
Directional Graph Networks

Dominique Beaini * 1 Saro Passaro * 2 Vincent Létourneau 1 3 William L. Hamilton 3 4 Gabriele Corso 2

Pietro Liò 2

Abstract

The lack of anisotropic kernels in graph neural
networks (GNNs) strongly limits their expressive-
ness, contributing to well-known issues such as
over-smoothing. To overcome this limitation, we
propose the first globally consistent anisotropic
kernels for GNNs, allowing for graph convolu-
tions that are defined according to topologicaly-
derived directional flows. First, by defining a
vector field in the graph, we develop a method of
applying directional derivatives and smoothing by
projecting node-specific messages into the field.
Then, we propose the use of the Laplacian eigen-
vectors as such vector field. We show that the
method generalizes CNNs on an n-dimensional
grid and is provably more discriminative than stan-
dard GNNs regarding the Weisfeiler-Lehman 1-
WL test. We evaluate our method on different
standard benchmarks and see a relative error re-
duction of 8% on the CIFAR10 graph dataset and
11% to 32% on the molecular ZINC dataset, and
a relative increase in precision of 1.6% on the
MolPCBA dataset. An important outcome of this
work is that it enables graph networks to embed
directions in an unsupervised way, thus allowing
a better representation of the anisotropic features
in different physical or biological problems.

1. Introduction
One of the most important distinctions between convolu-
tional neural networks (CNNs) and graph neural networks
(GNNs) is that CNNs allow for any convolutional kernel,
while most GNN methods are limited to symmetric ker-

*Equal contribution 1InVivo AI, Montreal, Canada 2department
of Computer Science and Technology, University of Cam-
bridge, Cambridge, United Kingdom 3MILA, Montreal, Canada
4McGill University, Montreal, Canada. Correspondence to:
Dominique Beaini <dominique@invivoai.com>, Saro Passaro
<sp976@cam.ac.uk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

nels (also called isotropic kernels) (Kipf & Welling, 2016;
Gilmer et al., 2017). There are some implementations of
asymmetric kernels using gated mechanisms (Bresson &
Laurent, 2017; Veličković et al., 2017), motif attention
(Peng et al., 2019), edge features (Gilmer et al., 2017),
port numbering (Sato et al., 2019) or the 3D structure of
molecules (Klicpera et al., 2019).

However, to the best of our knowledge, there are currently
no methods that allow asymmetric graph kernels that are
dependent on the full graph structure or directional flows.
They either depend on local structures or local features. This
is in opposition to images, which exhibit canonical direc-
tions: the horizontal and vertical axes. The absence of an
analogous concept in graphs makes it difficult to define di-
rectional message passing and to produce an analogue of the
directional frequency filters (or Gabor filters) widely present
in image processing (Olah et al., 2020). In fact, there is nu-
merous evidence that directional filtering is fundamental
image processing (Kang et al., 2017; Antoine & Murenzi,
1996; Yue Lu & Minh N. Do, 2005).

We propose a novel idea for GNNs: use vector fields in the
graph to define directions for the propagation of information.
An overview of this framework is presented in figure 1.
Using this approach, the usual message-passing structure of
a GNN is projected onto globally-defined directions so that
the contribution of each neighbouring node nv is weighted
by its alignment with the vector fields at the receiving node
nu. This enables our method to propagate information via
directional derivatives or smoothing of the features.

In order to define globally consistent directional fields over
general graphs, we propose to use the gradients of the low-
frequency eigenvectors φk of the graph Laplacian, since
they are known to capture key information about the global
structure of graphs (Chavel, 1984; Chung et al., 1997;
Grebenkov & Nguyen, 2013). In particular, these eigen-
vectors can be used to define optimal partitions of the nodes
in a graph, to give a natural ordering (Levy, 2006), and to
find the dominant directions of the graph diffusion process
(Chung & Yau, 2000; Saerens et al., 2004). Further, we show
that they generalize the horizontal and vertical directional
flows in a grid (see figure 2), allowing them to guide the ag-
gregation and mimic the asymmetric and directional kernels

Directional Graph Networks

��

��

�� = ∇�� =

�� = ∇�� = ���
�

���
�

���
�

���
�

���
�

⋮
���

�

���
�

� � = concat

���� � �

���
� � �

���
� � �

⋮
���

� � �

���
� � �

� � = MLP � �

Graph

�

The a-directional
adjacency matrix �
is given as an input.
We then compute
the Laplacian matrix
�.

�: number of nodes

�: number of edges

The eigenvectors � of � are
computed and sorted such
that �� has the lowest non-
zero eigenvalue and �� has
the �-th lowest.

We compute the �-first
eigenvectors with a
complexity of � �� .

(e)(b) (c) (d) (f) (g)(a)

Pre-computed steps � ��

A graph with the node

features is given. � �

is the feature matrix
of the graph at the 0-
th GNN layer, of size
� × ��.

The aggregation

matrices ���,��
�,…,� are

taken from the pre-
computed steps.

Graph neural network steps � �� + ��

The gradient of � is a
function of the edges (a
matrix) such that
∇��� = �� − �� if the nodes

�, � are connected, or ∇��� =

0 otherwise.

If the graph has a known
direction, it can be encoded
as field �.

Each row �, : of the field � is
normalized by it’s �� norm.

���,: =
��,:

��.: �� + �

•��� is the directional smoothing matrix.

��� = ��

•��� is the directional derivative matrix.

��� �,: = ���,: − diag � ��:,�

� �,:

The aggregation matrices

���,��
�,…,� are used to aggregate

the features � � via the
matrix prodict ��. For ��� we
take the absolute value due to
the sign ambiguity of �.

� � is the column-
concatenation of all directional
and a-directional aggregations.

The complexity is � �� , or
� � if the aggregations are
parallelized.

This is the only step with
learned parameters.

Based on the GCN method,
each aggregation is followed
by a multi layer perceptron
(MLP) on all the features.

The MLP is applied on the

columns of � � , thus we
have a complexity of � �� .

