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Abstract
Counterfactual estimation using synthetic controls
is one of the most successful recent methodologi-
cal developments in causal inference. Despite its
popularity, the current description only considers
time series aligned across units and synthetic con-
trols expressed as linear combinations of observed
control units. We propose a continuous-time alter-
native that models the latent counterfactual path
explicitly using the formalism of controlled differ-
ential equations. This model is directly applicable
to the general setting of irregularly-aligned multi-
variate time series and may be optimized in rich
function spaces – thereby improving on some lim-
itations of existing approaches.

1. Introduction
Counterfactual estimation poses the question of what would
have been the outcome if a different treatment, policy or
intervention1 had been applied. To answer this question
one often seeks a control group of comparable units e.g.,
individuals, patients, or states, to approximate a target unit’s
outcome trajectory had a different treatment been applied.

We focus on the case where a single target unit adopts the
treatment of interest at a particular point in time, and then re-
mains exposed to this treatment at all times afterwards. Both
pre-treatment and post-treatment outcomes are assumed to
be available. We ask whether we can infer the counterfactual
trajectory over time had the unit not been exposed to the
treatment using a population of control units never exposed
to the treatment.

The synthetic control method (Abadie et al., 2010; Abadie
& Gardeazabal, 2003) is one of the most important recent
innovations in causal inference to solve this problem. It
recognizes that a weighted combination of control units
(instead of the standard procedure of seeking a single control
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or average in a neighbourhood of controls) often provides a
more informative comparison for treatment effect estimation
and then formalizes the selection of the comparison units
using a data driven procedure.

Synthetic controls have become widely popular in the fields
of policy analysis due to their simplicity and transparency.
They have been used to assess the effect of tax hikes on
the consumption of cigarettes (Abadie et al., 2010; Abadie,
2019), of drug programs on drug use and crime (Robbins
et al., 2017), of immigration policies (Borjas, 2017; Bohn
et al., 2014), of minimum wages (Allegretto et al., 2017),
of terrorism on economic growth (Abadie & Gardeazabal,
2003), of large political changes and events (Hope, 2016),
and also frequently in the biomedical sciences for estimating
public health interventions (Pieters et al., 2016; Bouttell
et al., 2018).

1.1. The synthetic control method

The typical setting considers n units Yi =
(Yi,t1 , . . . , Yi,tm) ∈ Rm, i = 1, . . . , n, each observed on
the same grid of time points t1, . . . , tm. By convention,
and without loss of generality, one unit (i = 1) receives the
treatment or intervention at time T ∈ (t0, tm) while the rest
act as the control group. Let Y 0

i,t be the potential outcome
for unit i at time t in a hypothetical world where the
intervention did not occur, and analogously let Y 1

i,t be the
corresponding potential outcome assuming the intervention
did occur. Both are functions evaluated at time t.

The observed outcome for unit i at time t, denoted by Yi,t,
therefore satisfies:

Y1,t = Y 0
1,t + (Y 1

1,t − Y 0
1,t)D1,t,

Yi,t = Y 0
i,t, i = 2, . . . , n, (1)

where D1,t is a binary indicator of whether unit 1 is treated
at time t, taken to be 0 at all times before treatment at time
T and 1 at all time after time T . τ1(t) = Y 1

1 (t)− Y 0
1 (t) is

the causal effect of intervention on unit 1 at time t.

Synthetic control methods suppose that there exist weights
w2, . . . , wn such that Y 0

1,t can be written as a weighted
average of observed control outcomes: Y 0

1,t =
∑n
i=2 wiYi,t,

for t ∈ [t0, T ) before treatment assignment. And then
use this approximation to compute the causal effect of the
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Figure 1. Left panel: Some data process is observed at misaligned observation times. The problem is to approximate the counterfactual
trajectory of Time series 1 after time T . Middle panel: Previous work typically requires aligned observation times and synthetic controls∑n

i=2 wiYi,t are defined to depend discretely and linearly on control observations. Right panel: In contrast, the proposed continuous-time
synthetic control Y1,T +

∫ t

T
f(Y 0

1,s) dY
0
s depends continuously on control paths over time and naturally accommodates for misaligned

observations and complex dynamics.

intervention:

τ̂1(t) = Y1,t −
n∑
i=2

wiYi,t, (2)

for every t > T .

The time series defined by
∑n
i=2 wiYi,t is the synthetic

control.

It is called synthetic control because it is constructed such as
to be representative of the treated unit (i = 1) had the treated
unit not received treatment, and can be justified by assuming
an underlying linear data generating mechanism for the
data (with or without observed or unobserved confounders)
(Abadie et al., 2010).

A large and varied set of strategies for the estimation of
(w2, . . . , wn) have been proposed. We review some of these
in section 4.

1.2. Limitations from a dynamical systems perspective

We seek to improve upon two limitations of discrete-time
synthetic controls.

