T)] < m log(T) + Ci(v,€)
+32) P(Ny-(r) < (logr)?) , (3

r=1
where Cy (v, €) is a problem-dependent constant.

The next step consists in upper bounding the probability
that the best arm is not pulled "enough" during a run of
the algorithm. This part is more challenging and relies
on the notion of diversity in the subsamples provided by
the subsampling algorithm. This notion was introduced by
Baransi et al. (2014) to analyze the Best Empirical Sampled
Average (BESA) algorithm. Intuitively, random block sam-
pling (Baudry et al., 2020) or sampling without replacement
(Baransi et al., 2014) explore different part of the history
thus bringing diversity in the duels. Unfortunately, this prop-
erty is not satisfied by deterministic samplers. Nonetheless,

with a careful examination of the relation implied by the
deterministic nature of last-block subsampling it is possible
to prove that the number of pulls of the optimal arm is large
enough with high probability.

Lemma 2. The probability that the optimal arm is not
pulled enough by LB-SDA can be upper bounded as fol-
lows

+oo
Y P (Npe(r) < (logr)?) < Cpe (v)
r=1

for some constant Cy« (V).

Plugging the result of Lemma 2 in Lemma 1 gives the
asymptotic optimality of LB-SDA (Theorem 1). The proof
of Lemma 2 is reported in Appendix A.

3.3. Memory-Limited LB-SDA

One of our main motivations for studying LB-SDA is its
simplicity and efficiency. Yet, all existing subsampling
algorithms (Baransi et al., 2014; Chan, 2020; Baudry et al.,
2020) as well as the vanilla version of LB-SDA have to store
the entire history of rewards for all the arms. In this section,
we explain how to modify LB-SDA to reduce the storage
cost while preserving the theoretical guarantees.

The fact that LB-SDA is asymptotically optimal means that,
when 7' is large, the arm with the largest mean is most often
the leader with all of its challengers having a number of
pulls that is of order O(logT') only. With duels based on
the last block, this would mean in particular that only the
last O(log T') observations from the optimal arm should be
stored and that previous observations will never be used
again in practice. Based on this intuition, one might think
that keeping only log(7") /(1+* — 15 )? observations is enough
for LB-SDA. However, this could only be done with the
knowledge of the gaps that are unknown.

We propose instead to limit the storage memory of each arm
at round r to a value of the form

m, = max (M, [C(logr)?]) ,

where C > 0 and M € N. M ensures that a minimum
number of samples are stored during the first few rounds.
Following the definition of Agrawal & Goyal (2012), we
then define the set of saturated arms at a round r as

Sr={ke{l,....K}: Ny(r) >m,}.

The only modification of LB-SDA is the following: at each
round r, if a saturated arm is pulled then the newly collected
observation replaces the oldest observation in its history.
The pseudo code of LB-SDA with Limited Memory (LB-
SDA-LM) is given in Appendix B and the following result
shows that it keeps the same asymptotical performance as
LB-SDA under general assumptions on ..
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Theorem 2 (Asymptotic optimality of LB-SDA with Lim-
ited Memory). For any bandit model v = (v1,...,vi) C
Pg where Pg is any one-parameter exponential family of
distributions, if m,/log(r) — oo, the regret of memory-
limited LB-SDA satisfies, for all ¢ > 0,

1
Re< Y ﬁlog(T} +C'(v,e, M),
Keipn <p* His
where M = (mqy,ma,...,mr) denotes the sequence

(my)ren and C'(v, e, M) is a problem-dependent constant.

The proof of this theorem is reported in Appendix B, which
provides precise estimates of the dependence of C’ (v, €, M)
with respect to the parameters, and in particular, with respect
to the sequence M. Note that LB-SDA-LM remains an
anytime algorithm because the storage constraint does not
depend on the time horizon 7" but only on the current round.

3.4. Storage and Computational Cost

To the best of our knowledge, LB-SDA-LM is the only
subsampling bandit algorithm that does not require to store
the full history of rewards. We report in Table 1 estimates of
the computational cost of LB-SDA-LM and its competitors.

Table 1. Storage and computational cost at round 7" for existing
subsampling algorithms.