• � � has �� columns

• � � has 2� + 1 ��

columns

• � � has �� columns

���
� ��,�

�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

� �

� → � + 1

� � → � ���

� � → � �

� � → � �

Next GNN
layer

max0-max
Node colormap

max0-max
Field matrix colormap

Input graph
Compute the first

� eigenvectors
Compute the

gradient
Create the aggregation

matrices �
Feature aggregation MLPInput graph

Figure 1. Overview of the steps required to aggregate messages in the direction of the eigenvectors.

present in computer vision. In fact, we demonstrate mathe-
matically that our work generalizes CNNs, by reproducing
all convolutional kernels of radius R in an n-dimensional
grid, while also bringing the powerful data augmentation
capabilities of reflection, rotation or distortion of the di-
rections. Additionally, we also prove that our directional
graph networks (DGNs) are more discriminative than stan-
dard GNNs in regards to the Weisfeiler-Lehman 1-WL test,
confirming an increase of expressiveness.

We further show that our DGN model theoretically and em-
pirically allows for efficient message passing across distant
communities, which counteracts the well-known problem
of over-smoothing in GNNs. Alternative methods reduce
the impact of over-smoothing by using skip connections
(Luan et al., 2019), global pooling (Alon & Yahav, 2020), or
randomly dropping edges during training time (Rong et al.,
2020), but without solving the underlying problem.

Our method distinguishes itself from other spectral GNNs
since the literature usually uses the low frequencies to es-
timate local Fourier transforms in the graph (Levie et al.,
2018; Xu et al., 2019). Instead, we do not try to approximate
the Fourier transform, but only to define a directional flow
at each node and guide the aggregation.

We tested our method on 5 standard datasets from (Dwivedi
et al., 2020) and (Hu et al., 2020), using two types of archi-
tectures, and either using or ignoring edge features. In all
cases, we observed state-of-the-art results from the proposed
DGN, with relative improvements of 8% on CIFAR10, 11-
32% on ZINC, 0.8% on MolHIV and 1.6% on MolPCBA.

Most of the improvement is attributed to the directional
derivative aggregator, highlighting our method’s ability of
capturing directional high-frequency signals in graphs.

2. Theoretical development
2.1. Intuitive overview

One of the biggest limitations of current GNN methods
compared to CNNs is the inability to do message passing in
a specific direction such as the horizontal one in a grid graph.
In fact, it is difficult to define directions or coordinates based
solely on the shape of the graph.

The lack of directions strongly limits the discriminative
abilities of GNNs to understand local structures and simple
feature transformations. Most GNNs are invariant to the per-
mutation of the neighbours’ features, so the nodes’ received
signal is not influenced by swapping the features of two
neighbours. Therefore, several layers in a deep network will
be employed to understand these simple changes instead of
being used for higher level features, leading to problematic
phenomena such as a over-squashing (Alon & Yahav, 2020).

In the first part of the theoretical development, we develop
the mathematical theory for general vector fields F . In-
tuitively, defining a vector field over a graph corresponds
to assigning a scalar weight to edges corresponding to the
magnitude of the flow in that direction. Note that F has
the same shape as the adjacency matrix and the same zero
entries. As an example a left-to-right flow in a grid corre-
sponds to a matrix with positive values over all left-to-right

Directional Graph Networks

Figure 2. Possible directional flows in different types of graphs. The node coloring is a potential map and the edges represent the gradient
of the potential with the arrows in the direction of the flow. The first 3 columns present the arcosine of the normalized eigenvectors (acos φ̂)
as node coloring, and their gradients represented as edge intensity. The last column presents examples of inductive bias introduced in the
choice of direction. (a) The eigenvectors 1 and 2 are the horizontal and vertical flows of the grid. (b) The eigenvectors 1 and 2 are the flow
in the longest and second-longest directions. (c) The eigenvectors 1, 2 and 3 flow respectively in the South-North, suburbs to the city
center and West-East directions. We ignore φ0 since it is constant and has no direction.

edges, negative over the right-to-left edges and 0 on the
vertical edges.

In the second part, we set F to be the gradient of the low-
frequency eigenvectors of the Laplacian. Using this di-
rectional field, we show that the expressiveness of GNNs
can be improved, while providing an intuitive directional
flows over a variety of graphs (see figure 2). For exam-
ple, we prove that in grid-shaped graphs some of these
eigenvectors correspond to the horizontal and vertical flows.
Again, we observe in the Minnesota map that the first 3 non-
constant eigenvectors produce logical directions, namely
South/North, suburb/city, and West/East.

Another important contribution—also noted in figure 2—is
the ability to define any kind of directional flow based on
prior knowledge of the problem. Hence, instead of relying
on eigenvectors to find directions in a map, we can simply
use the cardinal directions or the rush-hour traffic flow.

2.2. Overview of the theoretical contributions

Vector fields in a graph. Using directions in a graph is
novel and not intuitive, so our first step is to define a sim-
ple nomenclature where we use a vector field to define a
directional flow at each node.

Directional smoothing and derivatives. To make use of
vector fields over graphs, we define aggregation matrices
that can either smooth the signal (low pass filter) or compute
its derivative (high pass filter) according to the directions
specified by the vector field.

Gradient of the Laplacian eigenvectors. We show that
using the gradient of the low-frequency eigenvectors of the

graph Laplacian generates interpretable vector fields that
counteract the over-smoothing problem.

Generalization of CNNs. We demonstrate that, when ap-
plied to a grid graph, the eigenvector-based directional ag-
gregation generalizes convolutional neural networks.

Comparison to the Weisfeiler-Lehman (WL) test. We
prove that the proposed DGN is more expressive than the
1-WL test, and thus more expressive than ordinary GNNs.

2.3. Vector fields in a graph

This section presents the ideas of differential geometry ap-
plied to graphs, with the goal of finding proper definitions
of scalar products, gradients and directional derivatives. For
reference see for example (Bronstein et al., 2017; Grebenkov
& Nguyen, 2013; Grady & Polimeni, 2010).

