
Directional Graph Networks – Appendix 1

A. Appendix - Choices of directional aggregators
This appendix helps understand the choice ofBav andBdx in section 2.4 and presents different directional aggregators that
can be used as an alternative to the ones proposed.

A simple alternative to the directional smoothing and directional derivative operator is to simply take the forward/backward
values according to the underlying positive/negative parts of the field F , since it can effectively replicate them. However,
there are many advantage of using Bav,dx. First, one can decide to use either of them and still have an interpretable
aggregation with half the parameters. Then, we also notice that Bav,dx regularize the parameter by forcing the network
to take both forward and backward neighbours into account at each time, and avoids one of the neighbours becoming too
important. Lastly, they are robust to a change of sign of the eigenvectors since Bav is sign invariant and Bdx will only
change the sign of the results, which is not the case for forward/backward aggregations.

A.1. Retrieving the mean and Laplacian aggregations

It is interesting to note that we can recover simple aggregators from the aggregation matricesBav(F) andBdx(F). Let
F be a vector field such that all edges are equally weighted Fij = ±C for all edges (i, j). Then, the aggregator Bav is
equivalent to a mean aggregation:

Bav(F)x = D−1Ax

Under the condition Fij = C, the differential aggregator is equivalent to a Laplacian operator L normalized using the degree
D

Bdx(CA)x = D−1(A−D)x = −D−1Lx

A.2. Global field normalization

The proposed aggregators are defined with a row-wise normalized field

F̂i,: =
Fi,:

||Fi,:||LP

meaning that all the vectors are of unit-norm and the aggregation/message passing is done only according to the direction
of the vectors, not their amplitude. However, it is also possible to do a global normalization of the field F by taking a
matrix-norm instead of a vector-norm. Doing so will modulate the aggregation by the amplitude of the field at each node.
One needs to be careful since a global normalization might be very sensitive to the number of nodes in the graph.

A.3. Center-balanced aggregators

A problem arises in the aggregatorsBdx andBav proposed in equations 5 and 6 when there is an imbalance between the
positive and negative terms of F±. In that case, one of the directions overtakes the other in terms of associated weights.

An alternative is also to normalize the forward and backward directions separately, to avoid having either the backward or
forward direction dominating the message.

Bav−center(F)i,: =
F ′+i,: + F ′−i,:

||F ′+i,j + F ′−i,j ||L1

, F ′±i,: =
|F±i,: |

||F±i,: ||L1 + ε
(11)

The same idea can be applied to the derivative aggregator equation 12 where the positive and negative parts of the field
F± are normalized separately to allow to project both the forward and backward messages into a vector field of unit-norm.

1Due to the large size of some equations in the appendix, we keep the appendix in a single column format.

Directional Graph Networks – Appendix

F+ is the out-going field at each node and is used for the forward direction, while F− is the in-going field used for the
backward direction. By averaging the forward and backward derivatives, the proposed matrix Bdx-center represents the
centered derivative matrix.

Bdx-center(F)i,: = F ′i,: − diag

∑
j

F ′:,j


i,:

, F ′i,: =
1

2

 F+
i,:

||F+
i,:||L1 + ε︸ ︷︷ ︸

forward field

+
F−i,:

||F−i,: ||L1 + ε︸ ︷︷ ︸
backward field

 (12)

A.4. Hardening the aggregators

The aggregation matrices that we proposed, mainlyBdx andBav depend on a smooth vector field F . At any given node,
the aggregation will take a weighted sum of the neighbours in relation to the direction of F . Hence, if the field Fv at a node
v is diagonal in the sense that it gives a non-zero weight to many neighbours, then the aggregator will compute a weighted
average of the neighbours.

Although there are clearly good reasons to have this weighted-average behaviour, it is not necessarily desired in every
problem. For example, if we want to move a single node across the graph, this behaviour will smooth the node at every step.
Instead, we propose below to soften and harden the aggregations by forcing the field into making a decision on the direction
it takes.

Soft hardening the aggregation is possible by using a softmax with a temperature T on each row to obtain the field
Fsofthard.

(Fsofthard)i,: = sign(Fi,:)softmax(T |Fi,:|) (13)

Hardening the aggregation is possible by using an infinite temperature, which changes the softmax functions into
argmax. In this specific case, the node with the highest component of the field will be copied, while all other nodes will be
ignored.

(Fhard)i,: = sign(Fi,:)argmax(|Fi,:|) (14)

An alternative to the aggregators above is to take the softmin/argmin of the negative part and the softmax/argmax of the
positive part.

A.5. Forward and backward copy

The aggregation matricesBav andBdx have the nice property that if the field is flipped (change of sign), the aggregation
gives the same result, except for the sign ofBdx. However, there are cases where we want to propagate information in the
forward direction of the field, without smoothing it with the backward direction. In this case, we can define the strictly
forward and strictly backward fields below, and use them directly with the aggregation matrices.

