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Abstract

Efficient low-variance gradient estimation en-
abled by the reparameterization trick (RT) has
been essential to the success of variational au-
toencoders. Doubly-reparameterized gradients
(DREGSs) improve on the RT for multi-sample
variational bounds by applying reparameteriza-
tion a second time for an additional reduction in
variance. Here, we develop two generalizations of
the DREGs estimator and show that they can be
used to train conditional and hierarchical VAEs
on image modelling tasks more effectively. First,
we extend the estimator to hierarchical models
with several stochastic layers by showing how to
treat additional score function terms due to the
hierarchical variational posterior. We then gener-
alize DREGs to score functions of arbitrary dis-
tributions instead of just those of the sampling
distribution, which makes the estimator applica-
ble to the parameters of the prior in addition to
those of the posterior.

1. Introduction

In probabilistic machine learning we often optimize expec-
tations of the form Ly 9 = Ey, (2 [fp.6(2)] W.r.t. to their
parameters, where f ¢(2z) is some objective function, and
¢ and 0 denote the parameters of the sampling distribution
¢¢(z) and other (e.g. model) parameters, respectively. In
the case of the influential variational autoencoder (VAE,
Kingma & Welling (2014), Rezende et al. (2014)), g4 (2) is
the variational posterior, @ denotes the model parameters,
and L4 g is typically either the ELBO (Jordan et al., 1999;
Blei et al., 2017) or IWAE (Burda et al., 2016) objective.

In most cases of interest, this expectation is intractable,
and we estimate it and its gradients, V4L and VgL, using
Monte Carlo samples z ~ ¢¢(z). The resulting gradient
estimators are characterized by their bias and variance. We
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usually prefer unbiased estimators as they tend to be better-
behaved and are better understood. Lower variance is also
preferable because it enables faster training by allowing
using higher learning rates.

In this paper, we address gradient estimation for continuous
variables in variational objectives. A naive implementation
of VL results in a score function, or REINFORCE, esti-
mator (Williams, 1992), which tends to have high variance;
however, if fy ¢(2) depends on ¢ only through z, we can
use reparameterization (Kingma & Welling, 2014; Rezende
et al., 2014) to obtain an estimator with lower variance by
replacing the score function estimator of the gradient with a
pathwise estimator.

In variational inference, fy ¢(2) typically depends on ¢ not
only through z but also through the value of the log den-
sity log gs(2). Then, the gradient estimators still involve
the score function V¢ log g4 (2) despite using reparame-
terization. Roeder et al. (2017) propose the sticking the
landing (STL) estimator, which simply drops these score
function terms to reduce variance. Tucker et al. (2019) show
that STL is biased in general, and introduce the doubly-
reparameterized gradient (DREGs) estimator for IWAE
objectives, which again yields unbiased lower-variance gra-
dient estimates. This is achieved by applying reparameteri-
zation a second time, targeting the remaining score function
terms.

However, the DREGs estimator has two major limitations:
1) it only applies to latent variable models with a single la-
tent layer; 2) it only applies in cases where the score function
depends on the same parameters as the sampling distribu-
tion. In this work we address both limitations. Moreover,
we show that for hierarchical models with several stochastic
layers, gradients that look like pathwise gradients can actu-
ally contain additional score function gradients that are not
doubly reparameterizable. Despite this, we show that we
can still obtain a simple estimator with a sizable reduction
in gradient variance for hierarchical IWAE objectives.

Our main contributions are:

o We extend DREGs to hierarchical models;

o We introduce GDREGs, a generalization of DREGs to
score functions that depend on a different distribution
than the sampling distribution;
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e We show how to implement all proposed gradient estima-
tors using automatic differentiation frameworks;

e We evaluate the proposed DREGs and GDREGs estima-
tors on several conditional and unconditional unsuper-
vised learning problems and find that they outperform the
regular IWAE estimator.

2. Background

In this work we are interested in computing gradients of
variational objectives of the form

=E.ngy(z) [fo.0(2)] €]

w.r.t. the variational parameters ¢ of the sampling distri-
bution ¢4 (z), and parameters 8 of a second distribution
pe(z), such as a learnable prior. Here fy ¢(2) is a general
function of z that can also explicitly depend on both g (2)
and pg(z). More precisely, we wish to compute

Lo

Ve'Leo and  VLyo, 2)
where VIP denotes the total derivative, which we explicitly
distinguish from the partial derivative V..

Arguably the simplest objectives of this form are the neg-
ative entropy L3’y = E._g, () [log ¢¢(2)] and negative
cross-entropy E 50 = Ezugy(z) [logpe(2)].