Let G = (V,E) be a graph with V the set of vertices and
E ⊂ V × V the set of edges. The graph is undirected
meaning that (i, j) ∈ E iff (j, i) ∈ E. Define the vector
spaces L2(V) and L2(E) as the set of maps V → R and
E → R with x,y ∈ L2(V) and F ,H ∈ L2(E) and scalar
products

〈x,y〉L2(V) : =
∑
i∈V

xiyi

〈F ,H〉L2(E) : =
∑

(i,j)∈E

F(i,j)H(i,j)

(1)

Think of E as the “tangent space” to V and of L2(E) as
the set of “vector fields” on the space V with each row Fi,:
representing a vector at the i-th node, and the element Fi,j

Directional Graph Networks

being the component of the vector going from node i to j
through edge eij . Note that with n the number of nodes in
G, any x ∈ L2(V) can be represented as an n coordinates
vector and F ∈ L2(E) can be represented as an n × n
matrix.

Define the pointwise scalar product as the map L2(E) ×
L2(E)→ L2(V) taking 2 vector fields and returning their
inner product at each point of V , at the node i is defined by
equation 2.

〈F ,H〉i :=
∑

j:(i,j)∈E

Fi,jHi,j (2)

In equation 3, we define the gradient ∇ as a mapping
L2(V) → L2(E) and the divergence div as a mapping
L2(E)→ L2(V), thus leading to an analogue of the direc-
tional derivative in equation 4.

(∇x)(i,j) := x(j)− x(i)

(divF)i :=
∑

j:(i,j)∈E

F(i,j)
(3)

Definition 1. The directional derivative of the function x
on the graph G in the direction of the vector field F̂ where
each vector is of unit-norm is

DF̂x(i) := 〈∇x, F̂ 〉i =
∑

j:(i,j)∈E

(x(j)− x(i))F̂i,j (4)

|F | will denote the absolute value of F and ||Fi,:||Lp the
Lp-norm of the i-th row of F . We also define the for-
ward/backward directions as the positive/negative parts of
the field F±.

2.4. Directional smoothing and derivatives

Next, we show how the vector field F is used to guide the
graph aggregation by projecting the incoming messages.
Specifically, we define the weighted aggregation matrices
Bav andBdx that allow to compute the directional smooth-
ing and directional derivative of the node features, as pre-
sented visually in figure 1-d.

The directional average matrixBav is the weighted ag-
gregation matrix such that all weights are positives and all
rows have an L1-norm equal to 1, as shown in equation 5
and theorem 2.1, with a proof in the appendix D.1.

Bav(F)i,: =
|Fi,:|

||Fi,:||L1 + ε
(5)

The variable ε is an arbitrarily small positive number used
to avoid floating-point errors. The L1-norm denominator
is a local row-wise normalization. The aggregator works

by assigning a large weight to the elements in the forward
or backward direction of the field, while assigning a small
weight to the other elements, with a total weight of 1.

Theorem 2.1 (Directional smoothing). The operation y =
Bavx is the directional average of x, in the sense that yu
is the mean of xv , weighted by the direction and amplitude
of F .

With xv the features at the nodes v neighbouring u, and yu
the directional smoothing at node u.

The directional derivative matrixBdx is defined in (6)
and theorem 2.2, with the proof in appendix D.2. Again,
the denominator is a local row-wise normalization but can
be replaced by a global normalization. diag(a) is a square,
diagonal matrix with diagonal entries given by a. The aggre-
gator works by subtracting the projected forward message
by the backward message (similar to a center derivative),
with an additional diagonal term to balance both directions.

Bdx(F)i,: = F̂i,: − diag
(∑

j

F̂:,j

)
i,:

F̂i,: =

(
Fi,:

||Fi,:||L1 + ε

) (6)

Theorem 2.2 (Directional derivative). Suppose F̂ have
rows of unit L1 norm. The operation y = Bdx(F̂)x is
the centered directional derivative of x in the direction of
F , in the sense of equation 4, i.e.

y = DF̂x =
(
F̂ − diag

(∑
j

F̂:,j

))
x

These aggregators are directional, interpretable and comple-
mentary, making them ideal choices for GNNs. We discuss
the choice of aggregators in more details in appendix A,
while also providing alternative aggregation matrices such
as the center-balanced smoothing, the forward-copy, the
phantom zero-padding, and the hardening of the aggrega-
tors using softmax/argmax on the field. We further provide
a visual interpretation of the Bav and Bdx aggregators in
figure 3. Interestingly, we also note in appendix A.1 that
Bav and Bdx yield respectively the mean and Laplacian
aggregations when F is a vector field such that all entries
are constant Fij = ±C.

2.5. Gradient of the Laplacian eigenvectors as
interpretable vector fields

In this section we give theoretical support for the choice of
gradients of the eigenfunctions of the Laplacian as sensi-
ble vectors along which to do directional message passing
since they are interpretable and allow to reduce the over-
smoothing. This section gives a theoretical ground to the

Directional Graph Networks

Directional smoothing aggregation ��� � �

Directional derivative aggregation ��� � �

Graph features focused on the neighbourhood of ��

��,��

��,��

��,��
�: Node receiving the message
��,�,�: Neighbouring node

��: Feature at node �
��,�: Directional vector field

between the node � and �

��,��
���

+ ��,��
���

+ ��,��
���

��,��
+ ��,��

+ ��,��

Absolute weighted sum

Sum of the absolute weights

��,��
���

− �� + ��,��
�� − ���

+ ��,��
�� − ���

��,��
+ ��,��

+ ��,��

Weighted forward
derivative with ��

Weighted backward
derivative with ��

Weighted backward
derivative with ��+ +

Sum of the absolute weights

Figure 3. Illustration of how the directional aggregation works at a
node nv , with the arrows representing the direction and intensity
of the field F .

intuitive directions presented in figure 2, and is the motiva-
tion behind steps (b-c) in figure 1.

As usual the combinatorial, degree-normalized and symmet-
ric normalized Laplacian are defined as

L = D −A, Lnorm = D−1L, Lsym = D−
1
2LD−

1
2

(7)
The eigenvectors of these matrices are known to capture
many essential properties of graphs, making them a natural
foundation for directional message passing. For example,
the Laplacian eigenvectors corresponding to the smallest
eigenvalues (i.e., the low frequency eigenvectors) effectively
capture the community structure of a graph, and these eigen-
vectors also play the role of Fourier modes in graph signal
processing (Hamilton, 2020). Indeed, the Laplacian eigen-
vectors hold such rich information about graph structure
that their study is the focus of the mathematical subfield of
spectral graph theory (Chung et al., 1997).