1. In reality, the time series (Yi,t1 , . . . , Yi,tm) is often as-
sumed to be sequence of observations from an under-
lying continuous process. Synthetic controls may then
be interpreted as a discrete approximation of the latent
counterfactual path of the treated unit. However, this
approximation typically breaks down if units are mis-
aligned in time or irregularly sampled. An issue that may
be solved only imperfectly by discarding information or
interpolating the data.

2. Moreover, for complex problems, the linearity of con-
trol combinations may be restrictive. And, for general
dynamical systems the assumption that the outcome cor-
relations (w2, . . . , wn) are static and invariant over time

is not plausible. For instance, the correlation between
control and treated units may change over time if driven
by weakly coupled dynamical systems. Examples of
such systems arise in social sciences (Ranganathan et al.,
2014), biology (Heltberg et al., 2019), and have been
studied in the context of synthetic controls in (Ding &
Toulis, 2020). For extrapolation over time to be consis-
tent these dynamics should be captured.

1.3. Contributions

In this paper we take a different approach to synthetic con-
trol estimation rooted in the theory of dynamical systems.

We propose to model the synthetic control as the solution to
a controlled differential equation (Lyons et al., 2007),

dY 0
1,t = f

(
dY2,t, . . . , dYn,t, Y

0
1,t

)
, Y 0

1,t0 = y1,t0 , (3)

where y1,t0 is an initial value and f is a latent vector field
that is learnt from data and serves to combine control paths
to approximate the counterfactual dynamics of the treated
unit. In this context, at each time t, Y 0

1,t describes the
counterfactual state of the treated unit and it evolves as a
function of its present state and the infinitesimal variation
of control trajectories Y2,t, . . . , Yn,t.

By integrating both sides, we construct a continuous-time
synthetic control that is driven by a combination of the
latent paths of control units. We thus retain the interpre-
tation of equation (2) with the exception that we model a
combination of the latent infinitesimal variation of control
outcomes instead of the explicit discrete-time observations
of control outcomes.

This model has three key features.

1. It is capable of processing irregularly aligned data and
may be evaluated at any point over time.
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2. f may be modelled in rich function spaces that may cap-
ture non-linearities and varying dependencies between
units over time.

3. It may be trained efficiently with existing adjoint back-
propagation algorithms and is easy to implement2 –
thereby offering a practical, fully non-parametric, and
continuous-time alternative to existing synthetic control
methods.

2. Problem formulation
This section extends the formulation of synthetic controls to
a more general time series setting, illustrated in Figure 1.

Suppose that each latent path Yi : [t0, tm] → Rq is
partially-observed through m irregular time series samples,
{(t0, Yi,t0), (t1, Yi,t1), . . . , (tm, Yi,tm)}, with each tj ∈ R
the timestamp of the observation Yi,tj ∈ Rq , and t0 < · · · <
tm. q refers to the dimensionality of the outcome. To avoid
notation clutter, the time subscript refers to function eval-
uation and the case where each i-th observation sequence
has its own mi irregular time stamps ti,0, . . . , ti,mi

will be
described later.

Without loss of generality, only the counterfactual path of
the first unit Y 0

1,t after treatment assignment at time t > T
is of interest. As in equation (1), Y 0

1 is partially observed
through discrete observations in the data up to time T and
Y 1
1 is partially observed after time T . All other units are not

administered treatment and act as control paths. Let Y0 =
(Y 0

2 , . . . , Y
0
n ) : [t0, tm] → R(n−1)×q be the (n − 1) × q

dimensional path that includes all n− 1 control paths.

We make the assumption that there exists a continuous func-
tion f : Rq → Rq×(n−1) such that the counterfactual path
of the treated unit Y 0

1 : [t0, tm] → Rq is defined as the
solution to the following controlled differential equation
(CDE),

Y 0
1,t = Y 0

1,t0 +

∫ t

t0

f(Y 0
1,s) dY

0
s , t ∈ (t0, tm], (4)

where the integral is a Riemann–Stieltjes integral and
"f(Y 0

1,s) dY
0
s" is understood as matrix-vector multiplica-

tion (Kidger et al., 2020). (4) is the integral of (3) where
the vector field f in (3) is taken to act linearly on dY0

s . We
say that Y 0

1 is controlled or driven by Y0, hence the name
controlled differential equations.

Definition 1 A continuous-time synthetic control, approxi-
mating the counterfactual path Y 0

1,t is defined as

Y 0
1,T +

∫ t

T

f(Y 0
1,s) dY

0
s , t ∈ (T, tm],

2Our implementation will be made available upon acceptance.

and may be interpreted as a non-linear continuous-time
extension to the linear discrete-time synthetic control∑n
i=2 wiY

0
i,t of (Abadie et al., 2010).

Similarly, the causal effect at time t > T of an intervention
administered at time T can be estimated through:

τ̂1,t = Y 1
1,t − Y 0

1,T −
∫ t

T

f(Y 0
1,s) dY

0
s , t ∈ (T, tm],

The first term Y 1
1,t is observed for t ∈ (T, tm] while the

integral term is learned by optimizing f such as to approx-
imate the (observed, through irregular samples) Y 0

1,t for
t ∈ (t0, T ) before intervention at time T .

