
Appendix for
Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling

Outline
The Appendix is outlined as follows:

In Appendix A.1, we give a more detailed description of our methods, focusing first on computing the simplex volume
and sampling from the simplexes, then describe vertex initialization and regularization, giving training details, and finally
describing the training procedure for multi-dimensional mode connectors.

In Appendix A.2, we describe several more results on volume and ensembling, particularly on the number of samples
required for good performance with SPRO and ESPRO.

Finally, in Appendix C, we plot the results of a larger suite of corruptions on CIFAR-10 for ESPRO, deep ensembles, and
MultiSWAG.
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Figure A.1. A simplified version of the progressive understanding of the loss landscape of neural networks. Left: The traditional view in
which low loss modes are disconnected in parameter space. Center: The updated understanding provided by works such as Draxler et al.
(2018), Fort & Jastrzebski (2019), and Garipov et al. (2018), in which modes are connected along thin paths or tunnels. Right: The view
we present in this work: independently trained models converge to points on the same volume of low loss.

A. Extended Methodology
First, we present a two dimensional version of the schematic in Figure 1 in A.1, which explains the same progressive
illustration, but in two dimensions.

A.1. Simplex Volume and Sampling

We employ simplexes in the loss surface for two reasons primarily:

• sampling uniformly from within a simplex is straightforward, meaning we can estimate the expected loss within any
found simplexes easily,

• computing the Volume of a simplex is efficient, allowing for regularization encouraging high-Volume simplexes.
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Figure A.2. Left: 100 samples drawn uniformly from within the unit simplex. Right: 100 samples drawn from a non-unit simplex (note
the scale of the X1 axis). The distribution of points in both simplexes is visually indistinguishable — evidence that the method for
sampling from a unit simplex is sufficient to draw samples from arbitrary simplexes.

Sampling from Simplexes: Sampling from the standard simplex is just a specific case of sampling from a Dirichlet
distribution with concentration parameters all equal to 1. The standard n-simplex is a simplex is a simplex formed by the
vectors v0, . . . ,vn such that the vi’s are the standard unit vectors. Therefore, to draw samples from a standard n-simplex in
a d dimensional space with vertices v0, . . . ,vn, we follow the same procedure to sample from a Dirichlet distribution.

To sample vector x = [x0, . . . , xd]
T we first draw y0, . . . , yn

i.i.d.∼ Exp(1), then set ỹi = yi∑d
j=1 yj

. Finally, x =
∑n
i=1 ỹivi.

While this method is sufficient for simulating vectors uniformly at random from the standard simplex, there is no guarantee
that such a sampling method produces uniform samples from an arbitrary simplex, and thus samples of the loss over the
simplex that we use in Equation 1 may not be an unbiased estimate of the expected loss over the simplex. Practically, we do
not find this to be an issue, and are still able to recover low loss simplexes with this approach.

Furthermore, Figure A.2 shows that the distribution of samples in a unit simplex is visually similar to the samples from an
elongated simplex where we multiply one of the basis vectors by a factor of 100. This figure serves to show that although
there may be some bias in our estimate of the loss over the simplex in Equation 1, it should not be (and is not in practice)
limiting to our optimization routine. Note too, this may appear like a simplistic case, but typically the simplexes found
by SPRO contain only a small number of vertices, so a 2-simplex whose edge lengths vary by a factor of nearly 100 is a
reasonable comparison to a scenario we may find in practice.

Computing Simplex Volume: Simplex Volumes can be easily computed using Cayley-Menger determinants (Colins). If
we have an n-simplex defined by the parameter vectors w0, . . . , wn the Cayley-Menger determinant is defined as

CM(w0, . . . , wn) =

∣∣∣∣∣∣∣∣∣∣∣

0 d201 · · · d20n 1
d201 0 · · · d20n 1

...
...

. . .
...

...
d2n0 d2n1 · · · 0 1
1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣
. (A.1)

The Volume of the simplex S(w0,...,wn) is then given as

V(Sw0,...,wn))
2 =

(−1)n+1

(n!)22n
CM(w0, . . . , wn). (A.2)

While in general we may be adverse to computing determinants or factorial terms the simplexes we work with in this paper
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Figure A.3. CIFAR-10 test accuracy as a function of regularization parameter λ∗ and colored by the number of vertices. Accuracy is
essentially unchanged for the various regularization parameters.

are generally low order (all are under 10 vertices total) meaning that computing the Cayley-Menger determinants is generally
a quite fast and stable computation.

A.2. Initialization and Regularization

Vertex Initialization: We initialize the jth parameter vector corresponding to a vertex in the simplex as the mean of the
previously found vertices, wj = 1

j

∑j−1
i=0 wi and train using the regularized loss in Eq. 1.

Regularization Parameter: As the order of the simplex increases, the Volume of the simplex increases exponentially.
Thus, we define a distinct regularization parameter, λj , in training each θj to provide consistent regularization for all vertices.
To choose the λk’s we define a λ∗ and compute

λk =
λ∗

logV(K)
, (A.3)

where K is randomly initialized simplicial complex of the same structure that the simplicial complex will have while training
θj . Eq. A.3 normalizes the λk’s such that they are similar when accounting for the exponential growth in volume as the
order of the simplex grows. In practice we need only small amounts of regularization, and choose λ∗ = 10−8. As we are
spanning a space of near constant loss any level of regularization will encourage finding simplexes with non-trivial Volume.

