
Learning Queueing Policies for Organ Transplant Allocation

Appendix

A. Learning OrganSync and benchmarks
We describe the learning procedure for OrganSync, as well
as the hyperparameter search-ranges for each benchmark.

A.1. Optimisation procedure (OrganSync)

OrganSync’s optimisation procedure is quite straightfor-
ward. We have included a formal description of the optimi-
sation procedure, both at train-time (Algorithm 1) as well
as at test-time (Algorithm 2). While Algorithm 1 will pre-
pare f (·) through simple supervised learning, Algorithm 2
will output only a(X,O). Using a(X,O), we can infer point
estimates of Y as well as survival estimates S , using the
training dataDt, as is described in our main text. Note that
all code implementing Algorithm 1 and Algorithm 2 as well
as the allocation mechanism described in the main text, is
available at https://github.com/vanderschaarlab/
mlforhealthlab. All hyperparameters and search ranges
(for every discussed model) are described below in Sec-
tion A.2.

Algorithm 1 OrganSync optimisation procedure at train-
time.

Given, Untrained f✓(·) and �,
Given, Train-dataDt ⇢ D,
for e in epochs do

X,O,Y ⇠ Dt
Ŷ = �> f✓(X,O)
l = kŶ � Yk22
GradientUpdate(f , l)

end for

Algorithm 2 OrganSync inference procedure at test-time.
Given, Trained f✓(·),
Given, Test-dataDte ⇢ D,
Given, Train-dataDt ⇢ D,
Infer: Y(O), given X,O ⇠ Dte.
u = f (X,O)
Xte,Ote ⇠ Dte
U = f (Xte,Ote)
a(X,O) = mina2[0,1]N kUa � f (X,O)k22 + �kak1
output a(X,O)

A.2. Hyperparameters

In Table 5, we describe the neural network based hyper-
parameter search ranges, as well as the eventually chosen
hyperparameters, for each dataset (the ranges were kept the
same throughout searches). Note that for TransplantBenefit,
there are no hyperparameters as this boils down to simple
CoxPH regressors; and for ConfidentMatch there are none

as the ConfidentMatch algorithm, in essence, is a search
algorithm over various regressors.

Hyperparameters for the allocation policies are: for Organ-
ITE we have ↵ = � = � = 1, as was also used in Berrevoets
et al. (2020); and for OrganSync we have K = 20, empir-
ically this resulted in the best results. Besides OrganSync
and OrganITE there are no hyperparameter settings required
for the other allocation strategies as they amount to selecting
inferred maxima, i.e. the only hyperparameters associated
with those allocation policies are those associated with the
used models.

B. Assumptions
We make two assumptions w.r.t. the data-generating process:
Assumption 1 (Overlap), and Assumption 2 (Unconfounded-
ness). While these are standard assumptions in the potential
outcomes literature (Rubin, 2005; Hirano & Imbens, 2001;
2004; Shalit et al., 2017; Alaa & van der Schaar, 2017;
Athey & Imbens, 2016; Berrevoets et al., 2020), we provide
some discussion into how realistic these assumptions are
in the organ transplantation setting. Naturally, confirming
these assumptions require domain knowledge to verify.

Overlap. With Assumption 1 we assume that every patient
on the wait-list has a non-zero probability of receiving the
available organ. Despite obvious restrictions such as blood-
group type, having only a restricted patient subset available
at the organ-arrival time, encourages less likely organ-to-
patient allocation in light of patient survival. Furthermore,
the data is collected over several years (e.g. the UKReg
dataset spans 26 years of transplantation), under several
di↵erent allocation policies. Having di↵erent allocation
polices collecting the data benefits the overlap assumption
as this by definition changes allocation probability in the
queue.

Unconfoundedness. With Assumption 2 we assume that
there are no unobserved confounders (variables that influ-
ence both treatment assignment, and outcome; O Z !
Y).