This strategy may be justified i.e., the treatment effect esti-
mator is unbiased, in the case that f is linear, starting with
an underlying linear data generating dynamical system, sim-
ilarly to (Abadie, 2019). We show this in the Appendix.
In the non-linear case, an estimator of f will typically be
biased due to multiple different local minima.

2.1. Remarks

We make the following remarks as a comparison to the
original synthetic control methodology.

• Continuous-time. The proposed formalism explicitly
models observed sequences as processes evolving contin-
uously in time. It therefore uses the full information of
path observations and time intervals between observations
and can be evaluated at any point in time, as illustrated in
Figure 1.

• Regularity of dynamics. The implicit assumption is that
the dynamics of the system are regular enough: the dy-
namics before time T can be extrapolated to the dynamics
after time T . This is in contrast with the invariance in cor-
relations at all times that the vector of weights in equation
(2) specifies. In weakly coupled dynamical systems we
know this assumption to break down with important con-
sequences for the validity of the extrapolation of synthetic
controls, as shown in (Ding & Toulis, 2020).

• Latent state. In realistic scenarios, it is often the case
that observations are a function of an underlying latent
state whose dynamics follow a differential equation e.g., a
country’s economy may evolve according to a differential
equation although in practice only economics indicators
are observed.

Accordingly, one may define a latent state g(Y 0
1 ) =: z1 :

[t0, tm]→ Rh of the counterfactual path Y 0
1 as the solu-

tion to equation (4), with h the dimension of the latent
state. The synthetic control is then the projection of this
latent state onto the space of observations, just as indi-
cators are a projection of the latent state of a country’s
economy. This formalism is described in section 3.
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• Transparency. Synthetic controls are desirable also be-
cause of their accessible and transparent interpretation.
Non-linearities inevitably trade-off some transparency for
greater flexibility but we will see that we may regularize
the solution space to promote sparsity in the control paths
Y0 that influence the product ”f(Y 0

1,s) dY
0
s”. As a result,

only few controls drive the counterfactual path of interest,
which may be inspected by the user for interpretation.

• Misaligned observations. Since only discrete observa-
tions are usually available, each path may be approxi-
mated in practice with natural cubic splines. One benefit
is that this allows for irregular time stamps between units
as each path may be interpolated independently.

3. Neural Continuous Synthetic Controls
In this section, we propose to parameterize f in equation
(4) as a neural network with constraints on the sparsity of
control path contributions – an instance of Neural CDEs
(Kidger et al., 2020).

Neural CDEs are a family of continuous-time models that
explicitly define the latent vector field fθ by a neural net-
work parameterized by θ, and allow for the dynamics to be
modulated by the values of an auxiliary path over time. It
generalizes the popular Neural ODE formulation of (Chen
et al., 2018), whose dynamics in contrast are fully specified
by an initial state, and may be implemented similarly by
augmenting the vector field to vary as a function of Y0

t

(the set of control paths) as well as Y1,t (the treated path of
interest).

Let Ỹ 0
i : [t0, tm] → Rq be the natural cubic spline with

knots at t0, . . . , tm (or more generally at ti,0, . . . , ti,ni
) such

that Ỹ 0
i,tj

= (Y 0
i,tj
, tj), for j = 0, . . . ,m. As we observe

only a discretization of the underlying process, Ỹ 0
i is an ap-

proximation for which derivatives may be easily computed.

Let gη : Rq → Rl be a neural network that embeds the
observations into a l-dimensional latent state zt := gη(Y

0
1,t).

Let fθ : Rl → R(n−1)×l be a neural network parameteriz-
ing the latent vector field and let and hν : Rl → Rq be a
neural network that defines the observation mechanism pro-
jecting the latent state into the observation space to recover
an estimate of the counterfactual path ŷ1,t := hν(zt).

We generalize our problem formulation to assume that a
latent path zt (instead of the actual observed Y 0

1,t) can be
expressed as the solution to a controlled differential equation
of the form

zt = zt0 +

∫ t

t0

f(zs) dY
0
s , t ∈ (t0, tm]. (5)

3.1. Interpretability via sparse contributions

Arguably one of the reasons for the success of synthetic
controls is their natural interpretation as a weighted, sparse
combination of control paths that can be inspected by the
user.

While non-linearities inevitably make the resulting fit more
complex and less interpretable, one may enforce sparsity by
explicitly including a weighted diagonal matrix that restricts
the contribution of control paths. This extension defines the
latent counterfactual state as a solution to

zt = zt0 +

∫ t

t0

f(zs) WdY0
s , t ∈ (t0, tm], (6)

where W ∈ R(n−1)×(n−1) is a time-independent diagonal
matrix of trainable parameters that are optimized subject
to an l1 penalty on its values to encourage sparsity. It is
clear then that Y 0

1 is independent of Y 0
i+1 if [W]ii = 0, for

i = 1, . . . , n−1. In fact, we have the following proposition,
which implies that this constraint precisely identifies the set
of CDEs that are independent of Y 0

i :

Proposition 1. Consider the class of CDEs C defined by
(5) that are independent of Y 0

i and the class of CDEs C0
defined by (6) such that the i-th diagonal entry of W is zero.
Then C = C0.