Fforward = F+ , Fbackward = F− (15)

Further, we can use the hardened fields in order to define a forward copy and backward copy, which will simply copy the
node in the direction of the highest field component.

Fforward copy = F+
hard , Fbackward copy = F−hard (16)

A.6. Phantom zero-padding

Some recent work in computer vision has shown the importance of zero-padding to improve CNNs by allowing the network
to understand it’s position relative to the border (Islam et al., 2020). In contrast, using boundary conditions or reflection

Directional Graph Networks – Appendix

padding makes the network completely blind to positional information. In this section, we show that we can mimic the
zero-padding in the direction of the field F for both aggregation matricesBav andBdx.

Starting with the Bav matrix, in the case of a missing neighbour in the forward/backward direction, the matrix will
compensate by adding more weights to the other direction, due to the denominator which performs a normalization. Instead,
we would need the matrix to consider both directions separately so that a missing direction would result in zero padding.
Hence, we defineBav,0pad below, where either the F+ or F− will be 0 on a boundary with strictly in-going/out-going field.

(Bav,0pad)i,: =
1

2

(
|F+
i,:|

||F+
i,:||L1 + ε

+
|F−i,: |

||F−i,: ||L1 + ε

)
(17)

Following the same argument, we define Bdx,0pad below, where either the forward or backward term is ignored. The
diagonal term is also removed at the boundary so that the result is a center derivative equal to the subtraction of the forward
term with the 0-term on the back (or vice-versa), instead of a forward derivative.

Bdx−0pad(F)i,: =


F ′+i,: if

∑
j F
′−
i,j = 0

F ′−i,: if
∑
j F
′+
i,j = 0

1
2

(
F ′+i,: + F ′−i,: − diag

(∑
j F
′+
:,j + F ′−:,j

)
i,:

)
, otherwise

F ′+i,: =
F+
i,:

||F+
i,:||L1 + ε

F ′−i,: =
F−i,:

||F−i,: ||L1 + ε

(18)

A.7. Extending the radius of the aggregation kernel

We aim at providing a general radius-R kernel BR that assigns different weights to different subsets of nodes nu at a
distance R from the center node nv .

First, we decompose the matrixB(F) into positive and negative partsB±(F) representing the forward and backward steps
aggregation in the field F .

B(F) = B+(F)−B−(F) (19)

Thus, definingB±fb(F)i,: =
F±
i,:

||Fi,:||Lp , we can find different aggregation matrices by using different combinations of walks
of radius R. First demonstrated for a grid in theorem 2.4, we generalize it in equation 20 for any graph G.

Definition 4 (General radius R n-directional kernel). Let Sn be the group of permutations over n elements with a set of
directional fields Fi.

BR :=
∑

V={v1,v2,...,vn}∈Nn
||V ||L1≤R, −R≤vi≤R︸ ︷︷ ︸

Any choice of walk V with at mostR steps
using all combinations of v1, v2, ..., vn

∑
σ∈Sn︸︷︷︸
optional

permutations

aV

N∏
j=1

(B
sgn(vσ(j))

fb (Fσ(j)))
|vσ(j)|

︸ ︷︷ ︸
Aggregator following the steps V , permuted by Sn

(20)

In this equation, n is the number of directional fields and R is the desired radius. V represents all the choices of walk
{v1, v2, ..., vn} in the direction of the fields {F1,F2, ...,Fn}. For example, V = {3, 1, 0,−2} has a radius R = 6, with 3
steps forward of F1, 1 step forward of F2, and 2 steps backward of F4. The sign of eachB±fb is dependant to the sign of
vσ(j), and the power |vσ(j)| is the number of aggregation steps in the directional field Fσ(j). The full equation is thus the
combination of all possible choices of paths across the set of fields Fi, with all possible permutations. Note that we are
restricting the sum to vi having only a possible sign; although matrices don’t commute, we avoid choosing different signs
since it will likely self-intersect a lower radius walk. The permutations σ are required since, for example, the path up→ left
is different (in a general graph) than the path left→ up.

This matrix BR has a total of
∑R
r=0(2n)r = (2n)R+1−1

2n−1 parameters, with a high redundancy since some permutations
might be very similar, e.g. for a grid graph we have that up → left is identical to left → up. Hence, we can replace

Directional Graph Networks – Appendix

the permutation Sn by a reverse ordering, meaning that
∏N
j Bj = BN ...B2B1. Doing so does not perfectly generalize

the radius-R kernel for all graphs, but it generalizes it on a grid and significantly reduces the number of parameters to∑R
r=0

∑min(n,r)
l=1 2r

(
n
l

)(
r−1
l−1
)
.