We argue that, in the context of medical data, every variable
clinicians in the past relate to organ failure and transplanta-
tion success has been highly debated and sought after. After
consensus, these data are registered and present in medical
datasets. As such, we argue that in the context of medicine,
assuming unconfoundedness is more realistic than say mar-
keting, or economics. Should there, in the future, be more
variables thought to be informative, than OrganSync (as
well as other allocation models) can easily be retrained to
incorporate those variables also.

https://github.com/vanderschaarlab/mlforhealthlab
https://github.com/vanderschaarlab/mlforhealthlab

Learning Queueing Policies for Organ Transplant Allocation

Table 5. Neural network based hyperparameters. Using Bayesian optimisation, we searched for optimal hyperparameters using below
values. We report for each dataset the optimal (and used) hyperparameters in our experiments.

Parameter Range UNOS UNOS synth. UKReg UKReg synth.
OrganSync

lr .001:.05 .004 .004 .0095 .004
lr-decay .7:.999 .88 .87 .87 .87
weight decay .00001:.01 .0004 .0003 .00001 .0003
hidden-layers 0:13 4 4 3 4
hidden-dim 8:64 30 30 50 50
U-dim 2:32 8 7 19 8
dropout 0:.3 .01 .01 .006 .009
epochs 20, 30, . . . , 70 70 40 50 50
batch size 128, 256, 512, 1024 256 1024 128 128
activation ReLU, Leaky-ReLU ReLU ReLU Leaky-ReLU ReLU

OrganITE
lr .001:.05 .006 .006 .007 .007
lr-decay .7:.999 .79 .80 .79 .75
weight decay .00001:.01 .00078 .0007 .0006 .0006
hidden-layers 0:64 3 3 4 4
representation width 2:32 6 5 6 5
dropout 0:.3 .1 .1 .11 .11
epochs 20, 30, . . . , 70 20 20 30 20
batch size 128, 256, 512, 1024 128 128 128 128
activation ReLU, Leaky-ReLU Leaky-ReLU Leaky-ReLU Leaky-ReLU Leaky-ReLU

Multi-task
lr .001:.05 .008 .007 .006 .007
lr-decay .7:.999 .85 .86 .80 .85
weight decay .00001:.001 .0003 .0004 .0003 .0004
hidden-layers 0:5 3 2 2 3
cluster count 10:20 15 15 15 15
dropout 0:.3 .17 .16 .15 .17
epochs 20, 30, . . . , 70 40 40 40 40
batch size 128, 256, 512, 1024 256 256 256 256
activation ReLU, Leaky-ReLU Leaky-ReLU Leaky-ReLU ReLU ReLU

C. Simulation
Correctly evaluating organ-allocation policies is di�cult, es-
pecially when based on real data. Collected data is naturally
heavily biased by existing allocation policies. When testing
alternative polices— than those which collected the data —
there is no ground-truth as an alternative policy will almost
immediately deviate from the data, as organs are possibly
matched with di↵erent recipients. Furthermore, not only
does the available organ determine the match, but also the
patients currently in the queue. As such, allocating an organ
di↵erently, will completely change the queue onward.

For this, testing new allocation polices (such as OrganSync)
requires some approximation. Currently, allocation polices
are evaluated using simple linear outcome models (Kilambi
et al., 2018; Thompson et al., 2004), such as Transplant-

Benefit. Whenever the new allocation policy provides an
allocation suggestion, it is evaluated with poor estimates, as
is shown in Table 3.

We argue that any simulation should be agnostic to
its outcome model, as well as input data. For this
we provide an Inference, and OrganDataModule in-
terface. These two interfaces are combined in a Sim
class. When a Sim is initialised, the wait-list is filled
with initial waitlist size patients, selected randomly
from OrganDataModule, and their time-to-live is estimated
using the given Inference module.

The Sim then iterates over a given number of days, where
at each day new patients and organs are sampled. The
amount of patients per day is a given patient count /
days; and the amount of organs is round(patient count

Learning Queueing Policies for Organ Transplant Allocation

Table 6. Used variables for UNOS and UKReg. All used data is public upon request. Either through (Cecka, 2000) for UNOS, or
https://www.odt.nhs.uk/statistics-and-reports/access-data/ for UKReg.