Proof. Given in the Appendix.

This proposition provides a rigorous way to enforce that a
Neural CDE approximation depends only on a few control
paths, and implies also that there is no loss of expressivity
or approximating power in the estimation of CDEs that are
independent of some control paths using this parameteriza-
tion.

3.2. Algorithm

For each estimate of fθ and gη the forward latent trajec-
tory in time that these functions define through (6) can be
computed using any numerical ODE solver:

ẑt1 , . . . , ẑtm =

ODESolve(fθ, ẑt0 , (t1,Y
0
t1), . . . , (tm,Y

0
tm)). (7)

The goodness of fθ, gη , and hν , is then quantified by a loss
function L : Rq ×Rq → R that compares the reconstructed
signal ŷ1,t := hν(ẑt) with the observed trajectory values
y1,t for t < T (before treatment assignment). Gradients
with respect to θ may be computed with adjoint sensitivi-
ties treating the ODE solver as a black-box and outputting
the predicted state of the system ẑ(t) at multiple times, as
described by (Chen et al., 2018; Kidger et al., 2020).
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The optimization problem is defined as

arg min
θ,η,ν,W

R(fθ, gη, hν ,W), (8)

R(fθ, gη, hν ,W) :=
∑
i:ti<T

L (y1,ti , ŷ1,ti) + λ

n−1∑
j=1

|Wjj |,

where λ > 0 is a hyperparameter and |·| denotes the absolute
value.

We call this algorithm for estimating the counterfactual
trajectory of a treated unit the Neural Continuous Synthetic
Control method (NC-SC).

4. Related work
In light of the remarks and methods presented above, in this
section we review the methodological body of work that
has extended the original proposal of Abadie et al. (Abadie
et al., 2010), we review the literature on treatment effect esti-
mation with structural models and we review other methods
for differential equation modelling.

Synthetic controls. A particular choice for estimating
weights depending on data structure and model assump-
tions is often the distinguishing feature of recent synthetic
control methods. For instance, (Doudchenko & Imbens,
2016) propose to use negative weights and intercept terms,
(Amjad et al., 2018; Chernozhukov et al., 2017) propose reg-
ularization terms to promote sparsity and robustness, (Ding
& Toulis, 2020) propose time-varying weights to model
changing correlations between variables and (Athey et al.,
2018) interpret counterfactual estimation as a matrix com-
pletion problem regularized with matrix norms. However,
whilst often improving goodness of fit, matching in discrete
time remains difficult with irregularly aligned data i.e., unit
observations not aligned in time.

Structural models. The synthetic control literature is of-
ten discussed in contrast to structural time series methods,
that explicitly fit the trajectory of counterfactual outcomes
using lagged outcomes and covariates. These include the
g-computation formula, marginal structural models (Robins
et al., 2000; Cole & Hernán, 2008) and several flexible
extensions using neural networks and Gaussian processes
including (Bica et al., 2020; Soleimani et al., 2017; Schulam
& Saria, 2017). One contrast is that structural methods bal-
ance distributions between treated and control units (relying
on regularity of the treated unit trajectory over time to ex-
trapolate counterfactual estimates) while synthetic controls
match treated units to control units (relying on regularity
across units to extrapolate counterfactual estimates).

There is an important contrast also in the data requirements
of these two approaches. For accurate extrapolation struc-
tural models require a large number of control paths and

many covariates to approximate the underlying causal struc-
ture, while synthetic controls require a large number of path
observations. Many applications where synthetic controls
have proven successful (mostly with 20− 40 control paths,
complex dynamics and hidden variables) are inherently not
amenable to structural modelling.

Differential equation modelling. Recently, differential
equation models for irregular time series data are increas-
ingly commonplace in the machine learning literature. Of
note are Neural Ordinary Differential Equations (ODEs)
(Chen et al., 2018), several extensions that modulate the
trajectory of interest with incoming data (Rubanova et al.,
2019; De Brouwer et al., 2019), and many other proposals
that extend the design of vector fields (Dupont et al., 2019;
Zhang et al., 2020; Chen et al., 2020), improve optimiza-
tion performance (Li et al., 2020) and incorporate processes
driven by stochastic noise (Tzen & Raginsky, 2019). In the
context of causality, (De Brouwer et al., 2021; Bellot et al.,
2021) study causal discovery in continuous-time using Neu-
ral ODEs and (Soleimani et al., 2017) model counterfactuals
in continuous-time using specialized pharmacokinetic data
generating systems for applications in medicine. This paper
in contrast proposes the first continuous-time formalism for
synthetic control estimation.

Control in reinforcement learning. The "continuous con-
trol" terminology is also found in the reinforcement learning
literature to designate physical control tasks with continuous
(real valued) action spaces (Lillicrap et al., 2015). This is
different and not to be confused with the causality definition
where the term refers to absence of treatment.