A.8. Arcsine of the eigenvectors

Since the eigenvectors φi are equivalent to the Fourier basis and represent the waves in the graphs, then it is expected that
they behave similarity to sine/cosine waves when the graph is similar to a grid. This is further highlighted by the proof that
the eigenvectors of a grid are all sines/cosines in appendix D.4.

Hence, when we define the field F as F i = ∇φi, we must realize that the gradient will be lower near the minima/maxima
of the eigenvector, as it is the case with sine/cosine waves. In the paper, we cope with this problem by dividing by the norm
of the field ‖F ‖L1 in equations 5 and 6.

Another solution is to use the arcsine of the eigenvectors so that the function eigenvectors become similar to triangle
functions and the gradient is almost uniform. However, since the arcsine function works only in the range [−1, 1], then we
must first normalize the eigenvector by it’s maximum, as given by equation 21.

F iasin = ∇ arcsin

(
φi

max(|φi|)

)
(21)

B. Appendix - Data augmentation
B.1. Generalizing image augmentation to graphs

The simplest augmentation is the vector field flipping, which is done changing the sign of the field F , as stated in definition
5. This changes the sign ofBdx, but leavesBav unchanged.

Definition 5 (Reflection of the vector field). For a vector field F , the reflected field is −F .

Let F1,F2 be vector fields in a graph, with F̂1 and F̂2 being the field normalized such that each row has a unitary L2-norm.
Define the angle vector α by 〈(F̂1)i,:, (F̂2)i,:〉 = cos(αi). The vector field F̂⊥2 is the normalized component of F̂2

perpendicular to F̂1. The equation below defines F̂⊥2 . The next equation defines the angle

(F̂⊥2)i,: =
(F̂2 − 〈F̂1, F̂2〉F̂1)i,:

||(F̂2 − 〈F̂1, F̂2〉F̂1)i,:||

Notice that we then have the decomposition (F̂2)i,: = cos(αi)(F̂1)i,: + sin(αi)(F̂
⊥
2)i,:.

Definition 6 (Rotation of the vector fields). For F̂1 and F̂2 non-colinear vector fields with each vector of unitary length,
their rotation by the angle θ in the plane formed by {F̂1, F̂2} is

F̂ θ1 = F̂1diag(cos θ) + F̂⊥2 diag(sin θ)

F̂ θ2 = F̂1diag(cos(θ +α)) + F̂⊥2 diag(sin(θ +α))
(22)

Finally, the following augmentation has a similar effect to a wave distortion applied on images.

Definition 7 (Random distortion of the vector field). For vector field F and anti-symmetric random noise matrix R, its
randomly distorted field is F ′ = F +R ◦A.

B.2. Preliminary results of data augmentation

To evaluate the effectiveness of the proposed augmentation, we trained the models on a reduced version of the CIFAR10
dataset. The results in figure 7 show clearly a higher expressive power of the dx aggregator, enabling it to fit well the training
data. For a small dataset, this comes at the cost of overfitting and a reduced test-set performance, but we observe that
randomly rotating or distorting the kernels counteracts the overfitting and improves the generalization.

Directional Graph Networks – Appendix

As expected, the performance decreases when the rotation or distortion is too high since the augmented graph changes
too much. In computer vision images similar to CIFAR10 are usually rotated by less than 30◦ (Shorten & Khoshgoftaar,
2019; O’Gara & McGuinness, 2019). Further, due to the constant number of parameters across models, less parameters are
attributed to the mean aggregation in the directional models, thus it cannot fit well the data when the rotation/distortion is
too strong since the directions are less informative. We expect large models to perform better at high angles.

0° 2° 5° 10° 20° 45°
Rotation angle

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Rotation Training
mean
dx
av

0° 2° 5° 10° 20° 45°
Rotation angle

0.48

0.50

0.52

Rotation Test

mean
dx
av

0% 1% 5% 10% 20% 40%
Percentage distortion

0.6

0.7

0.8

0.9
Distortion Training

mean
dx
av

0% 1% 5% 10% 20% 40%
Percentage distortion

0.48

0.50

0.52

Distortion Test

mean
dx
av

Figure 7. Accuracy of the various models using data augmentation with a complex architecture of ∼ 100k parameters and trained on 10%
of the CIFAR10 training set (4.5k images). An angle of x corresponds to a rotation of the kernel by a random angle sampled uniformly
in (−x◦, x◦) using definition 6 with F1,2 being the gradient of the horizontal/vertical coordinates. A noise of 100x% corresponds to a
distortion of each eigenvector with a random noise uniformly sampled in (−x ·m,x ·m) where m is the average absolute value of the
eigenvector’s components. The mean baseline model is not affected by the augmentation since it does not use the underlining vector field.