Variable UNOS UKReg
patient organ patient organ

Primary liver disease 3 7 3 7
Age 3 3 3 3
Registration year 3 7 3 7
Serum Creatinine 3 7 3 7
Serum Bilirubin 3 7 3 7
INR 3 7 3 7
Serum Sodium 3 7 3 7
Gender 3 7 3 3
HCV 3 7 3 7
Potassium 7 7 3 7
Albumin 3 7 3 7
BMI 7 3 3 3
Donor type (deceased v. living) 7 3 7 3
Renal support 3 7 3 7
Ascites 3 7 3 7
Encephalopathy 3 7 3 7
Cause of death 7 7 7 3
RAB Surgery 3 7 7 7

/ days * organ deficit), where organ deficit is
the amount of organs per patient. In our experi-
ments, we set days = 365, patient count = 1000,
organ deficit = 0.7, which corresponds to the UKReg
data.

Whenever the new allocation policy assigns an organ to
a patient, they are removed from the wait-list, there W,
and their Y (estimated using Inference) are added to
population life years. The patients that exceeded their
estimated time-to-live on the waiting list are removed and
their W is added to population life years.

Furthermore, we also provide a Policy interface. This
interface can maintain an internal wait-list (as is the case for
OrganSync), and for each available organ is asked a patient
from its internal wait-list through Policy.get X(organ).

Code implementing the above is available at https://
github.com/vanderschaarlab/mlforhealthlab

D. Data
We use two real datasets: UNOS (Cecka, 2000), and UKReg.
Both datasets are publicly available, albeit upon request.
We list the covariates used for each dataset below. Further-
more, we also employ a synthetic setup as was also used by
Berrevoets et al. (2020).

D.1. Used covariates

Despite di↵erent variable naming across UNOS and UKReg,
we report in Table 6 the variables used to test all mod-
els. We also indicate which variables were used to de-
fine X (patient) as well as O (organ). As both datasets
are available upon request, we will also publicise our data
pre-prosessing. We hope this also facilitates usage of our
Sim through OrganDataModule.

D.2. Synthetic data-generation

While discussed in the main text, we provide some addi-
tional details on our semi-synthetic data-generation. Us-
ing data described in Table 6, we do any pre-processing
regularly. This includes, one-hot-encoding categorical vari-
ables (e.g. cause of death, gender, etc.), imputation (we
use MICE), and normalisation. The latter is not only im-
portant for principled learning, but also for semi-synthetic
data-generation.

Specifically, we sample ✓1, ✓2 ⇠ U(0, 1)n, where n corre-
sponds to d for X, and e for O. Next, we split the data
in a train, and test-set. We then remove Y from both
(keeping W). We shu✏e patients and organs in the test-
set (forming new patient-organ pairs), but keep the allo-
cation intact in the train-set. After shu✏ing, we com-
pute a semi-synthetic Y for each patient-organ pair using
Y(O) = ⌫ exp{✓>1 X + ✓>2 O + 1

2 } + ✏Y . We set ⌫ = 1, though
it is easily changed should this be desired; ✏Y ⇠ N(0, 0.1),

https://www.odt.nhs.uk/statistics-and-reports/access-data/
https://github.com/vanderschaarlab/mlforhealthlab
https://github.com/vanderschaarlab/mlforhealthlab

Learning Queueing Policies for Organ Transplant Allocation

Table 7. Complete example. We report the contributors for one
example’s synthetic control. The absolute error in life-years for
OrganSync was 243 days, and 532 days for TransplantBenefit.

Contrib. Creat. Bilir. INR Sodium Year

Example 46 169 1.1 140 2019

Past patients in synthetic control
.399 254 238 1.6 134 2019
.261 71 35 1.4 135 2017
.241 72 20 1.0 142 2011
.063 88 100 1.9 123 2015
.052 67 70 1.1 141 2005
.018 155 44 1.3 132 2017

with 0.1 the standard deviation. We than scale the resulting
Ys such that the standard deviation and mean matches the
original, as well as clip the Ys such that the minimum and
maximum values correspond with the original.

E. Complete example
In our main text we include a concrete example of a syn-
thetic patient-organ pair, but restrict our report to top three
contributors. We refer to Table 7 for a complete example, re-
porting more contributors. While the synthetic pair is based
on the complete covariate set (throughU), we refrain from
reporting the entire feature set as the data include sensitive
medical information.