Importance weighted autoencoders. Another such ob-
jective is the importance weighted autoencoder (IWAE)
bound (Burda et al., 2016). For a VAE with likelihood
pa(x|z), (learnable) prior pg(z), and variational posterior
(or proposal) g (2|x) the IWAE bound with K importance

Po (2x)pa(z|2k)

29 (z2]2) is given by

weights wy, =

'CIWAE - zl,...,zKNq¢(z|:1:) |:1Og (% Zf:l wk):| . (3)

Eq. (3) reduces to the regular ELBO objective for K = 1
(Rezende et al., 2014; Kingma & Welling, 2014),

EELBO = By (zla) [log psédz)zg:)\z)} ) 4)
Burda et al. (2016) showed that using multiple importance
samples (K > 1) provides the model with more flexibility
to learn richer representations (fewer inactive units), and
results in better log-likelihood estimates compared to VAEs
trained with the single sample ELBO. The estimators dis-
cussed in this paper build on these results and lead to further
improvements. While we focus on the IWAE objective, our
proposed GDREGs estimator applies generally.

Gradient estimation. In practice, the expectation in
Eq. (1) and its gradients are intractable, so we approxi-
mate them using Monte Carlo sampling, which makes the
estimates of the objective and its gradients random variables.

The resulting gradient estimators will be unbiased but have
non-zero variance. We prefer estimators with lower vari-
ance, as they enable fast training by allowing higher learning
rates.

We can distinguish between two general types of gradi-
ent estimators in this setting: (i) score function estimators
and (ii) pathwise estimators. Score functions are gradi-
ents of a log probability density w.r.t. its parameters, such as
V ¢ 10g g4 (z); they treat the function fy () as a black box
and often yield high variance gradients. In contrast, pathwise
estimators move the parameter-dependence from the prob-
ability density into the argument 2 of the function fy ¢(2)
and derive the computation path to often achieve lower vari-
ance gradients by using the knowledge of V. f4 6(2); see
Mohamed et al. (2020) for a recent review.

When computing gradients of the objective L4 g we have
to differentiate both the sampling distribution of the expec-
tation, g (%), as well as the function fg ¢(2),

VEDEq¢(z) [f¢ G(z)] -

(5)
=Eyy(2) [V Ln0(2) + fo.0(2) Vg 10g4s(2)]
Ve Eqy(z) [f5,0(2)] = Eg,(2) [VaSse(z)] (6)

and both can give rise to score functions. To see
that all of the underlined terms indeed contain score
functions, note that we can rewrite Vgfso(z) as
Vo fe0(z) = Viegqy(z)fo.0(2)Vglogqe(z) and simi-
larly for Vg fg.6(2) = Viegpe(z) fo.0( QW\BVB log pe(z).

In the following we recapitulate how to address the score
functions w.r.t. ¢ in Eq. (5) using the reparameteriza-
tion trick and doubly-reparameterized gradients (DREGs,
Tucker et al. (2019)), respectively. In Sec. 4 we introduce
GDREGs, a generalization of DREGS, that eliminates the
score function w.r.t. @ in Eq. (6).

Reparameterization. We can use the reparameterization
trick (Kingma & Welling, 2014; Rezende et al., 2014) to turn
the score function V4 log g4 (2) inside the expectation in
Eq. (5) into a pathwise derivative of the function fy g(2) as
follows: we express the latent variables z ~ g4(2) through
a bijection of new random variables € ~ ¢(€), which are
independent of ¢,

z=T,(e¢) < e=

T, (21 9). (7)

This allows us to rewrite expectations W.r.t. ge(z) as
Egs(2) [f0.0(2)] = Eqe) [f4.0(T4 (€ ¢))], which moves
the parameter dependence into the argument of fy () and
gives rise to a pathwise gradient:

Ve Eqy(2) [fo.0(2)] = Eqe) [V, ,,£52+ -
+sz¢ 9( )V¢T )-I (e;0)°




Generalized Doubly-Reparameterized Gradient Estimators

In Sec. 3 we discuss that this seemingly pathwise gradient
in Eq. (8) can actually contain score functions for more
structured or hierarchical models and explain how to extend
DREGs to this case. For the remainder of this section we
restrict ourselves to simple (single stochastic layer) models.

Double reparameterization. Tucker et al. (2019) fur-
ther reduce gradient variance by replacing the remaining
score function in the reparameterized gradient Eq. (8),

Volpolz) = Vieas(2)f6.0(2) Y 10894(2), with its

reparameterized counterpart. Double reparameterization is
based on the identity Eq. (9) (Eq. 5 in Tucker et al. (2019)),

Ezrgy(z) [96.6(2)Velogge(z)] =
= Eewq(e) |:v£Dg¢,9(z) |z:7—q(€;¢) V¢7:1 (6; ¢):| (9)
= Earsgy (o) V96,0 (26 T3 (60) |,y (1100 [10)

which follows from the fact that both the score function
and the reparameterization estimators are unbiased and
thus equal in expectation. This identity holds for arbitrary
9,0(2); to match the score function in Eq. (8) with the LHS
of Eq. (9), we have to choose g¢.6(z) = Viog 40(z)f0.0 (2).