C. Appendix - Implementation details
C.1. Benchmarks and datasets

We use a variety of benchmarks proposed by (Dwivedi et al., 2020) and (Hu et al., 2020) to test the empirical performance
of our proposed methods. In particular, to have a wide variety of graphs and tasks we chose:

1. ZINC, a graph regression dataset from molecular chemistry. The task is to predict a score that is a subtraction of
computed properties logP − SA, with logP being the computed octanol-water partition coefficient, and SA being the
synthetic accessibility score (Jin et al., 2018).

2. CIFAR10, a graph classification dataset from computer vision (Krizhevsky, 2009). The task is to classify the images
into 10 different classes, with a total of 5000 training image per class and 1000 test image per class. Each image has
32× 32 pixels, but the pixels have been clustered into a graph of ∼ 100 super-pixels. Each super-pixel becomes a node
in an almost grid-shaped graph, with 8 edges per node. The clustering uses the code from (Knyazev et al., 2019), and
results in a different number of super-pixels per graph.

3. PATTERN, a node classification synthetic benchmark generated with Stochastic Block Models, which are widely
used to model communities in social networks. The task is to classify the nodes into 2 communities and it tests the
fundamental ability of recognizing specific predetermined subgraphs.

4. MolHIV, a graph classification benchmark from molecular chemistry. The task is to predict whether a molecule inhibits
HIV virus replication or not. The molecules in the training, validation and test sets are divided using a scaffold splitting
procedure that splits the molecules based on their two-dimensional structural frameworks.

5. MolPCBA, a graph classification benchmark from molecular chemistry. It consists of measured biological activities of
small molecules generated by high-throughput screening. The dataset consists of a total of 437,929 molecules divided
using a scaffold slitting procedure and a set of 128 properties to predict for each.

For the results in figure 5, our goal is to provide a fair comparison to demonstrate the capacity of our proposed aggregators.
Therefore, we compare the various methods on both types of architectures using the same hyperparameters tuned in previous
works (Corso et al., 2020) for similar networks. The models vary exclusively in the aggregation method and the width of
the architectures to keep a set parameter budget. Following the indication of the benchmarks’ authors, we averaged the

Directional Graph Networks – Appendix

performances of the models on 4 runs with different initialization seeds for the benchmarks from Dwivedi et al. (2020)
(ZINC, PATTERN and CIFAR10) and 10 runs for the ones from Hu et al. (2020) (MolHIV and MolPCBA2).

For the results in figure 6, we took the fine tuned results of other models from the corresponding public leaderboards by
Dwivedi et al. (2020) and Hu et al. (2020). For the DGN results we fine tuned the model taking the lowest validation loss
across runs with the following hyperparameters (you can also find the fine tuned commands in the documentation of the
code repository):

1. ZINC: weight decay ∈ {1 · 10−5, 10−6, 3 · 10−7}, aggregators ∈ {(mean, avg1), (mean, dx1), (mean, av1, dx1),
(mean,min,max, av1), (mean,min,max, dx1)}

2. CIFAR10: weight decay ∈ {3 · 10−6}, dropout ∈ {0.1, 0.3}, aggregators ∈ {(mean, av1, av2), (mean, dx1, dx2),
(mean, dx1, dx2, av1, av2), (mean,max,min, dx1, dx2), (mean,max,min, av1, av2)}

3. PATTERN: weight decay ∈ {0, 10−8}, architecture ∈ {simple, complex}, aggregators ∈ {(mean, av1),
(mean, dx1), (mean, av1, dx1)}

4. MolHIV: aggregators ∈ {(mean, dx1), (mean, av1), (mean, dx1, av1), (mean,max, dx1), (mean,max, dx1, av1),
(mean,max,min, av1, dx1)}, dropout ∈ {0.1, 0.3, 0.5}, L ∈ {4, 6}

5. for MolPCBA, given we did not start from any previously tuned architecture, we performed a line search
with the following hyperparameters: mix of aggregators ∈ {mean,max,min, sum, dx1, dx2, av1, av2}, dropout
∈ {0.1, 0.2, 0.3, 0.4}, L ∈ {4, 6, 8}, weight decay ∈ {10−7, 10−6, 3 · 10−6, 10−5, 3 · 10−5}, batch size ∈
{128.512.2048, 3072}, learning rate ∈ {10−2, 10−3, 5 ·10−4, 2 ·10−4}, learning rate patience ∈ {4, 6, 8}, learning rate
reduce factor ∈ {0.5, 0.8}, architecture type ∈ {simple, complex, towers}, edge features dimension ∈ {0, 8, 16, 32}

In CIFAR10 it is impossible to numerically compute a deterministic vector field with eigenvectors due to the multiplicity of
λ1 being greater than 1. This is caused by the symmetry of the square image, and is extremely rare in real-world graphs.
Therefore, we used as underlying vector field the gradient of the coordinates of the image. Note that these directions are
provided in the nodes’ features in the dataset and available to all models, that they are co-linear to the eigenvectors of the
grid as per lemma D.1, and that they mimic the inductive bias in CNNs.