5. Experiments
In this section we experiment with synthetic data from
Lorenz’s chaotic dynamical system and discuss 2 studies
that have received attention in the public policy literature.

Evaluation metric. In all experiments, we report mean and
standard deviations of the control estimation error

1

|T |
∑
t∈T
||y01,t − ŷ01,t||22, (9)

over 10 model runs, where for real data T = {ti : ti <
T, i = 2, . . . , n} is the pre-intervention observation times
(where untreated data is observed). For synthetic data we
use all observation times T = {t1, . . . , tm} for evaluation
(as we are free to generate any amount of data).

Evaluation methods. Comparisons are made with the orig-
inal approach of (Abadie et al., 2010) with weights con-
strained to be non-negative and summing to 1 (SC), with
an extension that instead matches pre-treatment outcomes
in a reproducing kernel Hilbert space using an instance of
kernel mean matching (Gretton et al., 2009) (KMM-SC),
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(a) Sample control paths.

Aligned 30% Dropped 50% Dropped 70% Dropped
SC .0521 (.003) .0541 (.003) .0545 (.003) .0552 (.003)
KMM-SC .0531 (.003) .0564 (.004) .0566 (.005) .0589 (.005)
R-SC .0510 (.002) .0533 (.004) .0560 (.004) .0555 (.004)
MC-SC .0552 (.003) .0570 (.003) .0595 (.002) .0637 (.003)
NC-SC (ours) .0484 (.003) .0488 (.003) .0496 (.003) .0490 (.003)

(b) Counterfactual estimation performance (lower better) on aligned and mis-aligned observations.

Figure 2. Experiments on Lorenz’s model.

with robust synthetic controls (R-SC) that use penalized
weight estimation as in (Doudchenko & Imbens, 2016), and
with the matrix completion (MC-SC) approach of (Athey
et al., 2018).

For experiments involving misaligned data, all methods
except NC-SC require some form of prior interpolation and
evaluation on a regular grid of time points. Here we use
cubic spline interpolations with knots at observation times
and smoothing parameter chosen visually for good fit.

Precise experimental details including neural network archi-
tectures, optimization software, implementation details and
data sources may be found in the Appendix.

5.1. Lorenz’s chaotic model

We begin by demonstrating the efficacy of NC-SC on irreg-
ularly aligned time series from Lorenz’s model for chaotic
dynamical systems (Lorenz, 1996).

The dynamics in a d-dimensional Lorenz model are

d

dt
xi(t) = (xi+1(t)− xi−2(t)) · xi−1(t)− xi(t) + F,

for i = 1, . . . , d, where x−1(t) := xd−1(t), x0(t) := xp(t),
xd+1(t) := x1(t) and F is a treatment variable that has the
effect of changing the level of non-linearity and chaos in
the series. We take F = 5 (mild chaotic behaviour) as
the baseline control behaviour and F = 10 to define the
dynamics of the treated regime. The initial state of each
variable is sampled from a standard Gaussian distribution
and d is set to 10.

Experiment design. For simplicity, only the counterfactual
trajectory of the first dimension of the system is of interest,
y01,t := x1(t), while control trajectories are each similarly
defined but with different random initializations of Lorenz’s
model. That is, y02,t := x1(t) with some random initializa-
tion, y03,t := x1(t) with some different random initialization
and so on (this is equivalent to having units with different
features in static models). We set the number of control
paths to 20.

The problem is to construct a synthetic control for the treated

unit had F = 5 for all t, given that we observed 200 time
observations (t < 200) with F = 5 before treatment assign-
ment at time T = 200.

Sequences of observations from these paths are observed in
two configurations.

1. Regularly aligned with a fixed grid of observation times.

2. Irregularly aligned by removing randomly 30%, 50%
and 70% of the aligned data, independently for each
unit.

Results. Performance is computed on a held-out segment
of the data (extrapolating the counterfactual path of the
treated unit over t ∈ (200, 400)). Performance results, as
well as an illustration of control paths is given in Figure 2.
Continuous-time synthetic controls outperform every other
model considered and furthermore have relatively stable
performance with irregular data while other methods exhibit
a decrease in performance which we hypothesize is due to
worsening imputation performance.

Smoking Eurozone
SC .0248 (.00) .0339 (.00)
KMM-SC .0221 (.00) .0321 (.00)
R-SC .0002 (.00) .0230 (.00)
MC-SC .0005 (.00) .0299 (.00)
NC-SC (ours) .0001 (.00) .0003 (.00)

Table 1. Counterfactual estimation performance (lower better).

5.2. The Eurozone and current account deficits

Next, we consider an experiment that further highlights
the need for non-linear combinations of control paths to
accurately approximate the control path of the treated unit.

Experiment design. The problem is to evaluate the impact
of Eurozone membership on the path of current account
deficits, thought to have considerably aggravated the recov-
ery after the 2007-2008 financial crisis.