Finally, when dealing with models that use batch normalization, we follow the procedure of Garipov et al. (2018) and
compute several forwards passes on the training data for a given sample from the simplex to update the batch normalization
statistics. For layer normalization, we do not need to use this procedure as layer norm updates at test time.

A.3. Training Details

We used VGG-16 like networks originally introduced in Simonyan & Zisserman (2015) from https://github.com/
pytorch/vision/blob/master/torchvision/models/vgg.py. For training, we used standard normaliza-
tion, random horizontal flips, and crops and a batch size of 128. We used SGD with momentum = 0.9, and a cosine
annealing learning rate with a single cycle, a learning rate of 0.05, and weight decay 5e− 4 training for 300 epochs for the
pre-trained VGG models. For SPRO, we used a learning rate of 0.01 and trained for 20 epochs for each connector.

In our experiments with transformers, we used the ViT-B 16 image transformer model (Dosovitskiy et al., 2021) pre-trained
on ImageNet from https://github.com/jeonsworld/ViT-pytorch and trained on CIFAR100 with upsampled
image size of 224 with a batch size of 512 for 50000 steps (the default fine-tuning on CIFAR-100). Again, we used random
flips and crops for data augmentation. To train these SPRO models, we used a learning rate of 0.001 and trained with SGD
for 30 epochs for each connector, using 20 samples from the simplex at test time.

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://github.com/jeonsworld/ViT-pytorch
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(a) Log volumes, MNIST.
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Figure A.4. (a) Log volumes as a function of LeNet-5 layer width. Volumes are generally highest for wider models, and the volume of the
simplicial complex tends to decrease as the dimension of the space increases. (b)Test error vs. number of samples, J, in the ensemble on
CIFAR-100 using a VGG-16 network and a 3-simplex trained with SPRO. For any number of components in the SPRO ensemble greater
than approximately 25 we achieve near constant test error.

A.4. Multi-Dimensional Mode Connectors

To train the multi-dimensional SWAG connectors, we connected two pre-trained networks following Garipov et al. (2018)
using a piece-wise linear curve, trained for 75 epochs with an initial learning rate of 0.01, decaying the learning rate to
1e− 4 by epoch 40. At epoch 40, we reset the learning rate to be constant at 5e− 3. The final individual sample accuracy
(not SWA) was 91.76%, which is similar to the final individual sample accuracies for standard training of VGG networks
with SWAG. We used random crops and flips for data augmentation.

B. Extended Volume and Ensembling Results
B.1. Volumes on MNIST

In a similar construction to the dimensionality experiment in Figure 5, we next consider lower bounding the dimensionality
of the connecting space that SPRO can find for LeNet-5s on MNIST (LeCun et al., 1998)4, varying the width of the
convolutional networks from a baseline of 1 (standard parameterization), either halving the width or consecutively widening
the layers by a constant factor. We find in Figure A.4a that the volumes of the simplicial complex can vary by several powers
of 10 for the as we increase the widths. However, all width networks generally follow the same patter of decaying volume as
we increase the number of connecting points (e.g. increasing the dimensionality of the simplicial complex).

B.2. Test Error vs. Simplex Samples

SPRO gives us access to a whole space of model parameters to sample from rather than just a discrete number of models to
use as in deep ensembles. Therefore a natural question to ask is how many models and forwards passes need to be sampled
from the simplex to achieve the highest accuracy possible without incurring too high of a cost at test time.

Figure A.4b shows that for a VGG-16 network trained on CIFAR-100 we achieve near constant accuracy for any number of
ensemble components greater than approximately 25. Therefore, for the ensembling experiments in Section 5.4 we use
25 samples from each simplex to generate the SPRO ensembles. In this work we are not focused on the issue of test time
compute cost, and if that were a consideration for deployment of a SPRO model we could evaluate the trade-off in terms of
test time compute vs accuracy, or employ more sophisticated methods such as ensemble distillation.

B.3. Loss Surfaces of Transformers

Next, we show the results of training a SPRO 3−simplex with an image transformer on CIFAR-100 (Dosovitskiy et al.,
2021) in Figure A.5. Due to computational requirements, the transformer was pre-trained on ImageNet before being
fine-tuned on CIFAR-100 for 50, 000 minibatches. We then trained each vertex for an additional 10 epochs. Due to the
inflexibility of the architecture, we observed training instability, which ultimately produced a small volume of the simplex

4Implementation from https://github.com/activatedgeek/LeNet-5/blob/master/lenet.py

https://github.com/activatedgeek/LeNet-5/blob/master/lenet.py
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Figure A.5. Loss surface visualizations of the faces of a sample ESPRO 3-simplex for a Transformer architecture (Dosovitskiy et al.,
2021) fine-tuned on CIFAR-100. Here, the volume is considerably smaller, but a low loss region is found.
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Figure A.6. Test error for mode connecting simplexes that connect various numbers of modes through various numbers of connecting
points in the parameter space of VGG-16 networks trained on CIFAR-10 and CIFAR-100. The error rates of baseline models are shown
as horizontal dotted lines. In general the highest performing models are those with the fewest modes and the fewest connecting points, but
the performance gaps between configurations are small.

found (approximately 10−21). Furthermore, the small volume of the simplex produced less diverse solutions, limiting the
benefits of ensembling transformer models as shown in Figure A.8. However, these results demonstrate that a region of low
loss can be found in subspaces of transformer models, and further work will be necessary to efficiently exploit these regions
of low loss, much like has been done with CNNs and ResNets.