Algorithm Storage Comp. cost
Best-Worst case
(Baranslig]eitszﬁ, 2014) o(T) O((log 7))
(Chsai{\g%m) o(T) 0(1)-0(T)
(Baudl:)/BétS szozo) o(T) O(logT)
(tﬁg fiﬁr) o(T) 0(1)-O(log T))
L(?h_ii]l)f::éx O((logT)*)  O(1)-O(logT)

The computational cost can be broken into two parts: (a)
the subsampling cost and (b) the computation of the means
of the samples. We assume that drawing a sample of size n
without replacement has O(n) cost and that computing the
mean of this subsample costs another O(n). Furthermore, at
round T, each challenger to the best arm has about O(log T')
samples. This gives an estimated cost of O ((log T')?) for
BESA (Baransi et al., 2014). For RB-SDA (Baudry et al.,
2020) the estimated cost is O(log(T')), because the sam-
pling cost for random block sampling is O(1) and only the
sample mean has to be recomputed at each round.

For the three deterministic algorithms (namely SSMC (Chan,
2020), LB-SDA, LB-SDA-LM), when the leader arm wins
all its duels, its sample mean can be updated sequentially at
cost O(1). This is the best case in terms of computational
cost. However, when a challenger arm is pulled, SSMC
requires a full screening of the leader’s history, with O(T")
cost, while LB-SDA and LB-SDA-LM only need the com-
putation of the mean of the last O(log T') samples from the
leader.

4. LB-SDA in Non-Stationary Environments

In stationary environments, LB-SDA achieves optimal re-
gret rates, even when its decisions are constrained to use
at most O((log T')?) observations. One might think that
this argument itself is sufficient to address non-stationary
scenarios as the duels are performed mostly using recent ob-
servations. However, the latter is only true for the best arm
and in the case where an arm that has been bad for a long
period of time suddenly becomes the best arm, adapting to
the change would still be prohibitively slow. For this reason,
LB-SDA has to be equipped with an additional mechanism
to perform well in non-stationary environments.

4.1. SW-LB-SA: LB-SDA with a Sliding-Window

We keep a round-based structure for the algorithm, where,
at each round r, duels between arms are performed and the
algorithm subsequently selects the subset of arms A, that
will be pulled. In contrast to Section 3.3, where a constraint
on storage related to the number of pulls was added, here,
we use a sliding window of length 7 to limit the historical
data available to the algorithm to that of the last 7 rounds.

round
(T [T«
e 5 I 6 I A

L(r—1)

Win

Figure 1. Illustration of a passive leadership takeover with a slid-
ing window 7 = 4 when the standard definition of leader is used.
The bold rectangle correspond to the leader. A blue square is added
when an arm has an observation for the corresponding round and
the red square correspond to the information that will be lost at the
end of the round due to the sliding window.

Modified leader definition The introduction of a sliding
window requires a new definition for the leader. By analogy
with the stationary case, the leader could be defined as the
arm that has been pulled the most during the 7 last rounds.
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Algorithm 2 SW-LB-SDA

Input: K arms, horizon T, 7 length of sliding window

Initialization: ¢ < 1, r < 1,Vk € {1,.., K}, N + 0,
N+ 0

while ¢ < T do

A {}, 0 < leader(N,Y, 7)

if r = 1 then
| A<« {1,..., K} (Draw each arm once)
else

fork #¢e{l,..,K} do

if NJ < y/log(7) or D}, (r) = 1 then
| A+ AU{k}
else

B7, = Yi Ny~ N7 +1:N;
N =min(N],N])
Hyg = YN~ N+1:N,
if 17, > fij , then

| A+ AU {k}

if |A| = 0 then
L A< {4

for k € Ado
Pull arm £, observe reward Y, n, +1

| Update N <~ N + 1, N < N +1,t <t +1
fork e {1,..,K}do

ifk € A,._,41 then

| N[« N[ -1

L r+<r+1

However, with the inclusion of the sliding window, a new
phenomenon, which we call passive leadership takeover,
can occur. Let us define N7 () = S/-0 1 (k € Agy1),
the number of times arm & has been pulled during the last
7 rounds and consider a situation with 3 arms {1, 2, 3}.
Assume that the leader is arm 1 and at a round (r — 1)
we have N7 (r — 1) = NJ (r — 1). If the leader has been
pulled 7 rounds away and wins its duel against arm 2 but
looses against arm 3, only arm 3 will be pulled at round 7.
Consequently, at round 7, arm 2 will have a strictly larger
number of pulls than arm 1 without having actually defeated
the leader. This situation, illustrated on Figure 1, is not
desirable as it can lead to spurious leadership changes. We
fix this by imposing that any arm has to defeat the current
leader to become the leader itself. Define,

B, ={ke A1 N{N;(r+1) > min(r,7)/K}} .