By the end of 2009, Europe was at the beginning of a multi-
year sovereign debt crisis, in which several Eurozone mem-
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Figure 3. Counterfactual current account predictions for Spain Ŷ 0
1,t

over time. The euro was made effective in 1998.

bers were unable to repay their government debt or to bail
out over-indebted banks. The eurozone crisis is thought to
have been caused in part by a sudden stop of foreign capi-
tal investments into countries that had substantial deficits,
fueled by low borrowing costs as a consequence, arguably,
of Eurozone membership (Frieden & Walter, 2017). One
may ask then whether there is any evidence for this claim,
whether or not a country’s current account deficits would
have been different had it not join the Eurozone.

We focus on one country, Spain. The data consists of yearly
current account figures from 1980 to 2010 for Spain as well
as 15 other countries outside the Eurozone, as collected
by David Hope in (Hope, 2016). The pre-treatment period
ranges from 1980 to 1998 when the Eurozone was made
effective (as illustrated in Figure 3).

Results. Performance results are given in Table 1. These
demonstrate that NC-SC can substantially improve perfor-
mance in this case, as also illustrated in the model fit to the
observed control trajectory in Figure 3.

Figure 4 shows which other countries were influential in
determining the synthetic control for Spain, inferred by
inspecting the non-zero entries of W. NC-SC uses com-
binations of current account balance figures from Chile,
Hungary, Japan, Mexico and Sweden, in contrast to those
of Great Britain, Israel, Mexico and Sweden used by the
original synthetic control method (Abadie et al., 2010). In-
terestingly, as a result, the projection given by NC-SC gives
a slightly different interpretation estimating a positive cur-
rent account balance had Spain not adopted the Euro in
contrast to a zero current account balance given by (Abadie
et al., 2010).

5.3. Smoking control in California

Next, we consider one of the most popular benchmarks for
synthetic control estimation, namely the evaluation of the
effect of the influential 1988 anti-smoking legislation in
California on cigarette sales.

Experiment design. At that time, California lead a wave
of anti-smoking legislation, known as Proposition 99, that

Figure 4. Counterfactual current account balance predictions for
Spain Ŷ 0

1,t over time and contrast with the trajectory of the most
influential control countries. The influential control countries are
Chile, Hungary, Japan, Mexico and Sweden.

served as a model for policy interventions in other states
later on and arguably reduced the prevalence of smoking.
The problem is to assess its effect in comparison to Califor-
nia’s cigarette sales had the legislation not been passed.

We follow the experiment by (Abadie et al., 2010) and
use annual state-level panel data for the period 1970-2000,
giving us 19 years of pre-intervention cigarette sales data.

Results. Performance comparisons are given in Table 1
and the corresponding fit and treatment effect (as the differ-
ence between the counterfactual estimation and observed
trajectory) is illustrated in Figure 5. Continuous-time syn-
thetic controls, as well as baseline methods match almost
exactly the pre-treatment trajectory of the treated unit and
all counterfactual projections point towards an important
treatment effect. The California anti-smoking legislation
was responsible for part of the lowering of cigarette sales.

We show in addition the contribution of each state to the
synthetic control in Figure 6, inferred by inspecting the
non-zero entries of W. In this case there is little contrast
with existing baselines; most methods use Nevada, Utah,
Montana, Colorado and Connecticut as the most influential
states for the construction of synthetic controls which serves
to confirm the estimates of NC-SC.

6. Discussion
We conclude with some additional remarks and clarifications
that may be of practical importance.

• On the role of covariates. Auxiliary covariates have
not played a role in the development of continuous-time
synthetic controls. While (Abadie et al., 2010) demon-
strate the treatment effect to be asymptotically unbiased
under a perfect match on both pre-treatment outcomes
and relevant covariates (among other conditions) this is
not strictly necessary as long as sufficient pre-treatment
outcomes are observed (see Theorem 1 (Botosaru & Fer-
man, 2019)). The intuition behind this result is that it
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Figure 5. Counterfactual cigarette sales predictions for California
Ŷ 0
1,t over time. Anti-smoking legislation was introduced in 1988.

Figure 6. Counterfactual cigarette sales predictions for California
Ŷ 0
1,t over time and contrast with the trajectory of the most influen-

tial control states.

would not be possible to match on a large number of pre-
treatment outcomes without matching on both observed
and unobserved relevant covariates.

However, if desired, matching on time-variant or time-
invariant covariates to define continuous-time synthetic
controls with our formalism is possible and straight-
forward by using a data-dependent lasso regularization
scheme on the matrix W. Instead of penalizing all en-
tries of W equally, one may adopt a relevance weighting
approach

∑n−1
i=1

1
p̂i
|Wii|, where p̂i > 0 measures the

relevance of the i-th control covariates towards match-
ing the covariates of the treated unit (higher values of p̂i
corresponding to more relevant control paths in this case).

For example, with n units of d-dimensional static covari-
ates X ∈ Rn×d observed along the outcome paths of
interest, p̂ = (p̂2, . . . , p̂n) may be defined by the linear
projection of X1 onto X2:n, p̂ = (XT

2:nX2:n)
−1XT

2:nX1.