C.2. Implementation and computational complexity

Unlike several more expressive graph networks (Kondor et al., 2018; Maron et al., 2018), our method does not require
a computational complexity superlinear with the size of the graph. The calculation of the first k eigenvectors during
pretraining, done using Lanczos method (Lanczos, 1950) and the sparse module of Scipy, has a time complexity of O(Ek)
where E is the number of edges. During training the complexity is equivalent to a m-aggregator GNN O(Em) (Corso et al.,
2020) for the aggregation and O(Nm) for the MLP.

To all the architectures we added residual connections (He et al., 2016), batch normalization (Ioffe & Szegedy, 2015) and
graph size normalization (Dwivedi et al., 2020).

For some of the datasets with non-regular graphs, we combine the various aggregators with logarithmic degree-scalers as in
(Corso et al., 2020).

An important thing to note is that, for dynamic graphs, the eigenvectors need to be re-computed dynamically with the
changing edges. Fortunately, there are random walk based algorithms that can estimate φ1 quickly, especially for small
changes to the graph (Doshi & Eun, 2000). In the current empirical results, we do not work with dynamic graphs.

To evaluate the difficulty of computing the eigenvectors on very large graphs, we decided to load the COLLAB dataset
comprising of a single graph with 235k nodes and 2.35M edges (Dwivedi et al., 2020). Computing it’s first 6 eigenvectors
using the scipy eigsh function with machine precision took 25.5 minutes on an Intel R© Xeon R© CPU @ 2.20GHz. This
is acceptable, knowing that a general training time can take hours, and that the result can be cached and reused during
debugging and hyper-parameter optimization.

2For MolPCBA, due to the computational cost of running models in the large dataset and the relatively low variance, we only used 1
run for the results in figure 5, but 10 runs in those for figure 6

https://anonymous.4open.science/r/DGN/

Directional Graph Networks – Appendix

C.3. Running time

The precomputation of the first four eigenvectors for all the graphs in the datasets takes 38s for ZINC, 96s for PATTERN
and 120s for MolHIV on CPU. Table 1 shows the average running time on GPU for all the various model from figure 5. On
average, the epoch running time is 15% slower for the DGN compared to the mean aggregation, but a faster convergence for
DGN means that the total training time is on average 2% faster for DGN.

Table 1. Average running time for the non-fine tuned models from figure 5. Each entry represents average time per epoch / average total
training time. For the first four datasets, each of the models has a parameter budget ∼ 100k and was run on a Tesla T4 (15GB GPU). The
avg increase row is the average of the relative running time of all rows compared to the mean row, with a negative value meaning a faster
running time.

ZINC PATTERN
Aggregators Simple Complex Complex-E Simple Complex

mean 3.29s/1505s 3.58s/1584s 3.56s/1654s 153.1s/10154s 117.8s/9031s
mean dx1 3.86s/1122s 3.77s/1278s 4.22s/1371s 144.9s/8109s 127.2s/8417s

mean dx1 dx2 4.23s/1360s 4.55s/1560s 4.63s/1680s 153.3s/8057s 167.9s/9326s
mean av1 3.68s/1297s 3.84s/1398s 3.92s/1272s 128.0s/8680s 88.1s/7456s

mean av1 av2 3.95s/1432s 4.03s/1596s 4.07s/1721s 134.2s/8115s 170.4s/11114s
mean dx1 av1 3.89s/1079s 4.09s/1242s 4.58s/1510s 118.6s/6221s 144.2s/9112s
avg increase +19%/-16% +13%/-11% +20%/-9% -11%/-23% +18%/+1%

CIFAR10 MolHIV MolPCBA
Aggregators Simple Complex Simple Complex Complex-E

mean 83.6s/10526s 78.7s/10900s 11.4s/2189s 279s/30128s 356s/38126s
mean dx1 12.6s/2348s 304s/34129s 461s/43419s

mean dx1 dx2 98.4s/8405s 100.9s/5191s 14.1s/2345s 314s/36581s 334s/38363s
mean av1 12.2s/2177s 297s/30316s 436s/54545s

mean av1 av2 117.1s/12834s 89.5s/14481s 13.9s/2150s 315s/42297s 333s/36641s
mean dx1 av1 14.0s/2070s 326s/37523s 461s/59109s
avg increase +29%/+1% +21%/-10% +17%/+1% +12%/+20% +14%/+22%

C.4. Eigenvector multiplicity

The possibility to define equivariant directions using the low-frequency Laplacian eigenvectors is subject to the uniqueness
of those vectors. When the dimension of the eigenspaces associated with the lowest eigenvalues is 1, the eigenvectors are
defined up to a constant factor. In section 2.5, we propose the use of unit vector normalization and an absolute value to
eliminate the scale and sign ambiguity. When the dimension of those eigenspaces is greater than 1, it is not possible to
define equivariant directions using the eigenvectors.