Then for any r € N, the leader at round r + 1 is defined as
r(r+1) = argmaxye gy K}N,:(rJrl) ifNZ,.(r)(T+1) <
min(r, 7)/(2K) and the argmax is taken over B, U {¢7 (1)}
otherwise. This modified definition of the leader ensures
that an arm can become the leader only after earning at

least 7/ K samples and winning a duel against the current
leader, or if the leader loses a lot of duels and its number
of samples falls under a fixed threshold. Thanks to this
definition it holds that N/ (r) = min(r, 7)/(2K). More
details are given in Appendix C.

Additional diversity flags As in the vanilla LB-SDA, we
use a sampling obligation to ensure that each arm has a
minimal number of samples. However, in contrast to the
stationary case, this very limited number of forced samples
may not be sufficient to guarantee an adequate variety of du-
els, due to the forgetting window. To this end, the sampling
obligation is coupled with a diversity flag. We define it as a
binary random variable D7 (1), satisfying D] (r) = 1 only
when, for the last [(K —1)(log 7)?] rounds the three follow-
ing conditions are satisfied: 1) some arm k' # k has been
leader during all these rounds, 2) k" has not been pulled, and
3) k has not been pulled and satisfy N7 (r) < (log7)2. In
practice, there is a very low probability that these conditions
are met simultaneously but this additional mechanism is
required for the theoretical analysis. Note that the diversity
flags have no impact on the computational cost of the al-
gorithm as they require only to store the number of rounds
since the last draw of the different arms (which can be up-
dated recursively) as well as the last leader takeover. Arms
that raise their diversity flag are automatically added to the
set of pulled arms.

Bringing these parts together, gives the pseudo-code of SW-
LB-SDA in Algorithm 2.

4.2. Regret Analysis in Abruptly Changing
Environments

In this section we aim at upper bounding the dynamic regret
in abruptly changing environments, as defined in Section 2.
Our main result is the proof that the regret of SW-LB-SDA
matches the asymptotic lower bound of Garivier & Moulines
(2011).

Theorem 3 (Asymptotic optimality of SW-LB-SDA). If the
time horizon T' and number of breakpoint I'r are known,

choosing T = O(\/T log(T') /T'1) ensures that the dynamic
regret of SW-LB-SDA satisfies

RT = O(\/TPT IOgT) .

To prove this result we only need to assume that, during
each stationary period, the rewards come from the same
one-parameter exponential family of distributions. In con-
trast, current state-of-the-art algorithms for non-stationary
bandits typically require the assumption that the rewards are
bounded to obtain similar guarantees. Hence, this result is
of particular interest for tasks involving unbounded reward
distributions that can be discrete (e.g Poisson) or contin-
uous (e.g Gaussian, Exponential). SW-LB-SDA can also
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be used for general bounded rewards with the same perfor-
mance guarantees by using the binarization trick (Agrawal
& Goyal, 2013). Note however, that the knowledge of the
horizon T" and the estimated number of change point I'7 is
still required to obtain optimal rates, which is an interest-
ing direction for future works on this approach (Auer et al.,
2019; Besson et al., 2020). We provide a high-level outline
of the analysis behind Theorem 3 and the complete proof is
given in Appendix C.

Regret decomposition For the I'r + 1 stationary phases
[ty te+1—1] with¢ € {1,...,T'r}, we define 7, as the first
round where an observation from the phase ¢ was pulled.
Introducing the gaps Ai = puy o~ Mgk and denoting the
optimal arm k7, we can rewrite the regret as

Iy T¢t1—2

E1D. > >

p=1r=re—1k#k}

=Y Y EVIAY

¢=1k#£k?,

RT = k S ArJrl

where we define N’ = Z:‘iﬁj_ﬁ 1(k € A,11) the number

of pulls of an arm £ during a phase ¢ when it is suboptimal.