• Control population. The similarity between the control
population and the treated unit in the pre-treatment period
and the posterior counterfactual trajectory underlies the
validity of synthetic controls. The choice of control popu-
lation is therefore important and there are two important
requirements that must be met.

A first requirement is that control units not be affected by
the intervention or treatment of interest so that they faith-
fully describe the counterfactual trajectory of the treated

unit. This assumption has to be justified and is not nec-
essarily always plausible. For instance one may argue
that public policy interventions have spillover effects e.g.,
cigarette sales of neighbouring control states to California
being affected by anti-smoking legislation or the econ-
omy of control countries with strong commercial ties to
Eurozone members influenced by the monetary union, in
which case counterfactual estimates will be biased. In
these particular two examples, this assumption however
has been carefully justified (Abadie et al., 2010; Hope,
2016).

A second requirement is that units, after the intervention,
not be subject to large idiosyncratic shocks that would not
have affected the treated unit in the absence of treatment as
such control units would not remain representative of the
counterfactual trajectory. This assumption relates to the
regularity of the correlations between control and treated
units over time, which holds if a common underlying
causal model for the data can plausibly be assumed.

• Data requirements. The credibility of synthetic con-
trols hinges on the accuracy of pre-treatment control
path approximation. Therefore a sizeable number of pre-
treatment observations should be available for valid ex-
trapolations. This is perhaps in contrast with structural
models that require observation of all covariates and a
larger number of control paths for accurate extrapolation.

We have omitted an explicit comparison with structural
models because of this practical difference. If not all vari-
ables in the data generating mechanism are observed, as
in our experiments (for instance, we do not have any in-
formation on the driving forces that determine the current
account balance in the Eurozone experiment), it is not
plausible to fit a structural equation model.

• Uncertainty estimation. As presented here, continuous
synthetic controls do not explicitly quantify uncertainty
in counterfactual estimation. Such extensions are feasible
given that stochastic differential equations (SDEs) can
be expressed as a controlled differential equation driven
by a stochastic process, and given existing work on back-
propagating through SDE solvers (Liu et al., 2019; Kong
et al., 2020) that may be used with a neural vector field in
analogy to Neural ODEs.

7. Conclusion
This paper demonstrates how synthetic control estimation
(Abadie et al., 2010) may be extended to continuous-time
using the mathematics of controlled differential equations
(Lyons et al., 2007).

Our proposal for counterfactual estimation, called Neural
Continuous Synthetic Controls, models explicitly the latent
paths of the observed time series defining a synthetic control
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as a combination of paths rather than as a combination of dis-
crete observations. Neural Continuous Synthetic Controls
are conceptually natural for modelling processes continu-
ously unfold over time and accommodate for irregularly
aligned data and more complex dynamics than previously
analysed.

Acknowledgements
We thank the anonymous reviewers for valuable feedback.
This work was supported by the Alan Turing Institute under
the EPSRC grant EP/N510129/1, the ONR and the NSF
grants number 1462245 and number 1533983.

References
Abadie, A. Using synthetic controls: Feasibility, data re-

quirements, and methodological aspects. Journal of Eco-
nomic Literature, 2019.

Abadie, A. and Gardeazabal, J. The economic costs of
conflict: A case study of the basque country. American
economic review, 93(1):113–132, 2003.

Abadie, A., Diamond, A., and Hainmueller, J. Synthetic
control methods for comparative case studies: Estimating
the effect of california’s tobacco control program. Journal
of the American statistical Association, 105(490):493–
505, 2010.

Allegretto, S., Dube, A., Reich, M., and Zipperer, B. Cred-
ible research designs for minimum wage studies: A re-
sponse to neumark, salas, and wascher. ILR Review, 70
(3):559–592, 2017.

Amjad, M., Shah, D., and Shen, D. Robust synthetic control.
The Journal of Machine Learning Research, 19(1):802–
852, 2018.

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., and
Khosravi, K. Matrix completion methods for causal panel
data models. Technical report, National Bureau of Eco-
nomic Research, 2018.

Bellot, A., Branson, K., and van der Schaar, M. Consistency
of mechanistic causal discovery in continuous-time using
neural odes. arXiv preprint arXiv:2105.02522, 2021.

Bica, I., Alaa, A. M., Jordon, J., and van der Schaar, M.
Estimating counterfactual treatment outcomes over time
through adversarially balanced representations. arXiv
preprint arXiv:2002.04083, 2020.

Bohn, S., Lofstrom, M., and Raphael, S. Did the 2007 legal
arizona workers act reduce the state’s unauthorized immi-
grant population? Review of Economics and Statistics,
96(2):258–269, 2014.

Borjas, G. J. The wage impact of the marielitos: A reap-
praisal. ILR Review, 70(5):1077–1110, 2017.

Botosaru, I. and Ferman, B. On the role of covariates in the
synthetic control method. The Econometrics Journal, 22
(2):117–130, 2019.

Bouttell, J., Craig, P., Lewsey, J., Robinson, M., and
Popham, F. Synthetic control methodology as a tool
for evaluating population-level health interventions. J
Epidemiol Community Health, 72(8):673–678, 2018.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Advances
in neural information processing systems, pp. 6571–6583,
2018.