In order to illustrate the utility of these eigenvectors in the
context of GNNs, we show that the low-frequency eigen-
vectors provide a natural direction that allows us to pass
messages between distant nodes in a graph. In particular,
we show in theorem 2.3 (proved in appendix D.3) that by
passing information in the direction of φ1, the eigenvec-
tor associated to the lowest non-trivial frequency of Lnorm,
DGNs can efficiently share information between distant
nodes of the graph by reducing the diffusion distance be-
tween them. This idea is reflected in figure 2, where we
see that the eigenvectors of the Laplacian give directions

that correspond to a natural notion of distance on real-world
graphs.

In the next paragraphs, we will prove that following the
gradient of the eigenvectors allows to effectively reduce the
heat-kernel distance between pairs of nodes.

Consider the transition matrixW = D−1A. Its entries can
be used to define a random walk with probability to move
from node x to node y equal to p1(x, y) = 1

dx
if x and y

are neighbors and 0 if not. Notice that the probability to
transition from x to y in k steps is given by the x, y entry of
the matrixW k. This matrix is also called the discrete heat
kernel pk(x, y) = (W k)x,y. Given a Markov process X̃k

defined by the transition matricesW k, j = 1, ..., k, we can
define a continuous time random walk on the same graph
in the following way. Let Nt be a mean 1 Poisson random
variable, the continuous time random variable is defined by
Xt := X̃Nt with transition probability qt(x, y) = P (Xt =
y|x0 = x).

In (Barlow, 2017), the following identity is shown

qt(x, y) =

∞∑
n=0

e−ttk

k!
pk(x, y)

Or in matrix form qt = et(W−I) = e−tLnorm . This transition
probability is also called the continuous time heat kernel
because it satisfies the continuous time heat equation on
graphs d

dtqt = −Lnormqt. In (Coifman & Lafon, 2006) the
following distance is defined
Definition 2 (Diffusion distance). The diffusion distance at
time t between the nodes x, y is

dt(x, y) :=

(∑
z∈V

(
qt(x, z)− qt(y, z)

)2) 1
2

(8)

The diffusion distance is small when there is high probability
that two random walks starting at x and y meet at time t.
The diffusion distance is used as a model of how the data at
a node x influences a node y in a GNN. The symmetrisation
of the heat kernel in the diffusion distance and the use of
continuous time are slight departure from the actual process
of information diffusion in a GNN but allow us to describe
the important phenomenons with much simpler statements.
Definition 3 (Gradient step). Suppose the two neighboring
nodes x and z are such that φ(z)−φ(x) is maximal among
the neighbors of x, then we will say z is obtained from x by
taking a step in the direction of the gradient∇φ.
Theorem 2.3 (Gradient steps reduce diffusion distance).
Let x, y be nodes such that φ1(x) < φ1(y). Let x′ be the
node obtained from x by taking one step in the direction of
∇φ1, then there is a constant C such that for C ≤ t we
have

dt(x
′, y) < dt(x, y).

Directional Graph Networks

With the reduction in distance being proportional to e−λ1 .

From this theorem, we see that moving from node x to node
x′ by following the gradient of the eigenvector φ1 is guar-
anteed to reduce the heat kernel distance with a destination
node y. While the theorem always holds for φ1, it should
be true for higher frequency eigenvectors if the graph has
added structure for example if it is an approximation of a
surface or a higher dimensional manifold.

In the context of GNNs, Theorem 2.3 also has implications
for the well-known problems of over-smoothing and over-
squashing (Alon & Yahav, 2020; Hamilton, 2020). In most
GNN models, node representations become over-smoothed
after several rounds of message passing, as the represen-
tations tend to reach a mean-field equilibrium equivalent
to the stationary distribution of a random walk (Hamilton,
2020). Researchers have also highlighted the related issue
of over-squashing, which reflects the inability for GNNs to
propagate informative signals between distant nodes in a
graph (Alon & Yahav, 2020).

Both these problems are related to the fact that the influence
of one node’s input on the final representation of another
node in a GNN is correlated with the diffusion distance be-
tween the nodes (Xu et al., 2018b). Theorem 2.3 highlights
how the DGN approach can alleviate these issues. In partic-
ular, the Laplacian eigenfunctions reveal directions that can
counteract over-smoothing and over-squashing by allowing
efficient propagation of information between distant nodes
instead of following a diffusion process.

Finally it is interesting to note that by selecting different
eigenvectors as basis of directions, our method further aligns
with a theorem that multiple independent aggregators are
needed to distinguish neighbourhoods of nodes with contin-
uous features (Corso et al., 2020).

2.6. Choosing a basis of the Laplacian eigenspace

When using eigenvectors of the Laplacian φi to define di-
rections in a graph, we need to keep in mind that there is
never a single eigenvector associated to an eigenvalue, but a
whole eigenspace. If an eigenvalue has multiplicity of k, the
associated eigenspace has dimension k and any collection
of k orthogonal vectors could be chosen as basis of that
space and as vectors for the definitions of the aggregation
matricesB defined in the previous sections.

Disconnected graphs. When a graph is disconnected, then
the eigenfunctions will simply be the combination of the
eigenfunctions of each connected components. Hence, one
must consider φi as the i-th eigenvector of each component
when taken separately.

Normalizing the eigenvectors. For an eigenvalue of mul-
tiplicity 1, there are always two unit norm eigenvectors of

opposite sign, which poses a problem during the directional
aggregation. We can make a choice of sign and later take
the absolute value (i.e. Bav in equation 5). An alternative
that applies to multiplicities higher than 1 is to take samples
of orthonormal bases of the eigenspace and use each choice
to augment the training (see section 2.10).

Multiplicities greater than 1. Although multiplicities
higher than one do happen for low-frequencies (square grids
have a multiplicity 2 for λ1) this is not common in “real-
world graphs” since it suggests symmetries in the graph
which are uncommon. Furthermore, we found no λ1 multi-
plicity greater than 1 in the ZINC and PATTERN datasets.
We further discuss these rare cases and how to deal with
them in appendix C.4.