In Eq. (10) we have rewritten the expectation over € ~ ¢(€)
in terms of 2z ~ ¢g(2), as this will become useful for our
later generalization. Note how, to compute the pathwise
gradient, the sample z is mapped back to the noise variable
€ =T, (z0). VgT, (€, ) is also sometimes written as
Vez(€; @) (Tucker et al, 2019).

Gradient estimation for the IWAE objective. For the
IWAE objective Eq. (3), Tucker et al. (2019) derived the
following doubly-reparametererized gradients (DREGS) es-
timator, which supersedes the previously proposed STL
estimator (Roeder et al., 2017):

VEOLys® = Y iV loguiVeT(er: ) (1)
VUSTLLIVAE — S8 @y VIP log wy Ve Ty(er; ) (12)

Wi
and €1.x ~ ¢(€). While the DREGs estimator doubly-
reparameterizes the score function in Eq. (8), the STL es-
timator simply drops it and is biased as a result. Crucially,
because DREGS relies on reparameterization, it is limited to
score functions of the sampling distribution ¢4 (2z), making
it inapplicable in the more general setting of arbitrary score
functions, such as Ey, (») [Ve f4,6(2)] in Eq. (6).

with normalized importance weights wy, =

3. DREGsSs for hierarchical models

We now show that for models with hierarchically structured
latent variables even terms that look like pathwise gradi-
ents, such as V1P f4 ¢(2) in Eq. (8) or VP log wy, in the
DREGs or STL estimator for the IWAE objective Egs. (11)

and (12), can give rise to additional score functions. These
additional score functions appear because the distribution
parameters of one stochastic layer depend on the latent vari-
ables of another layer. Their appearance is contrary to the
intuition that doubly-reparameterized gradient estimators
only contain pathwise gradients.

3.1. An illustrative example

To illustrate this, consider a hierarchical model with two
layers where we first sample 22 ~ @g,(22) and then
21 ~ ¢¢,(21]22).! Note that the conditioning on 2 is
through the distribution parameters of g4, (21]22); to high-
light this dependence of z; on za, we rewrite gg, (21]|22) =
oy 3 (22,¢01) (21), where we explicitly distinguish between
the distribution parameters a3, such as the mean and co-
variance of a Gaussian, and the network parameters ¢, that
parameterize them together with the previously sampled
latent z5. A derivative w.r.t. 2z that looks like a pathwise

subsequent level:

Vi loggg, (21]22) = V12108 day y(20.00) (21)  (13)
= Va,,108 qam_(gl_)_vn041|2(ZQ7 d1)+.... (19

We omitted (true) pathwise gradients (... ), as the samples
z; also depend on z5 through reparameterization. Similar
additional score functions arise for seemingly pathwise gra-
dients of hierarchical or autoregressive priors and variational
posteriors.

3.2. Extending DREGs to hierarchical VAEs

Here we show how to extend DREGS to hierarchical VAEs
to effectively reduce gradient variance for the variational
posterior despite the results in the previous section. We still
consider the IWAE objective (Eq. (3)), but now the latent
space z is structured, and both pg and g are hierarchically
factorized distributions.

Let us consider a 2-layer VAE @ and ex-

amine the term Vgg log ge, ¢, (21, 22), which appears in
the total derivative of the IWAE objective, as a concrete
example. We have sampled z; and z5 hierarchically us-
ing reparameterization: z(¢2) = Ty, (€2; a2(¢p2)) and

21(¢1, @2) = Tg, (€15 1 2(22(P2), @1)):
(15)

When computing total derivatives w.r.t. parameters ¢, of
the upper layer, we distinguish between three types of gradi-
ents: the (true) pathwise gradients w.r.t. z; and z9, adirect
score function because the distribution parameters vz (¢)

!The subscript indices refer to the latent layer indices and not
to the importance samples in this case.
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cause the distribution parameter cvjj2(22(¢2), ¢1) indi-
rectly depends on ¢ through z5(¢2). Indirect score func-
tions do not arise in single stochastic layer models consid-
ered by Tucker et al. (2019), and we have three options to
estimate them: (1) leave them—this naive estimator is unbi-
ased but potentially has high variance; (2) drop them, simi-
lar to STL—this estimator is generally biased; (3) doubly-
reparameterize them using DREGs again—this estimator is
unbiased, but can generate further indirect score functions.

Total derivatives of other terms in the objective similarly
decompose into pathwise gradients as well as direct and
indirect score functions. Notably, this includes indirect score
functions of the prior log pe, e, (21, 22), to which DREGs
does not apply. In Sec. 4 we introduce the generalized
DREGs (GDREGs) estimator that applies in this case.

3.3. DREGs for hierarchical IWAE objectives

For IWAE objectives we find that the indirect score functions
come up twice: once when computing pathwise gradients
of the initial reparameterization, and a second time (with a
different prefactor) when computing pathwise gradients for
the double-reparameterization of the direct score functions.
The same happens for the (true) pathwise gradients, and it
is this double-appearance and the resulting cancellation of
prefactors that helps reduce gradient variance for DREGs.
Moreover, for general model structures it is impossible to
replace all successively arising indirect score functions with
pathwise gradients, even by applying GDREGs. For ex-
ample, when the prior and posterior do not factorize in the
same way, double-reparameterization of one continuously
creates indirect score functions of the other and vice versa,
see Apps. C and C.4 for more details.