Fortunately, it is very rare for the Laplacian matrix to have repeated eigenvalues in real-world datasets. We validate this
claim by looking at ZINC and PATTERN datasets where we found no graphs with repeated Fiedler vector and only one
graph out of 26k with multiplicity of the second eigenvector greater than 1.

When facing a graph that presents repeated Laplacian eigenvalues, we propose to randomly shuffle, during training time,
different eigenvectors randomly sampled in the eigenspace. This technique will act as a data augmentation of the graph
during training time allowing the network to train with multiple directions at the same time.

D. Appendix - Mathematical proofs
D.1. Proof for theorem 2.1 (Directional smoothing)

The operation y = Bavx is the directional average of x, in the sense that yu is the mean of xv, weighted by the direction
and amplitude of F .

Directional Graph Networks – Appendix

Proof. This should be a simple proof, that if we want a weighted average of our neighbours, we simply need to multiply the
weights by each neighbour, and divide by the sum of the weights. Of course, the weights should be positive.

D.2. Proof for theorem 2.2 (Directional derivative)

Suppose F̂ have rows of unit L1 norm. The operation y = Bdx(F̂)x is the centered directional derivative of x in the
direction of F , in the sense of equation 4, i.e.

y = DF̂x =
(
F̂ − diag

(∑
j

F̂:,j

))
x

Proof. Since F rows have unit L1 norm, F̂ = F . The i-th coordinate of the vector
(
F − diag

(∑
j F:,j

))
x is

Fx− diag

∑
j

F

x

i

=
∑
j

Fi,jx(j)−

∑
j

Fi,j

x(i)

=
∑

j:(i,j)∈E

(x(j)− x(i))Fi,j

= DF x(i)

D.3. Proof of theorem 2.3 (Gradient steps reduce diffusion distance)

Let x, y be nodes such that φ1(x) < φ1(y). Let x′ be the node obtained from x by taking one step in the direction of∇φ1,
then there is a constant C such that for C ≤ t we have

dt(x
′, y) < dt(x, y).

With the reduction in distance being proportional to e−λ1 .

Recall that pk(x, y) = (D−1A)kx,y is the discrete heat kernel at step k, qt(x, y) =
∑
k≥0

e−ttk

k! pk(x, y) is the continuous
heat kernel at time t. In (Barlow, 2017), it is shown that the continuous heat kernel is computed by qt(x, y) = e−tLnorm .
Following (Coifman & Lafon, 2006) we can diagonalise qt to get the identity

dt(x, y) =

(
n−1∑
i=1

e−2tλi
(
φi(x)− φi(y)

)2) 1
2

(23)

The inequality dt(x′, y) < dt(x, y) is equivalent to

n−1∑
i=2

e−2tλi
((
φi(x

′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2)
< e−2tλ1

((
φ1(x)− φ1(y)

)2
−
(
φ1(x′)− φ1(y)

)2)
(24)

The term on the left is bounded above by

n−1∑
i=2

e−2tλi
∣∣∣∣(φi(x′)− φi(y)

)2
−
(
φi(x)− φi(y)

)2∣∣∣∣
and this last term is in turn bounded above by

e−2tλ2

n−1∑
i=2

∣∣∣∣(φi(x′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2∣∣∣∣

Directional Graph Networks – Appendix

Inequality 24 will then hold if

e−2tλ2

n−1∑
i=2

∣∣∣∣(φi(x′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2∣∣∣∣ < e−2tλ1

((
φ1(x)− φ1(y)

)2
−
(
φ1(x′)− φ1(y)

)2)
and this is equivalent to

1

2(λ1 − λ2)
log


((
φ1(x)− φ1(y)

)2
−
(
φ1(x′)− φ1(y)

)2)
∑n−1
i=2

∣∣∣∣(φi(x′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2∣∣∣∣
 < t

if we take t to be larger than the term on the left the inequality we get dt(x′, y) < dt(x, y).

The constant C in the statement is the constant on the left side of the inequality. It is also interesting to note that C is
expected to be positive since the term λ1 − λ2 is negative and the argument of the log will most likely be < 1.

D.4. Proof for Lemma D.1 (Cosine eigenvectors)

Consider the lattice graph Γ of size N1 ×N2 × ...×Nn, that has vertices
∏
i=1,...,n{1, ..., Ni} and the vertices (xi)i=1,...,n

and (yi)i=1,...,n are connected by an edge iff |xi − yi| = 1 for one index i and 0 for all other indices. Note that there are no
diagonal edges in the lattice. The eigenvector of the Laplacian of the grid L(Γ) are given by φj .