Orthogonal directions. Although all φ are orthogonal,
their gradients, used to define directions, are not always
locally orthogonal (e.g. there are many horizontal flows in
the grid). This concern is left to be addressed in future work.

2.7. Generalization of the convolution on a grid

In this section we show that our method generalizes CNNs
by allowing to define any radius-R convolutional kernels
in grid-shaped graphs. The radius-R kernel at node u is
a convolutional kernel that takes the weighted sum of all
nodes v at a distance d(u, v) ≤ R.

Consider the lattice graph Γ of sizeN1×N2×...×Nn where
each vertices are connected to their direct non-diagonal
neighbour. We know from Lemma D.1 that, for each di-
mension, there is an eigenvector that is only a function of
this specific dimension. For example, the lowest frequency
eigenvector φ1 always flows in the direction of the longest
length. Hence, the Laplacian eigenvectors of the grid can
play a role analogous to the axes in Euclidean space, as
shown in figure 2.

With this knowledge, we show in theorem 2.4 (proven in
D.6), that we can generalize all convolutional kernels in an
n-dimensional grid. This is a strong result since it demon-
strates that our DGN framework generalizes CNNs when
applied on a grid, thus closing the gap between GNNs and
the highly successful CNNs on image tasks.

Theorem 2.4 (Generalization radius-R convolutional kernel
in a lattice). For an n-dimensional lattice, any convolutional
kernel of radius R can be realized by a linear combination
of directional aggregation matrices and their compositions.

As an example, figure 4 shows how a linear combination of
the first and m-th aggregators B(∇φ1,m) realize a kernel
on an N ×M grid, where m = dN/Me and N > M .

Note that when the size of a given dimension is an integer
multiple of another direction, e.g. N = M or N = 3M ,
then you will find a multiplicity of 2 for the m− th eigen-

Directional Graph Networks

vector. Hence, the eigenvector used to define the direction
is not unique. This does not void theorem 2.4 since the
eigenvectors flowing in the horizontal/vertical directions are
still valid choices.

CNN equivalent on
image ��×�, with

� > � ; �%� ≠ 0
Graph aggregation

�� = �� ∗ 11� = 2���
� �

�� = �� ∗ 1-1� = 2���
� �

�� = �� ∗
1

1
� = 2���

� �

�� = �� ∗
1

-1
� = 2���

� �

� =
��� + 2�����

� + 2�����
�

+2�����
� + 2�����

� � �� = �� ∗ ��
��

+ ��

��

+ ��

��

− ��

��

− ��

Figure 4. Realization of a radius-1 convolution using the proposed
aggregators. Ix is the input feature map, ∗ the convolutional
operator, Iy the convolution result, andBi = B(∇φi).

2.8. Extending the radius of the aggregation kernel

Having aggregation kernels for neighbours of distance 2 or
3 is important to improve the expressiveness of GNNs, their
ability to understand patterns, and to reduce the number of
layers required. However, the lack of directions in GNNs
strongly limits the radius of the kernels since, given a graph
of regular degree d, a mean/sum aggregation at a radius-R
will result in a heavy over-squashing of O(dR) messages.
Using the directional fields, we can enumerate different
paths, thus assigning a different weight for different R-
distant neighbours. This method, proposed in appendix
A.7, avoids the over-squashing. (Empirical results on this
extension are left for future work.)

2.9. Comparison with Weisfeiler-Lehman (WL) test

We also compare the expressiveness of the Directional
Graph Networks with the classical WL graph isomorphism
test which is often used to classify the expressivity of graph
neural networks (Xu et al., 2018a). In theorem 2.5 (proven
in appendix D.7) we show that DGNs are capable of distin-
guishing pairs of graphs that the 1-WL test (and so ordinary
GNNs) cannot differentiate.

Theorem 2.5 (Comparison with 1-WL test). DGNs using
the mean aggregator, any directional aggregator of the
first Laplacian eigenvector and injective degree-scalers are
strictly more powerful than the 1-WL test.

2.10. Data augmentation

Another theoretical result is that the directions in the graph
allow to replicate some of the most common data augmenta-
tion techniques used in computer vision, namely reflection,
rotation and distortion. The main difference is that, instead
of modifying the image (such as a 5◦ rotation), the proposed
transformation is applied on the vector field defining the
aggregation kernel (thus rotating the kernel by −5◦ without
changing the image). This offers the advantage of avoid-
ing to pre-process the data since the augmentation is done
directly on the kernel at each iteration of the training.

In appendix B.1, we explain how we can generalize some
image augmentation techniques by defining the reflection,
rotation and distortion augmentations in our DGN frame-
work, and provide early results on the CIFAR10 dataset in
appendix B.2.

3. Implementation
We implemented the models using the DGL and Py-
Torch libraries and we provide the code at the address
https://github.com/Saro00/DGN. We test our method on
standard benchmarks from (Dwivedi et al., 2020) and (Hu
et al., 2020), namely ZINC, CIFAR10, PATTERN, MolHIV
and MolPCBA with more details on the datasets and how
we enforce a fair comparison in appendix C.1.

For the empirical experiments we inserted our proposed ag-
gregation method in two different type of message passing
architectures used in the literature: a simple convolutional
architecture similar to the one present in GCN (equation 9a)
(Kipf & Welling, 2016) and a more complex and general
one typical of MPNNs (9b) (Gilmer et al., 2017) with or
without edge features eji. The time complexity of our ap-
proach is O(Em), which is identical to PNA (Corso et al.,
2020), where E is the number of edges and m the number
of aggregators, with an additional O(Ek) to pre-compute
the k-first eigenvectors, as explained in the appendix C.2.

X
(t+1)
i = U

(⊕
(j,i)∈E

X
(t)
j

)
(9a)

X
(t+1)
i = U

(
X

(t)
i ,

⊕
(j,i)∈E

M
(
X

(t)
i , X

(t)
j , eji︸︷︷︸

optional

))
9b)

Here,
⊕

is an operator which concatenates the results of
multiple aggregators, X is the node features, M is a linear
transformation and U a multiple layer perceptron (MLP).
This simple architecture of equation 9a is observed visually
in steps (f-g) of figure 1.

