A. More Case Studies

In this section, we present eight additional case studies of
TFix. TFix exactly matches the human fixes in the commits
in four cases, removes the coding errors but does not per-
fectly match human fixes in two cases, and fails to generate
a correct fix in the remaining two cases.

Exact matches The first case is shown in Figure 7, the
developer forgot to write the return keyword in a getter
function, causing a getter-return error in ESLint. As a
result, the function does not return anything even though it
can still run. TFix correctly inserts the missing return.

Figure 8 presents the second case. The developer declared
variable value to be a constant type with the const key-
word but then assigned a new value to it. This resulted
in a no-const-assign error reported by ESLint. TFix
changes const to let, successfully fixing the error. Note
that the fix line is different from the error line in this exam-
ple, showing the importance of the error context.

In Figure 9, the developer directly compared counter to
NaN, which is a wrong way of checking if a variable is a
valid value in JavaScript. The correct way is to use the
library function isNaN, as suggested by TFix.

In the fourth case, as shown in Figure 10, the developer
intended to check if this.debug is true but wrongly
wrote an assignment in the if condition, which is a
common programming mistake. Therefore, ESLint re-
ported a no-cond-assign error. TFix fixes it by using
this.debug solely as the condition.

The above four cases show that TFix is capable of generating
human-like fixes for a wide range of errors.

Error removals Now we discuss two cases where TFix
synthesizes fixes that correctly remove the errors but are
different from human fixes. The first case is shown in Fig-
ure 11 where the developer used the throw statement on a
string literal, causing a no-throw-literal error. Later,
the developer fixed the error by printing the error message to
the console. On the other hand, TFix proposes to construct
and throw an Error instance, which is also correct.

The second case is shown in Figure 12 and the code contains
a guard-for-in error for the same reason as discussed in
Section 2. While the developer fixed the error by converting
for-in to forEach, TFix proposes to add an if-check for
the property. Both fixes remove the error correctly.

The above two cases show that TFix can generate correct
fixes that are syntactically different from but functionally
the same as human fixes.

Failures Next, we describe two cases where TFix could
not generate a correct fix. In the first case, shown in Fig-
ure 13, the programmer assigned a value to itself, which
does not make sense from a programming perspective. ES-
Lint denotes such errors with no-self-assign. In the
commit, the variable was assigned to the correct variable,
namely modified.. TFix failed to generate a correct fix
due to its fixed windows size, i.e., the variable modified.
is not in the error context. Increasing the window size can
potentially resolve this failure.

The second case is shown in Figure 14. The erroneous code
contains an empty catch block, and the developer fixed
it by simply printing the caught error to console. Unfortu-
nately, TFix generates a fix identical to the incorrect code
and is unable to solve the problem. The reason might be that
similar samples do not often occur in our fine-tuning dataset.
Enlarging the fine-tuning dataset can help TFix handle more
errors.

get [Symbol.iterator] () {
this._data_ [Symbol.iterator] () ;

get [Symbol.iterator] () {

return this._data_ [Symbol.iterator] ();
}

Figure 7. TFix fixes a getter—-return error by inserting the missing return keyword.

const { value ='' } = e.detail || {};
value = this.getValue (newValue) ;
this._trigger (’onChange’, { detail: {value } });

let { value ='' } = e.detail || {};
value = this.getValue (newValue);
this._trigger (' onChange’, { detail: {value } });

Figure 8. TFix fixes a no—const-assign error by changing the variable’s declaration type.

var randomCounter = false;
if (counter == NaN) {
counter = Math.floor (Math.random * 10000) ;

var randomCounter = false;
if (isNaN(counter)) {

counter = Math.floor (Math.random = 10000);

Figure 9. TFix fixes a use—1isnan error by using the correct function supported by JavaScript.

var signal = JSON.parse (message.content) ;
if (this.debug = true)

console. log (message) ;

var signal = JSON.parse (message.content)
if (this.debug)

console.log (message) ;

Figure 10. TFix fixes a no—cond—assign error by correcting the condition.