Thus, to extend DREGs to hierarchical models, we leave the
indirect score functions unchanged and only doubly repa-
rameterize the direct score functions. The extended DREGs
estimator for IWAE models with arbitrary hierarchical struc-
tures is given by Eq. (20)

DREGs estimator for hierarchical IWAE
DREGSﬁIWAE 6{1:K}l ~ q(e) (20)

- Z wk‘vzkl log wkv¢l 771[ (Ekla al(pa‘ ( ) ?¢l))

where [ denotes the stochastic layer, pa,(l) is the set
of latent variables that zj; depends on, and zy =
T (€r1; 0 (pag (1) , ¢p)) through reparameterization. We
provide a detailed derivation in App. C and a worked ex-
ample for a VAE with two stochastic layers in App. D. In
Apps. E and E.1 we show how to implement this estimator
using automatic differentiation by using a surrogate loss
function, whose forward computation we discard, but whose
backward computation exactly corresponds to the estimator
in Eq. (20). Alternatively, one could implement a custom
gradient for the objective that directly implements Eq. (20);
however, we found our approach using a surrogate loss func-
tion to be simpler both conceptually and implementation-
wise.

Roeder et al. (2017) apply the STL estimator to hierar-
chical ELBO objectives but do not discuss indirect score
functions. Their experimental results are consistent with
maintaining the indirect score functions, similar to how we
extend DREGs to hierarchical models; the STL estimator
is biased for IWAE objectives (Tucker et al., 2019).

4. Generalized DREGs

Here, we generalize DREGs to score functions that in-
volve distributions pg(z) different from the sampling
distribution g (2), as in Eq. (6). In other words, we
would like to replace score function terms of the form
Eq,(2) [94.6(2)Velogpe(2)] with doubly-reparameterized
pathwise gradients. Such terms appear, for example, when
training a VAE with a trainable prior pg(z) with the ELBO
or IWAE objectives. DREGs cannot be used directly in this
case as it relies on reparameterization of the sampling distri-
bution g4 (2), so that the path depends on the parameters ¢,

GDREGs identity
Ezmgy(z)9¢.6(2)Valogpe(z)] = Ezng,(2) [(gqb,e( )V log Z‘Séi +VPge0(z ))%7;(%; 0) gzrl(z,g)] (16)
® = ® T, (& ~
VIPEq, () 196.0(2)] 2 VIPEyy ) [ 2 00.0(2)| £ VPR [202E 000(T,(€0)] ;4@ =N (O,T) (1)
DBy [VI° (2£59(2) VoTo(@6) + 23 (Vogsa(2) — (=) Vologra(a))] (18)
DB, 0| (9(2) VTP log 912 1+ VPg(2)) VoTy(& 0) oy (ns0) + Voupo(z) — () Vologpa(z)]  (19)

Figure 1: The GDREGs identity and a brief derivation in three steps: (1) femporarily change the path so that it depends on ;
@ perform the reparameterized gradient computation; (3) change the path back so we can use samples z ~ g4 (2) to estimate
the expectation. See App. A for details and an alternative derivation using the change of density formula.
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2D (€; p) ————> €(€; 9, 0)

Tq(€;.9) T, (2;6)

> ¢ > ~(P) (¢
stop_grad € # (670)]

T»(€;0)

29 ~ gy(2)

re-express z'9 as if sampled from po(z)

Figure 2: Computational flow to re-express a sample z from g4(2) as if it were sampled from pg(z). Its numerical
value and distribution remain unchanged but the pathwise gradient through it now depends on 8: Vo7, (€;0)|._1—1 (2,0)"

e="T,

P

whereas the score function is with w.r.t. parameters 6 of a
different distribution pg(z).

To make progress we need to make the path depend on the
parameters @ while still sampling z ~ ¢ (z) during train-
ing. Our solution consists of three steps (also see Fig. 1):

(®) temporarily change the path so that it depends on 6,
(@ perform the reparameterized gradient computation;

® change the path back so we can use samples z ~ g4 (2)
to estimate the expectation.

We change the path by first using an importance sam-
pling reweighting to temporarily re-write the expectation,

_ (2)
Eoy(z) 4] = Epg(z) Zﬁ(z)

rameterization on the new sampling distribution pg(z):
z = T,(€;0) with € ~ q(€). Following this recipe, we
derive the gradient identity in Eq. (16) for general g4 o(2)
that we refer to as generalized DREGs (or GDREGs for
short) identity.

Like DREGs (Eq. (10)), GDREGs allows us to transform
score functions into pathwise gradients. Yet, unlike DREGs,
GDREGs applies to general score functions and contains
a correction term that vanishes when pg(z) and g4 (z) are

identical (log g‘;’g;; term in Eq. (16)).