Chen, R. T., Amos, B., and Nickel, M. Learning neural
event functions for ordinary differential equations. arXiv
preprint arXiv:2011.03902, 2020.

Chernozhukov, V., Wuthrich, K., and Zhu, Y. An exact and
robust conformal inference method for counterfactual
and synthetic controls. arXiv preprint arXiv:1712.09089,
2017.

Cole, S. R. and Hernán, M. A. Constructing inverse proba-
bility weights for marginal structural models. American
journal of epidemiology, 168(6):656–664, 2008.

De Brouwer, E., Simm, J., Arany, A., and Moreau, Y.
Gru-ode-bayes: Continuous modeling of sporadically-
observed time series. In Advances in Neural Information
Processing Systems, pp. 7379–7390, 2019.

De Brouwer, E., Arany, A., Simm, J., and Moreau, Y. Latent
convergent cross mapping. 2021.

Ding, Y. and Toulis, P. Dynamical systems theory for causal
inference with application to synthetic control methods.
In International Conference on Artificial Intelligence and
Statistics, pp. 1888–1898. PMLR, 2020.

Doudchenko, N. and Imbens, G. W. Balancing, regression,
difference-in-differences and synthetic control methods:
A synthesis. Technical report, National Bureau of Eco-
nomic Research, 2016.

Dupont, E., Doucet, A., and Teh, Y. W. Augmented neural
odes. In Advances in Neural Information Processing
Systems, pp. 3140–3150, 2019.

Frieden, J. and Walter, S. Understanding the political econ-
omy of the eurozone crisis. Annual Review of Political
Science, 20:371–390, 2017.

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borg-
wardt, K., and Schölkopf, B. Covariate shift by kernel
mean matching. Dataset shift in machine learning, 3(4):
5, 2009.



Policy Analysis using Synthetic Controls in Continuous-Time

Heltberg, M. L., Krishna, S., and Jensen, M. H. On chaotic
dynamics in transcription factors and the associated ef-
fects in differential gene regulation. Nature communica-
tions, 10(1):1–10, 2019.

Hope, D. Estimating the effect of the emu on current ac-
count balances: A synthetic control approach. European
Journal of Political Economy, 44:20–40, 2016.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural
controlled differential equations for irregular time series.
arXiv preprint arXiv:2005.08926, 2020.

Kong, L., Sun, J., and Zhang, C. Sde-net: Equipping
deep neural networks with uncertainty estimates. arXiv
preprint arXiv:2008.10546, 2020.

Li, X., Wong, T.-K. L., Chen, R. T., and Duvenaud, D. K.
Scalable gradients and variational inference for stochastic
differential equations. In Symposium on Advances in
Approximate Bayesian Inference, pp. 1–28, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liu, X., Si, S., Cao, Q., Kumar, S., and Hsieh, C.-J. Neural
sde: Stabilizing neural ode networks with stochastic noise.
arXiv preprint arXiv:1906.02355, 2019.

Lorenz, E. N. Predictability: A problem partly solved. In
Proc. Seminar on predictability, volume 1, 1996.

Lyons, T. J., Caruana, M., and Lévy, T. Differential equa-
tions driven by rough paths. Springer, 2007.

Pieters, H., Curzi, D., Olper, A., and Swinnen, J. Effect
of democratic reforms on child mortality: a synthetic
control analysis. The Lancet Global Health, 4(9):e627–
e632, 2016.

Ranganathan, S., Spaiser, V., Mann, R. P., and Sumpter,
D. J. Bayesian dynamical systems modelling in the social
sciences. PloS one, 9(1):e86468, 2014.

Robbins, M. W., Saunders, J., and Kilmer, B. A framework
for synthetic control methods with high-dimensional,
micro-level data: evaluating a neighborhood-specific
crime intervention. Journal of the American Statistical
Association, 112(517):109–126, 2017.

Robins, J. M., Hernan, M. A., and Brumback, B. Marginal
structural models and causal inference in epidemiology,
2000.

Rubanova, Y., Chen, R. T., and Duvenaud, D. Latent
odes for irregularly-sampled time series. arXiv preprint
arXiv:1907.03907, 2019.

Schulam, P. and Saria, S. Reliable decision support using
counterfactual models. In Advances in Neural Informa-
tion Processing Systems, pp. 1697–1708, 2017.

Soleimani, H., Subbaswamy, A., and Saria, S. Treatment-
response models for counterfactual reasoning with
continuous-time, continuous-valued interventions. arXiv
preprint arXiv:1704.02038, 2017.

Tzen, B. and Raginsky, M. Neural stochastic differential
equations: Deep latent gaussian models in the diffusion
limit. arXiv preprint arXiv:1905.09883, 2019.

Zhang, H., Gao, X., Unterman, J., and Arodz, T. Approxi-
mation capabilities of neural odes and invertible residual
networks. In International Conference on Machine Learn-
ing, pp. 11086–11095. PMLR, 2020.