Lemma D.1 (Cosine eigenvectors). The Laplacian of Γ has an eigenvalue 2−2 cos
(
π
Ni

)
with the associated eigenvectorφj

that depends only the variable in the i-th dimension and is constant in all others, withφj = 1N1
⊗1N2

⊗...⊗x1,Ni⊗...⊗1Nn ,
and x1,Ni(j) = cos

(
πj
n −

π
2n

)
Proof. First, recall the well known result that the path graph on N vertices PN has eigenvalues

λk = 2− 2 cos

(
πk

n

)
with associated eigenvector xk with i-th coordinate

xk(i) = cos

(
πki

n
+
πk

2n

)
The Cartesian product of two graphs G = (VG, EG) and H = (VH , EH) is defined as G × H = (VG×H , EG×H) with
VG×H = VG × VH and ((u1, u2), ((v1, v2)) ∈ EG×H iff either u1 = v1 and (u2, v2) ∈ EH or (u1, v1) ∈ VG and u2 = v2.
It is shown in (Fiedler, 1973) that if (µi)i=1,...,m and (λj)j=1,...,n are the eigenvalues of G and H respectively, then the
eigenvalues of the Cartesian product graph G×H are µi + λj for all possible eigenvalues µi and λj . Also, the eigenvectors
associated to the eigenvalue µi + λj are ui ⊗ vj with ui an eigenvector of the Laplacian of G associated to the eigenvalue
µi and vj an eigenvector of the Laplacian of H associated to the eigenvalue λj .

Finally, noticing that a lattice of shape N1 × N2 × ... × Nn is really the Cartesian product of path graphs of length N1

up to Nn, we conclude that there are eigenvalues 2− 2 cos
(
π
Ni

)
. Denoting by 1Nj the vector inRNj with only ones as

coordinates, then the eigenvector associated to the eigenvalue 2− 2 cos
(
π
Ni

)
is

1N1
⊗ 1N2

⊗ ...⊗ x1,Ni ⊗ ...⊗ 1Nn

where x1,Ni is the eigenvector of the Laplacian of PNi associated to its first non-zero eigenvalue. 2− 2 cos
(
π
Ni

)
.

D.5. Radius 1 convolution kernels in a grid

In this section we show any radius 1 convolution kernel can be obtained as a linear combination of the Bdx(∇φi) and
Bav(∇φi) matrices for the right choice of Laplacian eigenvectors φi. First we show this can be done for 1-d convolution
kernels.

Directional Graph Networks – Appendix

Theorem D.2. On a path graph, any 1D convolution kernel of size 3 k is a linear combination of the aggregatorsBav,Bdx

and the identity I .

Proof. Recall from the previous proof that the first non zero eigenvalue of the path graph PN has associated eigenvector
φ1(i) = cos(πiN −

π
2N). Since this is a monotone decreasing function in i, the i-th row of∇φ1 will be

(0, ..., 0, si−1, 0,−si+1, 0, ..., 0)

with si−1 and si+1 > 0. We are trying to solve

(aBav + bBdx + cId)i,: = (0, ..., 0, x, y, z, 0, ..., 0)

with x, y, z, in positions i− 1, i and i+ 1. This simplifies to solving

a
1

‖s‖L1

|s|+ b
1

‖s‖L2

s+ c(0, 1, 0) = (x, y, z)

with s = (si−1, 0,−si+1), which always has a solution because si−1, si+1 > 0.

Theorem D.3 (Generalization radius-1 convolutional kernel in a grid). Let Γ be the n-dimensional lattice as above and
let φj be the eigenvectors of the Laplacian of the lattice as in theorem D.1. Then any radius 1 kernel k on Γ is a linear
combination of the aggregatorsBav(φi),Bdx(φi) and I .

Proof. This is a direct consequence of D.2 obtained by adding n 1-dimensional kernels, with each kernel being in a different
axis of the grid as per Lemma D.1. See figure 4 for a visual example in 2D.

D.6. Proof for theorem 2.4 (Generalization radius-R convolutional kernel in a lattice)

For an n-dimensional lattice, any convolutional kernel of radius R can be realized by a linear combination of directional
aggregation matrices and their compositions.