*} , and then employing repa-

Note that the pathwise derivative V¢7,(€; 0) in Eq. (16)
looks like we reparameterized an independent noise vari-
able € using pg(z), where the numerical value of the noise
variable is given by € = 7,7!(2; 0) and z ~ g¢(z). We can
interpret this sequence of transformations as a normalizing
flow (Rezende & Mohamed, 2015) z — € — z, such that
Tp(€6) = T,(T, '(2;0);0) = z. We can think of this
procedure as re-expressing the sample z ~ qg(2) as if it
came from pg(z): Its numerical value z remains unchanged
and it is still distributed according to g4(z), yet its path-
wise gradient Vg7,(€; ) depends on 6. We illustrate the
corresponding computational flow in Fig. 2 and provide an
example implementation with code in App. F

Note that to derive the GDREGS identity, we only require
pe(z) to be reparameterizable ((___J in Fig. 2). While
¢¢(z) may be reparameterizable as well ( in Fig. 2),
this is not necessary; we only need to be able to evaluate its
density in Eq. (16).

L(T,(€; @); 0) follows a different, usually more complex, distribution from € ~ g(e).

In the simplest case of the cross-entropy objective £ =
Eq, (2 [log pe(2)] (as in the ELBO with a sample-based KL
estimate), g 9(z) = 1, and the GDREGs identity Eq. (16)
gives rise to the following GDREGs estimator:

VPR cee WEVeT(@0) @D

=V_.log e T (20)

with z ~ ¢4(2). For Gaussian distributions g¢(z) and
pe(z), the cross-entropy and its gradients can be computed
in closed form, which we can think of as a perfect estimator
with zero bias and zero variance. Moreover, the expectation
and variance of both the naive score function as well as the
GDREGs estimator in Eq. (21) can be computed in closed
form. We provide full derivations and a discussion of this
special case in App. H as well as an example implementation
in terms of (pseudo-)code in App. F. The main results are:
(1) GDREGS has lower variance gradients than the score
function when ¢4 (z) and pg(z) overlap substantially, which
is typically the case at the beginning of training; (ii) we can
derive a closed-form control variate that depends on a ratio
of the means and variances of the two distributions and
that is strictly superior to the naive score function estimator
and the GDREGs estimator in terms of gradient variance.
However, the analytic expression for the cross-entropy has
even lower (zero) gradient variance in this case.

4.1. GDREGsS for VAE objectives

We can now use the GDREGs identity Eq. (16) to de-
rive generalized doubly-reparameterized estimators for
expectations of general score functions of the form
Eq,(z) [94.0(2)Velogpe(2)], also see Eq. (6). In App. B
we derive the following GDREGs estimator of the IWAE
objective w.r.t. the prior parameters 0:

— GDREGs estimator for IWAE
TgoREs LINAE — S (15, log p () —

~2v—TD € (22)
_ kaZk lOg wk)ven(ek’ 0)‘gk:7’p_l(zk,9)

with z1.x ~ g4 (2|2). The second term in Eq. (22) looks
like the DREGs estimator for ¢ in Eq. (11) except that the
samples zy, are now re-expressed as if they came from pg(z).
In addition we obtain a term that involves the likelihood
pa(x|z) and is linear in wy. Note that we do not apply
GDREGs to the likelihood parameters A because py (x|z)
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(

€ 24" (€ 9) >

7:12\1(62;a2\1(z17¢2)) 7;7;1(22;,32(92))

@ 217 (€ ) >

Tas (€15 1 (b1))

7;1\12 (215 B1)2(22,61))

\

z (e¢) 0) stop_grac{ c ) 20
A P T @ 2 (€0
. stop_grad __

€i(e;9,0) > € > z§p)(E; 0)

Tp1)2 (€15 B1)2(22,61))

Zid)-,zr(_}Q) - (I¢>(Zl-,22)

re-express z,

(Q), zé(n as if sampled from pg(z1, 2z2)

Figure 3: Computational flow to re-express samples z1, z2 from gg (21, 22) = ¢g, (21)3¢, (22]|21) as if they were sampled
from pg(z1, z2) = pe,(22)pe, (z1|z2). Their numerical values and distribution remain unchanged but the gradient flow
through them changes. Note that €; follows a different, usually more complex, distribution from €;. «; and 3; denote the
distribution parameters of the variatonal posterior and the prior, respectively.

is a distribution over «x rather than z; in the following we
therefore drop the subscript A.

We learn all parameters by optimizing the same objective
function Eq. (3), but employ different gradient estimators for
different subsets of parameters. In practice, we implement
these estimators using different surrogate objectives for
the likelihood, proposal, and prior parameters, see App. E
for details. While separate objectives seem computationally
expensive, most terms are shared between them, and modern
frameworks avoid such duplicate computation. In practice,
we found the runtime increase for training with DREGs and
GDREGs estimators to be smaller than 10% without any
optimization of the implementation.