Coding error:
if (destination == null) {
throw "destination is invalid";

}

Human fix:
if (destination == null) {
console.log("destination is invalid");

}
Output of TFix:
if (destination == null) {

throw new Error ("destination is invalid");
}

Figure 11. TFix correctly fixes a no-throw-1literal error by
constructing an Error instance while the human developer prints
the error message to console.

Coding error:
{

modified = modified;

}

Human fix:
{
modified = modified_;
}
Output of TFix:

{
this.modified = parselnt (false);

Figure 13. TFix generates irrelevant code as a fix.

Coding error:
applyCss (obj) {
for (var key in obj) {
this.element.style[key] = objlkeyl;
Human fix:
applyCss (obj) {
Object.keys (obj) .forEach (key) => {
this.element.style[key] = objlkeyl];
Output of TFix:
applyCss (obj) {
for (var key in obj) {
if (!obj.elements.hasOwnProperty (key)) continue;
this.element.style[key] = objlkeyl];

Figure 12. TFix correctly fixes a guard—-£for—-in error by adding
an if-check while the human developer uses forEach.

Coding error:
} catch (e) {

Human fix:
} catch (e) {
log.warn (error) ;

}

Output of TFix:
} catch (e) {

}

Figure 14. TFix generates a fix identical to the erroneous code.

B. Running Data Extraction on an Example

In this section, we explain our data extraction pipeline in
Algorithm 1 in more detail by running it on a simple, synthe-
sized commit. The process is similar in principle but more
complicated in detail for real-world commits.

Example commit with error fixing Figure 15 shows our
example commit (p, p). From p to p’, the commit removes
Line 6, adds Line 7, and adds a new return token at Line 9.
First, TFix runs detector to detect errors on p and p’ (Line
3 of Algorithm 1). For p, detector detects a set of three
errors £ = {ey, eq,e3}:

e1: no-this-before-super at Line 3.
€9: getter—-return at Line 9.

e3: no-throw-literal at Line 13.

es is fixed in the commit with the newly added return
token. Therefore, for p’, detector identifies two errors

I
&= {elv 62}'
€]: no-this-before-super at Line 3.

6/21 no-throw-1literal at Line 13.

Since |€] > |€’| (Line 4 of Algorithm 1), we proceed the
extraction procedure as the commit contains an error fix.

Finding fixed errors with bipartite matching Next
TFix calls the findFixedErrors function to identify the
set of errors Egxea € & fixed in the commit (Line 5 of
Algorithm 1). To achieve this, findFixedErrors first in-
vokes the greedy bipartite matching procedure between &
and &’ to find the set of unfixed errors Eunfixed < €. We
iterate all pairs of errors in £ and &’ to see if they are the
same error. Clearly, e; = €} and e3 = €}. Therefore,
5unﬁxed = {61, 63} and gﬁxed =&— gunﬁxed = {62}-

Computing target fix Then we compute the fix for e
with the computeFix function (Line 7 of Algorithm 1). We
first leverage the Myers diff algorithm to obtain a series of
three edit operations:

1. Delete a whole line (Line 6).

2. Insert a new line (Line 7).

3. Insert return at Line 9 after the second tab.

We perform the above edit operations starting from p and

track how the error line [, of ey (Line 9) shifts with each
edit operation to obtain the target fix line [-. The deletion

class HumanPlayer extends Player {
constructor (name) {
this.name = name;
this.health = 100;
}
= set health (health) { this.health = health; }
+ get health () { return this.health; }

[e Y R L

get name () {

N

+return this.name;

1S

}
damage (x) {
if (x < 0) {
throw "No negative damage";

W =

14 }

15 this.health -= x;
16 }

17}

Figure 15. An example commit fixing a getter-return error.

at Line 6 pulls [, up by one line while the insertion at Line 7
pushes it down again, so we compute that [;- stays at Line 9.
In the end, we obtain the following error context £ and fix
context Ly as a sample in our dataset:

get name () {

this.name;

}

get name () {
return this.name;