We further use degree scalers S(d, α) defined below to scale
the aggregation results according to each node’s degree, as

(

https://github.com/Saro00/DGN

Directional Graph Networks

proposed by the PNA model (Corso et al., 2020). Here, d is
the degree of a given node, δ is the average node degree in
the training set, and α is a parameter set to −1 for degree-
attenuation and 1 for degree amplification. Note that each
degree scaler is applied to the result of each aggregator, and
the results are concatenated.

S(d, α) =

(
log(d+ 1)

δ

)α
, δ =

1

|train|
∑
i∈ train

log(di+1)

(10)

We tested the directional aggregators across the datasets
using the gradient of the first k eigenvectors∇φ1,...,k as the
underlying vector fields. Here, k is a hyperparameter, usu-
ally 1 or 2, but could be bigger for high-dimensional graphs.
To deal with the arbitrary sign of the eigenvectors, we take
the absolute value of the result of equation 6, making it
invariant to a reflection of the field. In case of a discon-
nected graph, φi is the i-th eigenvector of each connected
component. Despite the numerous aggregators proposed in
appendix A, onlyBdx andBav are tested empirically.

The metrics used to measure the performance of a model de-
pend are enforced for each dataset and provided by (Dwivedi
et al., 2020) and (Hu et al., 2020). In particular, we use the
mean absolute error (MAE), the accuracy (acc), the area
under the receiver operating curve (ROC-AUC), and the
average precision (AP).

4. Results and discussion
Directional aggregation Using the benchmarks intro-
duced in section 3, we present in figure 5 a fair comparison
of various aggregation strategies using the same parameter
budget and hyperparameters. We see a consistent boost
in the performance for simple, complex and complex with
edges models using directional aggregators compared to the
mean-aggregator baseline.

With our theoretical analysis in mind, we expected to per-
form well on PATTERN since the flow of the first eigenvec-
tors are meaningful directions in a stochastic block model
(i.e., these eigenvectors tend to correlate with community
membership). The results match our expectations, outper-
forming all the previous models.

In particular, we see a significant improvement in the molec-
ular datasets (ZINC, MolHIV and MolPCBA) when using
the directional aggregators, especially for the derivative ag-
gregationB1

dx (noted dx1 in figure 5). We believe this is due
to the capacity to efficiently move messages across opposite
parts of the molecule and to better understand the role of
atom pairs. We further believe that the derivative aggregator
is better able to capture high-frequency directional signals,
similarly to the Gabor filters in computer vision.

Further, the thesis that DGNs can bridge the gap between

CNNs and GNNs is supported by the clear improvements
on CIFAR10 over the baselines.

Improvements over positional embeddings. In the work
by (Dwivedi et al., 2020), they proposed the use of posi-
tional encoding of the eigenvectors. However, our experi-
ments with the positional encoding of the first 2 non-trivial
eigenvectors, noted pos1, pos2 in figure 5, showed no clear
improvement on most datasets. In fact, Dwivedi et al. noted
that many eigenvectors and high network depths are re-
quired for improvements, yet we outperform their results
with fewer parameters, less depth, and only 1-2 eigenvec-
tors, further motivating their use as directional flows instead
of positional encoding.

Comparison to the literature. In order to compare our
model with the literature, we fine-tuned it on the various
datasets and we report its performance in figure 6. We
observe that DGN provides significant improvement across
all benchmarks, highlighting the importance of anisotropic
kernels that are dependant on the graph topology.

Note that the results in Figure 6 are better those in Figure
5 since the latter uses a more exhaustive parameter search,
and uses the min/max aggregators proposed in PNA (Corso
et al., 2020) alongside the directional aggregators.

5. Conclusion
The proposed DGN method allows to address many prob-
lems of GNNs, including the lack of anisotropy, the low
expressiveness, the over-smoothing and over-squashing. For
the first time in graph networks, we generalize the direc-
tional properties of CNNs and their data augmentation capa-
bilities. Based on the intuitive idea that the low-frequency
eigenvectors of the graph Laplacian gives an interpretable
directional flow, we backed our work by a set of strong theo-
retical results showing that these eigenvectors are important
in connecting nodes that are far away and improving the
expressiveness in regards to the WL-test.

The work being also supported by strong empirical results,
we believe it will give rise to a new family of directional
GNNs. In fact, we introduce in the appendix different av-
enues for future work, including the hardening of the ag-
gregators A.4, the introduction of a zero-padding at the
boundaries A.6, the implementation of radius-R kernels
A.7, and the full study of directional data augmentation B.1.
Future methods could also improve the choice of multiple
directions beyond the selection of the k-lowest frequencies.

Broader Impact. This work will extend the usability of
graph networks to all problems with engineering and phys-
ically defined directions, thus making GNN a new labora-
tory for signal processing, physics, material science and
molecular and cell biology. In fact, the anisotropy present

Directional Graph Networks

ZINC PATTERN CIFAR10 MolHIV MolPCBA

Aggregators
Simple Complex Complex-E Simple Complex Simple Complex Simple Complex Complex-E

MAE MAE MAE % acc % acc % acc % acc % ROC-AUC % AP % AP

mean 0.316 0.353 0.262 80.77 83.34 55.9 62.8 75.1 26.04 26.38

mean pos1 0.349 0.332 0.297 80.76 83.74 75.8 26.97 27.50

mean pos1 pos2 0.344 0.330 0.284 84.51 81.25 76.1 26.03 25.65

mean dx1 0.296 0.233 0.191 84.22 83.44 78.0 26.79 27.91

mean dx1 dx2 0.337 0.271 0.205 81.61 86.62 52.9 69.8 76.5 27.16 26.55

mean av1 0.317 0.332 0.276 84.54 83.21 78.4 25.97 26.66

mean av1 av2 0.367 0.332 0.260 85.12 85.38 60.6 65.1 77.1 25.61 26.67

mean dx1 av1 0.290 0.245 0.192 85.17 86.68 79.0 26.40 27.47

Best

Worst

Figure 5. Test set results using a parameter budget of ∼ 100k with the same hyperparameters as (Corso et al., 2020), except MolPCBA
with a budget of ∼ 7M . The low-frequency Laplacian eigenvectors are used to define the directions, except for CIFAR10 that uses the
coordinates of the image. For brevity, we denote dxi and avi as the directional derivativeBi

dx and smoothingBi
av aggregators of the i-th

direction. We also denote posi as the i-th eigenvector used as positional encoding for the mean aggregator.