4.2. Extending GDREGs to hierarchical VAEs

When extending GDREGs to hierarchical models, we again
encounter direct and indirect score functions (see Sec. 3).
Like for the posterior parameter ¢ we apply GDREGs to
the direct score functions but leave the indirect score func-
tions unchanged. The full GDREGs estimator for IWAE
objectives with arbitrary hierarchial structure is given in
App. C Eq. (C.16), see App. C for a derivation. In App. D
we provide a worked example and in App. E we again show
how to use surrogate losses to implement the estimator in
practice.

To apply GDREGs we need to re-express samples from
¢e(z) as if they came from pg(z). We do this for the
entire hierarchy jointly. In Fig. 3 we illustrate the nec-
essary computational flow for the example of a 2-layer VAE
with the variational posterior factorized in the opposite di-
rection from the generative process; see App. C for the
general case. We draw samples 21,22 ~ ¢¢(21,22) =
41 (21)qg, (22]21) (by transforming independent variables
€;) and then re-express them as if they were sampled from
the prior pg, (z2)pe, (21|22), which factorizes in the oppo-
site direction. While the numerical values of z; and z9
remain unchanged, z; is now dependent on 2z, and both
depend on the respective @ parameters when computing gra-
dients; we can view (z1, z2) as samples that were obtained
by transforming independent variables (€1, €2) that follow

a more complicated distribution than (€1, €2). As in the
single-layer case, only pg(z) needs to be reparameterizable.

5. Experiments

In this section we empirically evaluate the hierarchical ex-
tension of DREGs and its generalization to GDREGs, and
compare them to the naive IWAE gradient estimator (la-
belled as IWAE) as well as STL (Roeder et al., 2017). First,
we illustrate that DREGs and GDREGs increase the gradi-
ent signal-to-noise ratio (SNR) and reduce gradient variance
compared to the naive estimator on a simple hierarchical
example (Sec. 5.1); second, we show that they also reduce
gradient variance in practice and improve test performance
on several generative modelling tasks with VAEs with one
or more stochastic layers (Sec. 5.2). We highlight that both
the extension of DREGs to more than one stochastic layer
as well as training the prior with GDREGS are novel contri-
butions of this work.

5.1. Illustrative example: linear VAE

We first consider an extended version of the illustrative
example by Rainforth et al. (2018) and Tucker et al. (2019)
to show that hierarchical DREGs and GDREGs increase
the gradient signal-to-noise ratio (SNR) and reduce gradient
variance compared to the naive IWAE gradient estimator.

We consider a 2-layer linear VAE with hierarchical prior
zo ~ N(0,I), z1|za ~ N(ue(z2),05(22)), Gaussian
noise likelihood x|z; ~ N(z1,I), and bottom up vari-
ational posterior g, (z1]z) = N(pg, (), 03 (z)) and
¢, (22l21) = N(pe,(21),03,(21)). All p; and o; are
linear functions, and 2, zo,z € RP. We sample 512
datapoints in D = 5 dimensions from a model with
po(z2) = zo and og(z2) = 1. We then train the parame-
ters ¢ and 0 using SGD and the IWAE objective til conver-
gence and evaluate the gradient variance and signal-to-noise
ratio for each estimator. For the proposal parameters ¢ we
compare DREGs to the naive score function (labelled as
IWAE) and to STL; for the prior parameters 8 we compare
GDREGs to IWAE.
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Figure 4: Average gradient variance (left) and signal-to-
noise ratio (SNR) (right) for the proposal parameters ¢
(top) and the prior parameters 6 (bottom).

We find that our extension of DREGs to hierarchical mod-
els behaves qualitatively the same as in the single layer
case considered by Tucker et al. (2019), see Fig. 4 (top):
While the SNR for the naive estimator vanishes with increas-
ing number of importance samples, the SNR increases for
DREGs. This can be explained by the faster rate with which
the gradient variance decreases for DREGs compared to
IWAE and STL. While STL has an even better SNR, its
gradients are biased.

When considering gradients w.r.t. the prior parameters we
find that the SNR is higher and the gradient variance is lower
for GDREGs compared to the naive estimator IWAE), see
Fig. 4 (bottom). However, they grow and shrink at the
same rate for both estimators as the number of importance
samples is increased.

5.2. Image modelling with VAEs

In the remainder of this paper we consider image modelling
tasks with VAEs on several standard benchmark datasets:
MNIST (LeCun & Cortes, 2010), Omniglot (Lake et al.,
2015), and FashionMNIST (Xiao et al., 2017). We use
dynamically binarized versions of all datasets to minimize
overfitting.