Note that the quantities t4, 14 and A‘,f for the different
stationary phases ¢ are only required for the theoretical
analysis and the algorithm has no access to those values. We
highlight that the sequence (r4)s>1 is a random variable
that depends on the trajectory of the algorithm. However, we
show in Appendix C that this causes no additional difficulty
for upper bounding the regret. We introduce 64 = ty4+1 —tg
the length of a phase ¢. Combining elements from the proofs
of Garivier & Moulines (2011) and that of Theorem 1, we
first provide an upper bound on E[N ,f | for any suboptimal
arm k during the phase ¢ as
¢, 7
]E[N¢] <21+ % jj_ +c +cf27+cf; .

In this decomposition we define Ai’T = b¢ log(7) for some

constant bi > 0, along with the terms ci’l, cf’z and ck 35

which all represents a different technical aspect of the regret
decomposition of SW-LB-SDA. Before interpreting them
we start with their formal definition,

Te+1—2

> (g A)]|

r=r¢+27—2
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r=r¢+27—2

1 ([r(r) = k:;,D,:(r) = 1) ,
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r=r¢+2T7—2
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where G] (r, n) is equal to

{k € Apyr, 07 (r) = ki, N (1) > n, Di(r) = 0} .

Bounding individual terms The three terms have intu-
itive interpretation and summarize well the technical contri-
butions behind Theorem 3. To some extent they all rely on
the notion of saturated arms defined in Section 3.3 and that
we refine in Appendix C for the problems considered in this
section (mainly by properly tuning A‘,f’T in the theoretical
analysis).

First, cf{ is an upper bound on the expectation of the num-

ber of times a saturated suboptimal arm can defeat the opti-
mal leader (i.e £7(r) = k). To prove this result we establish
a new concentration inequality for Last-Block Sampling in
the context of SW-LB-SDA.

The second term c¢ 5 controls the probability that the diver-

sity flag is actlvated When the optimal arm k7 is the leader.
We prove that if this event happen, then k7 has necessarily
lost at least one duel against a saturated sub-optimal arm,
and that this event has only a low probability.

The term ci 3 is the most difficult to handle, the main chal-

lenge is to upper bound the probability that the optimal arm
is not saturated after a large number of rounds.

In Appendix C we provide the complete analysis of each of
these terms and a full description of all the technical results
that led to Theorem 3.

5. Experiments

Limiting the storage in stationary environments. In
our first experiment' reported on Figure 3, we compare
LB-SDA and LB-SDA-LM on a stationary instance with
K = 2 arms with Bernoulli distributions for a horizon
T = 10000. We add natural competitors (Thompson Sam-
pling (Thompson, 1933), kI-UCB (Cappé et al., 2013)),
that know ahead of the experiment that the reward distri-
butions are Bernoulli and are tuned accordingly. The arms
satisfy (u1, pe) = (0.05,0.15) with a gap A = 0.1. We
run LB-SDA-LM with a memory limit m,. = log(r)? + 50,
which gives a storage ranging from 50 to 150 samples (much
smaller than the horizon T = 10000). The regret are aver-
aged on 2000 independent replications and the upper and
lower quartiles are reported. In this setup LB-SDA-LM
performs similarly to KL-UCB, and the impact of limiting
the memory is mild, when compared to LB-SDA. This il-
lustrates that even with relatively small gaps (here 0.1), a
substantial reduction of the storage can be done with only
minor loss of performance with LB-SDA-LM.

'"The code for obtaining the different figures reported in
the paper is available at https://github.com/YRussac/
LB-SDA.
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Figure 2. Evolution of the means: Left, Bernoulli arms (Fig. 4); Right, Gaussian arms (Figs. 5 and 6).
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Figure 3. Cost of storage limitation on a Bernoulli instance. The
reported regret are averaged over 2000 independent replications.

Empirical performance in abruptly changing environ-
ments. In the second experiment, we compare differ-
ent state-of-the-art algorithms on a problem with K = 3
Bernoulli-distributed arms. The means of the distributions
are represented on the left hand side of Figure 2 and the
performance averaged on 2000 independent replications
are reported on Figure 4. Two changepoint detection al-
gorithms, CUSUM (Liu et al., 2017) and M-UCB (Cao
et al., 2019) are compared with progressively forgetting
policies based on upper confidence bound, SW-kIUCB and
D-kIUCB adapted from Garivier & Moulines (2011), or
Thompson sampling, DTS (Raj & Kalyani, 2017) and SW-
TS (Trovo et al., 2020). We also add EXP3S (Auer et al.,
2002) designed for adversarial bandits and our SW-LB-SDA
algorithm for the comparison. The different algorithms
make use of the knowledge of 7" and I'7.