ZINC PATTERN CIFAR10 MolHIV MolPCBA

Model
No edge features Edge features No edge features No edge features Edge features No edge features All models

MAE MAE % acc % acc % acc % ROC-AUC % AP

GCN 0.469±0.002 65.880±0.074 54.46±0.10 76.06±0.97 * 20.20±0.24 *

GIN 0.408±0.008 85.590±0.011 53.28±3.70 75.58±1.40 * 22.66±0.28 *

GraphSage 0.410±0.005 50.516±0.001 66.08±0.24

GAT 0.463±0.002 75.824±1.823 65.48±0.33

MoNet 0.407±0.007 85.482±0.037 53.42±0.43

GatedGCN 0.422±0.006 0.363±0.009 84.480±0.122 69.19±0.28 69.37±0.48

PNA 0.320±0.032 0.188±0.004 86.567±0.075 70.46±0.44 70.47±0.72 79.05±1.32 * 28.38±0.35 *

DGN 0.219±0.010 0.168±0.003 86.680±0.034 72.70±0.54 72.84±0.42 79.70±0.97 28.85±0.30 *

Figure 6. Fine-tuned results of the DGN model against models from (Dwivedi et al., 2020) and (Hu et al., 2020): GCN (Kipf & Welling,
2016), GraphSage (Hamilton et al., 2017), GIN (Xu et al., 2018a), GAT (Veličković et al., 2017), MoNet (Monti et al., 2017), GatedGCN
(Bresson & Laurent, 2017) and PNA (Corso et al., 2020). All the models use ∼ 100k parameters, except those with * who use 300k to
6.5M . In ZINC the DGN aggregators are {mean, dx1, max, min}, in PATTERN {mean, dx1, av1}, in CIFAR10 {mean, dx1, dx2, max},
in MolHIV {mean, dx1, av1, max, min}, in MolPCBA {mean, sum, max, dx1}. Mean and uncertainty are taken over 4 runs for ZINC,
PATTERN and CIFAR10 and 10 runs for MolHIV and MolPCBA.

in a wide variety of systems could be expressed as vector
fields (spinor, tensor) compatible with the DGN framework,
without the need of eigenvectors. One example is mag-
netic anisotropicity in metals, alloys and organic molecules
that is dependant on the relative orientation to the mag-
netic field. Other examples are the response of materials to
high electromagnetic fields; all kind of field propagation in
crystals lattices (vibrations, heat, shear and frictional force,
young modulus, light refraction, birefringence); multi-body
or liquid motion; magnons and solitons in different media,
fracture propagation, traffic modelling; developmental bi-
ology and embryology, and design of novel materials and
constrained structures. Finally applications based on neural
operators for ODE/PDE may benefit as well.

References
Alon, U. and Yahav, E. On the bottleneck of

graph neural networks and its practical implications.
arXiv:2006.05205 [cs, stat], 2020. URL http://
arxiv.org/abs/2006.05205.

Antoine, J. P. and Murenzi, R. Two-dimensional di-

rectional wavelets and the scale-angle representation.
Signal Processing, 52(3):259–281, 1996. ISSN
0165-1684. doi: 10.1016/0165-1684(96)00065-5.
URL https://www.sciencedirect.com/
science/article/pii/0165168496000655.

Barlow, M. T. Random Walks and Heat Kernels on Graphs.
London Mathematical Society Lecture Note Series. Cam-
bridge University Press, 2017.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and
Vandergheynst, P. Geometric deep learning: going be-
yond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017. ISSN 1053-5888, 1558-0792. doi:
10.1109/MSP.2017.2693418. URL http://arxiv.
org/abs/1611.08097.

Chavel, I. Eigenvalues in Riemannian geometry. Academic
press, 1984.

Chung, F. and Yau, S. T. Discrete green’s functions.
Journal of Combinatorial Theory, Series A, 91(1):191–

http://arxiv.org/abs/2006.05205
http://arxiv.org/abs/2006.05205
https://www.sciencedirect.com/science/article/pii/0165168496000655
https://www.sciencedirect.com/science/article/pii/0165168496000655
http://arxiv.org/abs/1611.08097
http://arxiv.org/abs/1611.08097

Directional Graph Networks

214, 2000. ISSN 0097-3165. doi: 10.1006/jcta.2000.
3094. URL http://www.sciencedirect.com/
science/article/pii/S0097316500930942.

Chung, F., Graham, F., on Recent Advances in Spectral
Graph Theory, C. C., (U.S.), N. S. F., Society, A. M., and
of the Mathematical Sciences, C. B. Spectral Graph
Theory. CBMS Regional Conference Series. Confer-
ence Board of the mathematical sciences, 1997. ISBN
9780821803158. URL https://books.google.
ca/books?id=4IK8DgAAQBAJ.

Coifman, R. R. and Lafon, S. Diffusion maps.
Applied and Computational Harmonic Anal-
ysis, 21(1):5–30, 2006. ISSN 1063-5203.
doi: https://doi.org/10.1016/j.acha.2006.04.006.
URL https://www.sciencedirect.com/
science/article/pii/S1063520306000546.
Special Issue: Diffusion Maps and Wavelets.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
arXiv preprint arXiv:2004.05718, 2020.

Doshi, V. and Eun, D. Y. Fiedler vector approximation
via interacting random walks. arXiv:2002.00283 [math],
2000. doi: 10.1145/3379487. URL http://arxiv.
org/abs/2002.00283.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Fiedler, M. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 23:298–305, 01 1973. doi: 10.
21136/CMJ.1973.101168.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 1263–1272. JMLR.
org, 2017.

Grady, L. J. and Polimeni, J. Discrete calculus : applied
analysis on graphs for computational science. Springer,
2010.