Proof. For clarity, we first do the 2 dimensional case for a radius 2, then extended to the general case. Let k be the radius 2
kernel on a grid represented by the matrix

a5×5 =


0 0 a−2,0 0 0
0 a−1,−1 a−1,0 a−1,1 0

a0,−2 a0,−1 a0,0 a0,1 a0,2
0 a1,−1 a1,0 a1,1 0
0 0 a2,0 0 0


since we supposed the N1 ×N2 grid was such that N1 > N2, by theorem D.1, we have that φ1 is depending only in the
first variable x1 and is monotone in x1. Recall from D.1 that

φ1(i) = cos

(
πi

N1
+

π

2N1

)
The vector N1

π ∇ arccos(φ1) will be denoted by F1 in the rest. Notice all entries of F1 are 0 or ±1. Denote by F2 the
gradient vector N2

π ∇ arccos(φk) where φk is the eigenvector given by theorem D.1 that is depending only in the second
variable x2 and is monotone in x1 and recall

φk(i) = cos

(
πi

N2
+

π

2N2

)
For a matrixB, letB± the positive/negative parts ofB, ie matrices with positive entries such thatB = B+ −B−. Let
Br1 be a matrix representing the radius 1 kernel with weights

Directional Graph Networks – Appendix

a3×3 =

 0 a−1,0 0
a0,−1 a0,0 a0,1

0 a1,0 0



The matrixBr1 can be obtained by theorem D.3. Then the radius 2 kernel k is defined by all the possible combinations of 2
positive/negative steps, plus the initial radius-1 kernel.

Br2 =
∑

−2≤i,j≤2
|i|+|j|=2

(
ai,j(F

sgn(i)
1)|i|(F

sgn(j)
2)|j|

)
︸ ︷︷ ︸

Any combination of 2 steps

+ Br1︸︷︷︸
all possible single-steps

with sgn the sign function sgn(i) = + if i ≥ 0 and − if i < 0. The matrixBr2 then realises the kernel a5×5.

We can further extend the above construction to N dimension grids and radius R kernels k

∑
V={v1,v2,...,vN}∈Nn

||V ||L1≤R
−R≤vi≤R︸ ︷︷ ︸

Any choice of walk V with at mostR-steps

aV

N∏
j=1

(F
sgn(vj)
j)|vj |︸ ︷︷ ︸

Aggregator following the steps defined in V

with Fj =
Nj
π ∇ arccosφj ,φj the eigenvector with lowest eigenvalue only dependent on the j-th variable and given in

theorem D.1 and
∏

is the matrix multiplication. V represents all the choices of walk {v1, v2, ..., vn} in the direction of the
fields {F1,F2, ...,Fn}. For example, V = {3, 1, 0,−2} has a radius R = 6, with 3 steps forward of F1, 1 step forward of
F2, and 2 steps backward of F4.

D.7. Proof for theorem 2.5 (Comparison with 1-WL test)

DGNs using the mean aggregator, any directional aggregator of the first Laplacian eigenvector and injective degree-scalers
are strictly more powerful than the 1-WL test.

Proof. We will show that (1) DGNs are at least as powerful as the 1-WL test and (2) there is a pair of graphs which are not
distinguishable by the 1-WL test which DGNs can discriminate.

Since the DGNs include the mean aggregator combined with at least an injective degree-scaler, (Corso et al., 2020) show
that the resulting architecture is at least as powerful as the 1-WL test.

Directional Graph Networks – Appendix

Aggregation matrix Graph 1 Graph 2

𝑨
1𝑎 + 1𝑏 → 𝑏
1𝑎 + 2𝑏 → 𝑎

1𝑎 + 1𝑏 → 𝑏
1𝑎 + 2𝑏 → 𝑎

𝑩𝒅𝒙
𝟏 1𝑎 − 1𝑏 → 𝑏

0 → 𝑎
1𝑎 − 1𝑏 → 𝑏

0.44𝑏 − 0.44𝑎 → 𝑎

𝑩𝒂𝒗
𝟏 1𝑎 → 𝑏

1𝑏 → 𝑎
1𝑎 → 𝑏

0.44𝑏 + 0.56𝑎 → 𝑎

b

b

a

a

b

b

b

b

a a

b

b

Graph 1 Graph 2

Figure 8. Illustration of an example pair of graphs which the 1-WL test cannot distinguish but DGNs can. The table shows the node
feature updates done at every layer. MPNN with mean/sum aggregators and the 1-WL test only use the updates in the first row and
therefore cannot distinguish between the nodes in the two graphs. DGNs also use directional aggregators that, with the vector field given
by the first eigenvector of the Laplacian matrix, provides different updates to the nodes in the two graphs.

Then, to show that the DGNs are strictly more powerful than the 1-WL test it suffices to provide an example of a pair of
graphs that DGNs can differentiate and 1-WL cannot. Such a pair of graphs is illustrated in figure 8.

The 1-WL test (as any MPNN with, for example, sum aggregator) will always have the same features for all the nodes
labelled with a and for all the nodes labelled with b and, therefore, will classify the graphs as isomorphic. DGNs, via the
directional smoothing or directional derivative aggregators based on the first eigenvector of the Laplacian matrix, will update
the features of the a nodes differently in the two graphs (figure 8 presents also the aggregation functions) and will, therefore,
be capable of distinguishing them.