B.4. Ensembling Mode Connecting Simplexes

We can average predictions over these mode connecting volumes, generating predictions as ensembles, ŷ =
1
H

∑
φh∼K f(x, φh), where φh ∼ K indicates we are sampling models uniformly at random from the simplicial com-

plex K(S(w0,θ0,... ), S(w1,θ0,... ), . . . ). Test error for such ensembles for volumes in the parameter space of VGG-16 style
networks on both CIFAR-10 and CIFAR-100 are given in Figure A.6. We see that while some improvements over baselines
can be made, mode connecting simplexes do not lead to highly performant ensembles.

B.5. Ensembling Modes of SPRO

Figure A.7 presents the results of Figure 8 in the main text, but against the total training budget rather than the number of
ensemble components. We see from the plot that on either dataset, for nearly any fixed training budget the most accurate
model is an ESPRO model, even if that means using our budget to train ESPRO simplexes but fewer models overall.

Times correspond to training models sequentially on an NVIDIA Titan RTX with 24GB of memory.
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Figure A.7. Test error of ESPRO models on CIFAR-10 (left) and CIFAR-100 (right) as a function of total training time (training the
original models and the ESPRO simplexes). The color of the curves indicate the number of the vertices in the simplex, and the points
corresponding to increasing numbers of ensemble components moving left to right (ranging from 1 to 8). We see that on either dataset for
nearly any fixed training budget, we are better off training fewer models overall and using ESPRO to construct simplexes to sample from.
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Figure A.8. Test Error and NLL for the number of components in SPRO ensembles using image transformers on CIFAR-100. ESPRO
with four dimensional simplexes is slightly better in test accuracy and slightly worse in test NLL than deep ensembles.

Finally, Figure A.8 presents the results of ensembling with SPRO using state of the art transformers architectures on
CIFAR-100 (Dosovitskiy et al., 2021). We find, counterintuitively that there is only a very small performance difference
from ensembling with SPRO compared to the base architecture. We suspect that this is because it is currently quite difficult
to train transformers without using significant amounts of unlabelled data.

C. Extended Uncertainty Results
C.1. Further NLL and Calibration Results

Finally, we include the results across 18 different corruptions for the ensemble components. In order, these are jpeg, fog,
snow, brightness, pixelate, zoom blur, saturate, contrast, motion blur, defocus blur, speckle noise, gaussian blur, glass blur,
shot noise, frost, spatter, impulse noise and, elastic transform.
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Figure A.9. Accuracy, NLL and ECE with increasing intensity of the jpeg compression corruption (from left to right).
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Figure A.10. Accuracy, NLL and ECE with increasing intensity of the fog corruption (from left to right).
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Figure A.11. Accuracy, NLL and ECE with increasing intensity of the snow corruption (from left to right).
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Figure A.12. Accuracy, NLL and ECE with increasing intensity of the brightness corruption (from left to right).
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Figure A.13. Accuracy, NLL and ECE with increasing intensity of the pixelate corruption (from left to right).
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Figure A.14. Accuracy, NLL and ECE with increasing intensity of the zoom blur corruption (from left to right).
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Figure A.15. Accuracy, NLL and ECE with increasing intensity of the saturate corruption (from left to right).
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Figure A.16. Accuracy, NLL and ECE with increasing intensity of the contrast corruption (from left to right).
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Figure A.17. Accuracy, NLL and ECE with increasing intensity of the motion blur corruption (from left to right).
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Figure A.18. Accuracy, NLL and ECE with increasing intensity of the defocus blur corruption (from left to right).
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Figure A.19. Accuracy, NLL and ECE with increasing intensity of the speckle noise corruption (from left to right).
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Figure A.20. Accuracy, NLL and ECE with increasing intensity of the Gaussian blur corruption (from left to right).
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Figure A.21. Accuracy, NLL and ECE with increasing intensity of the glass blur corruption (from left to right).
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Figure A.22. Accuracy, NLL and ECE with increasing intensity of the shot noise corruption (from left to right).
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Figure A.23. Accuracy, NLL and ECE with increasing intensity of the frost corruption (from left to right).
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Figure A.24. Accuracy, NLL and ECE with increasing intensity of the spatter corruption (from left to right).
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Figure A.25. Accuracy, NLL and ECE with increasing intensity of the impulse noise corruption (from left to right).
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Figure A.26. Accuracy, NLL and ECE with increasing intensity of the elastic transform corruption (from left to right).