Grebenkov, D. S. and Nguyen, B.-T. Geometrical struc-
ture of laplacian eigenfunctions. SIAM Review, 55(4):
601–667, Jan 2013. ISSN 1095-7200. doi: 10.1137/
120880173. URL http://dx.doi.org/10.1137/
120880173.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024–1034, 2017.

Hamilton, W. L. Graph Representation Learning. Morgan
and Claypool, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Islam, M. A., Jia, S., and Bruce, N. D. B. How much
position information do convolutional neural networks
encode? arXiv:2001.08248 [cs], 2020. URL http:
//arxiv.org/abs/2001.08248.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree
variational autoencoder for molecular graph generation.
arXiv:1802.04364 [cs, stat], 2018. URL http://
arxiv.org/abs/1802.04364.

Kang, E., Min, J., and Ye, J. C. A deep convolutional neural
network using directional wavelets for low-dose x-ray
CT reconstruction. Medical Physics, 44(10):e360–e375,
2017. ISSN 2473-4209. doi: 10.1002/mp.12344.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Klicpera, J., Groß, J., and Günnemann, S. Directional
message passing for molecular graphs. ICLR2020,
2019. URL https://openreview.net/forum?
id=B1eWbxStPH.

Knyazev, B., Taylor, G. W., and Amer, M. Understanding
attention and generalization in graph neural networks. In
Advances in Neural Information Processing Systems, pp.
4204–4214, 2019.

Kondor, R., Son, H. T., Pan, H., Anderson, B., and Trivedi,
S. Covariant compositional networks for learning graphs.
arXiv preprint arXiv:1801.02144, 2018.

Krizhevsky, A., 2009.

Lanczos, C. An iteration method for the solution of the
eigenvalue problem of linear differential and integral
operators. United States Governm. Press Office Los
Angeles, CA, 1950.

http://www.sciencedirect.com/science/article/pii/S0097316500930942
http://www.sciencedirect.com/science/article/pii/S0097316500930942
https://books.google.ca/books?id=4IK8DgAAQBAJ
https://books.google.ca/books?id=4IK8DgAAQBAJ
https://www.sciencedirect.com/science/article/pii/S1063520306000546
https://www.sciencedirect.com/science/article/pii/S1063520306000546
http://arxiv.org/abs/2002.00283
http://arxiv.org/abs/2002.00283
http://dx.doi.org/10.1137/120880173
http://dx.doi.org/10.1137/120880173
http://arxiv.org/abs/2001.08248
http://arxiv.org/abs/2001.08248
http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/1802.04364
https://openreview.net/forum?id=B1eWbxStPH
https://openreview.net/forum?id=B1eWbxStPH

Directional Graph Networks

Levie, R., Monti, F., Bresson, X., and Bronstein, M. M. Cay-
leyNets: Graph convolutional neural networks with com-
plex rational spectral filters. arXiv:1705.07664 [cs], 2018.
URL http://arxiv.org/abs/1705.07664.

Levy, B. Laplace-beltrami eigenfunctions towards an algo-
rithm that ”understands” geometry. In IEEE International
Conference on Shape Modeling and Applications 2006
(SMI’06), pp. 13–13, 2006. doi: 10.1109/SMI.2006.21.

Luan, S., Zhao, M., Chang, X.-W., and Precup, D. Break the
ceiling: Stronger multi-scale deep graph convolutional
networks. In Advances in Neural Information Processing
Systems, pp. 10943–10953, 2019.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. arXiv preprint
arXiv:1812.09902, 2018.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5115–5124, 2017.

O’Gara, S. and McGuinness, K. Comparing data aug-
mentation strategies for deep image classification. Ses-
sion 2: Deep Learning for Computer Vision, 2019.
doi: http://doi.org10.21427/148b-ar75. URL https:
//arrow.tudublin.ie/impstwo/7.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M.,
and Carter, S. An overview of early vision in InceptionV1.
Distill, 5(4):e00024.002, 2020. ISSN 2476-0757. doi:
10.23915/distill.00024.002. URL https://distill.
pub/2020/circuits/early-vision.

Peng, H., Li, J., Gong, Q., Wang, S., Ning, Y., and Yu,
P. S. Graph convolutional neural networks via motif-
based attention. arXiv:1811.08270 [cs], 2019. URL
http://arxiv.org/abs/1811.08270.

Rong, Y., Huang, W., Xu, T., and Huang, J. DropEdge:
Towards deep graph convolutional networks on node clas-
sification. ICLR2020, pp. 17, 2020.

Saerens, M., Fouss, F., Yen, L., and Dupont, P. The principal
components analysis of a graph, and its relationships to
spectral clustering. In European conference on machine
learning, pp. 371–383. Springer, 2004.

Sato, R., Yamada, M., and Kashima, H. Approximation ra-
tios of graph neural networks for combinatorial problems.
arXiv preprint arXiv:1905.10261, 2019.

Shorten, C. and Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. Journal of Big
Data, 6(1):60, 2019. ISSN 2196-1115. doi: 10.1186/

s40537-019-0197-0. URL https://doi.org/10.
1186/s40537-019-0197-0.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Xu, B., Shen, H., Cao, Q., Qiu, Y., and Cheng, X.
Graph wavelet neural network. arXiv:1904.07785 [cs,
stat], 2019. URL http://arxiv.org/abs/1904.
07785.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018a.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In International Confer-
ence on Machine Learning, pp. 5453–5462, 2018b.

Yue Lu and Minh N. Do. The finer directional wavelet
transform. In Proceedings. (ICASSP ’05). IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, 2005., volume 4, pp. 573–576. IEEE, 2005.
ISBN 978-0-7803-8874-1. doi: 10.1109/ICASSP.2005.
1416073. URL http://ieeexplore.ieee.org/
document/1416073/.

http://arxiv.org/abs/1705.07664
https://arrow.tudublin.ie/impstwo/7
https://arrow.tudublin.ie/impstwo/7
https://distill.pub/2020/circuits/early-vision
https://distill.pub/2020/circuits/early-vision
http://arxiv.org/abs/1811.08270
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/1904.07785
http://arxiv.org/abs/1904.07785
http://ieeexplore.ieee.org/document/1416073/
http://ieeexplore.ieee.org/document/1416073/