To allow for fair comparison, we use for SW-LB-SDA, the
same value of 7 = 2,/T log(T') /Ty that is recommended
for SW-UCB (Garivier & Moulines, 2011). D-UCB uses the
discount factor suggested by Garivier & Moulines (2011),
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Figure 4. Performance on a Bernoulli instance averaged on 2000
independent replications.

1/(1 — ) = 4,/T/T'r. The changepoint detection algo-
rithms need extra information such has the minimal gap for
a breakpoint and the minimum length of a stationary phase.
For M-UCB, we set w = 800 and b = \/w/2log(2KT?)
as recommended by Cao et al. (2019) but set the amount
of exploration to v = /KT'rlog(T')/T following Besson
et al. (2020). In practice, using this value rather than the
theoretical suggestion from Cao et al. (2019) improved
significantly the empirical performance of M-UCB for
the horizon considered here. For CUSUM, « and h are
tuned using suggestions from Liu et al. (2017), namely
a = /T /Tlog(T/Tr) and h = log(T/T'r). On this
specific instance, using € = 0.05 (to satisfy Assumption 2
of Liu et al. (2017)) and M = 50 gives good performance.
For the EXP3S algorithm, following (Auer et al., 2002) the
parameters « and vy are tuned as follows: @ = 1/T and
v =min(1,/K(e + Trlog(KT)/((e — 1)T).

This problem is challenging because a policy that focuses on
arm 1 to minimize the regret in the first stationary phase also
has to explore sufficiently to detect that the second arm is
the best in the second phase. SW-LB-SDA has performance
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comparable to the forgetting TS algorithms and is the best
performing algorithm in this scenario. Note that both TS
algorithms use the assumption that the arms are Bernoulli
whereas SW-LB-SDA does not. SW-kIUCB performs better
than D-kIUCB performance and its performance closely

matches the one from the changepoint detection algorithms.

By observing the lower and the upper quartiles, one sees
that the performance of CUSUM vary much more than
the other algorithms depending on its ability to detect the
breakpoints. Finally, EXP3S, which can adapt to more
general adversarial settings, lags behind the other algorithms
in abruptly changing stochastic environments.
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Figure 5. Performance on a Gaussian instance with a constant stan-
dard deviation of o = 0.5 averaged on 2000 independent replica-
tions.

In the third experiment with I'r = 3 breakpoints, the K = 3
arms comes from Gaussian distributions with a fixed stan-
dard deviation of ¢ = 0.5 but time dependent means. The
evolution of the arm’s means is pictured on the right of
Figure 2 and Figure 5 displays the performance of the al-
gorithms. CUSUM and M-UCB can not be applied in this
setting because CUSUM is only analyzed for Bernoulli dis-
tributions and M-UCB assume that the distributions are
bounded. Even if no theoretical guarantees exist for Thomp-
son sampling with a sliding window or discount factors,
when the distribution are Gaussian with known variance,
we add them as competitors. The analysis of SW-UCB
and D-UCB was done under the bounded reward assump-
tion but the algorithms can be adapted to the Gaussian
case. Yet, the tuning of the discount factor and the slid-
ing window had to be adapted to obtain reasonable perfor-
mance, using 7 = 2(1 + 20)+/T log(T")/T'r for D-UCB
andy=1-1/(4(1 + 20))+/T'r/T for SW-UCB (consid-
ering that, practically, most of the rewards lie under 1 4 20).
For reference, Figure 5 also displays the performance of the
UCBI algorithm that ignores the non-stationary structure.
Clearly, SW-LB-SDA, in addition of being the only algo-
rithm analyzed in this setting with unbounded rewards, also

has the best empirical performance.
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Figure 6. Performance on a Gaussian instance with time dependent
standard deviations averaged on 2000 independent replications.

Changes affecting the variance. The last experiment fea-
tures the same Gaussian means but with different standard
errors. The standard error takes the values 0.5,0.25, 1 and
0.25, respectively, in the four stationary phases. The al-
gorithms based on upper confidence bound are given the
maximum standard error o = 1, whereas SW-LB-SDA is
not provided with any information of this sort. Figure 6
shows that the non-parametric nature of SW-LB-SDA is ef-
fective, with a significant improvement over state-of-the-art
methods in such settings.
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