We consider both single layer and hierarchical (multi-layer)
VAESs and evaluate them on unconditional and conditional
modelling tasks using the IWAE objective, Eq. (3). In the
hierarchical case, the generative path (prior and likelihood)
is top-down whereas the variational posterior is bottom-up,
see Fig. 5 and Eq. (23) for a full description of the model
and a 2-layer unconditional example. For conditional mod-
elling we predict the bottom half of an image given its top
half, as in Tucker et al. (2019); in this case, both the prior
and variational posterior also depend on a context variable

L
@ q¢(zlx, €) = q¢, (z1]T, C) Han (z1)z1-1, 2, €)

\ é*\\ """ > =2

b 1 L—1

@/’ pe(z|c) = pe, (zLlc) 11;[1 pe,(z1|z141,¢)
v

A(wlz) :p)\(w|zla"'7ZL) (23)

- 5

)

Figure 5: Model specification and 2-layer example for con-
ditional and unconditional image modelling.

¢, q¢(z|z, ¢) and pe(z|c), respectively. We use a factor-
ized Bernoulli likelihood along with factorized Gaussians
for the variational posterior and prior. Every conditional
distribution in Eq. (23) is parameterized by an MLP with
two hidden layers of 300 tanh units each, and all latent
spaces have 50 dimensions. Unless stated otherwise, we
train all models for 1000 epochs using the Adam optimizer
(Kingma & Ba, 2015) with default learning rate of 3 - 1074,
a batch size of 64, and K = 64 importance samples; see
App. G for details.

As mentioned in Sec. 4.1, we use separate surrogate objec-
tives to compute the gradient estimators for the likelihood,
posterior, and prior parameters. While we always train the
likelihood parameters A on the naive IWAE objective, we
consider the naive IWAE estimator (labelled as IWAE),
STL, and DREGs for the variational posterior parameters
¢, and IWAE and GDREGs for the prior parameters 8. See
App. E for details on the implementation of the estimators.
We present the results for conditional modelling in Tab. 1
and Fig. 6, and for unconditional modelling in Tab. 2 and
Fig. 7; see App. G for more experimental results.

Estimators for the variational parameters ¢. First, we
evaluate the choice of estimator for the parameters of g4 (2).
Like Tucker et al. (2019) for the single layer case, we find
that our extension of DREGs to hierarchical models leads to
a dramatic reduction in gradient variance for the variational
posterior parameters ¢ on all tasks (third column in Figs. 6
and 7), which translates to an improved test objective in
all cases considered. DREGs is unbiased and typically
outperforms the (biased) STL estimator. We also observed
similar improvements on the training objective.

Estimators for the prior parameters 8. Second, we con-
sider the estimators for the 8 parameters of the prior pg(z).
Using the GDREGs estimator instead of the naive IWAE
estimator consistently improves the train and test objec-
tive when combined with any estimator for the variational
posterior, especially for conditional image modelling with
deeper models. For unconditional image modelling the im-
provements are only marginal, though using GDREGs never
hurts. In terms of gradient variance for the prior parameters
6, GDREGS consistently performs better in the beginning of
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estimator V', IWAE STL DREGs
estimator V;° IWAE GDREGs IWAE IWAE IWAE GDREGs
MNIST 1layer —38.77+o0.01 —38.71+0.02 —38.76+0.03 —38.68+0.03 —38.50+0.01 —38.44+0.01
2 layer  —38.55+0.02 —38.42+0.03 —38.24+0.02 —38.14+0.02 —38.20+0.01 —38.02+0.02
Jlayer  —38.63+0.01 —38.44+0.02 —38.20+0.01 —38.10+0.02 —38.20+0.01 —38.04+0.01
Omniglot 1layer —55.84+0.02 —55.66+0.03 —55.80+0.05 —55.62+0.05 —55.34+0.02 —55.24+40.02
2layer  —55.27+0.03 —54.98+0.02 —54.66+0.03 —54.28+0.02  —54.73+0.02 —54.36+0.03
3layer  —55.35+0.02 —54.93+0.02 —54.64+0.03 —54.21+0.03 —54.72+0.02 —54.28+0.02
FMNIST 1layer —102.84+0.02 —102.80+0.02 —102.99+0.02 —102.88+0.02 —102.614+0.01 —102.58+0.01
2layer —102.7440.02 —102.68+0.01 —102.65+0.02 —102.48+0.03 —102.40+0.01 —102.30+0.02
3layer —102.86+0.01 —102.71+0.01 —102.68+0.01 —102.42+0.02 —102.46+0.01 —102.26+0.01

Table 1: Test objective values (higher is better) on conditional image modelling with a VAE model trained with IWAE.
Higher is better; errorbars denote + 1.96 standard errors (o/ \/5) over 5 reruns.
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Figure 6: Conditional image modelling of MNIST with a VAE with 1 layer (top) and 2 layers (bottom). Shaded areas denote

=+ 1.96 standard deviations o over 5 reruns.

training, when it always has lower variance. However, later
in training this is only consistently true when also using the
DREGs estimator for the variational posterior parameters ¢.
We hypothesize that the GDREGs estimator yields larger
improvements for conditional modelling because the prior
and posterior distribution are closer to each other due to
the conditioning, and we saw that GDREGs works partic-
ularly well in this case for Gaussian distributions, also see
App. H. To quantify this “closeness” we compared the KL,
of the variational posterior to the prior on the same dataset
and found it to be about twice as large for unconditional
modelling than for conditional modelling, see App. G.

We also note that the gradient variance for the prior param-
eters @ is higher when using the DREGs estimator for the
variational posterior parameters ¢, compared to the naive
IWAE estimator (compare orange and blue lines in the mid-
dle column of Figs. 6 and 7). This is an indirect effect of
altered learning dynamics. We suspect that better posterior
gradient estimates with DREGs lead to generative models

that fit the data better, which in turn results in larger gradient
variance for the prior. This effect is absent in the illustrative
example in Fig. 4 because we evaluate the gradient variance
on the same fixed model for all estimators. In App. G.3 we
compare the estimators offline for different combinations
of estimators during training. The results are in line with
our online results in this section: for the gradients of the
variational posterior the DREGs estimator always has lower
variance than the naive (IWAE) estimator; for the gradi-
ents of the prior the GDREGs estimator typically has lower
variance, though in some cases only in the beginning of
training.

6. Related work

Roeder et al. (2017) observed that the reparameterization
gradient estimator for the ELBO contains a score function
term and proposed the STL estimator that simply drops
this term to reduce the estimator variance. They considered
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estimator V" IWAE STL DREGs
estimator V3" IWAE GDREGs IWAE GDREGSs IWAE GDREGs
MNIST 2layer  —86.07+0.02 —86.04+0.03 —85.29+0.02 —85.23+0.03 —85.25+0.02 —85.32+0.02
3layer  —85.69+0.02 —85.70+0.02 —85.01+0.03 —84.94+0.05 —84.87+0.03 —84.90+0.04
Omniglot 2 layer —105.20+0.02 —105.11+0.02 —104.10+0.05 —104.00+0.05 —104.124+0.05 —104.05+0.04
3layer —104.68+0.02 —104.714+0.03 —104.02+0.02 —103.55+0.03 —104.71+0.03 —103.51+0.06
FMNIST 2layer —230.65+0.03 —230.61+0.02 —230.14+0.02 —229.98+0.02 —230.04+0.03 —229.98+0.03
3layer —230.60+0.03 —230.59+0.03 —230.26+0.04 —229.92+0.03 —229.9240.02 —229.87+0.03

Table 2: Test objective values on unconditional image modelling with a VAE model trained with IWAE.

Prior VarV§° Ly 6
T T T T T T T

10—4 Posterior VarVE,Dﬁd,,e
6 T

9 jecti -

5 ‘Tes‘t one?tlv? L:‘qs,e‘ 103

& 23|

e

= —231

wn

P

Z 232

2 I I I I I | [ L
= 0 # epochs 1,000 0

- - = gg: IWAE + pp: IWAE q¢: DREGs + pg: INAE

# epochs

L
# epochs 1,000
q¢: DREGs + pg: GDREGs

‘ 0
1,000 0
—— ¢o: IWAE + pg: GDREGs

Figure 7: Unconditional image modelling on FashionMNIST; 3 layers.

hierarchical ELBO models but do not discuss how to treat in-
direct score functions. While the STL estimator is unbiased
for the ELBO objective, Tucker et al. (2019) showed that
it is biased for more general objectives such as the IWAE.
They proposed the DREGs estimator that yields unbiased
and low variance gradients for IWAE and resolves the dimin-
ishing signal-to-noise issue of the naive IWAE gradients first
discussed by Rainforth et al. (2018). We extend DREGs to
hierarchical models, discuss how to treat the indirect score
functions, and generalize it to general score functions by
introducing GDREGs.

Several classic techniques from the variance reduction litera-
ture have been applied to variational inference and reparame-
terization. For example, Miller et al. (2017) and Geffner &
Domke (2020) proposed control variates for reparameteriza-
tion gradients; Ruiz et al. (2016) used importance sampling
with a proposal optimized to reduce variance. Such ap-
proaches are orthogonal to methods such as (G)DREGs and
STL, and can be combined with them for greater variance
reduction (Agrawal et al., 2020).

7. Conclusion

In this paper we generalized the recently proposed doubly-
reparameterized gradients (DREGs, Tucker et al. (2019))
estimator for variational objectives in two ways. First, we
showed that for hierarchical models such as VAEs seem-
ingly pathwise gradients can actually contain score func-
tions, and how to consistently and effectively extend DREGs
in this case. Second, we introduced GDREGs, a doubly-
reparameterized gradient estimator that applies to general

score functions, while DREGs is limited to score functions
of the variational distribution. Finally, we demonstrated
that both generalizations can improve performance on con-
ditional and unconditional image modelling tasks.

While we present and discuss the GDREGs estimator in the
context of deep probabilistic models, it applies generally to
score function gradients of the form E, . [V log pe(2)].
Applying it to other problem settings of this type such as
normalizing flows is an exciting area of future research.
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