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Abstract
Organ transplantation is often the last resort for
treating end-stage illnesses, but managing trans-
plant wait-lists is challenging because of organ
scarcity and the complexity of assessing donor-
recipient compatibility. In this paper, we develop
a data-driven model for (real-time) organ alloca-
tion using observational data for transplant out-
comes. Our model integrates a queuing-theoretic
framework with unsupervised learning to clus-
ter the organs into “organ types”, and then con-
struct priority queues (associated with each organ
type) wherein incoming patients are assigned. To
reason about organ allocations, the model uses
synthetic controls to infer a patient’s survival out-
comes under counterfactual allocations to the dif-
ferent organ types—the model is trained end-to-
end to optimize the trade-o↵ between patient wait-
ing time and expected survival time. The usage of
synthetic controls enable patient-level interpreta-
tions of allocation decisions that can be presented
and understood by clinicians. We test our model
on multiple data sets, and show that it outper-
forms other organ-allocation policies in terms of
added life-years, and death count. Furthermore,
we introduce a novel organ-allocation simulator
to accurately test new policies.

1. Introduction
Over the years, organ transplantation surgeries have become
increasingly prevalent in the developed world—currently, a
new patient is added to the transplant wait-list every nine
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Figure 1. Overview of transplant system and OrganSync. Vari-
ous patients arrive at seemingly irregular intervals (1); and various
organs arrive at equally irregular intervals (3). Organ-allocation
algorithms match patients on the wait-list (right of the dashed line),
with arriving organs (2). OrganSync not only models (2), but also
(1) and (3). For this, OrganSync estimates each patient’s survival
without an organ, predicts which organ-type would be most ben-
eficial, and compares the patient’s survival time with the waiting
time for their suitable organ-type. Indicated by the red arrow; a
patient is kept on the wait-list (despite arriving second), as our
model anticipates a suitable organ arriving in the future.

minutes in the US (Organ Procurement and Transplantation
Network (OPTN), 2021b). A major reason for this is the
recent improvement in case selection, anaesthesia, surgi-
cal techniques, immunosupression strategies, and expanded
donor supply. Allocation strategies used to suggest donor
organs to patients, however, have not improved as much.
For example, liver allocation in the US and Europe rely on
the MELD score which is calculated using only three lab
parameters1 (Organ Procurement and Transplantation Net-
work (OPTN), 2021a; Eurotransplant Reference Laboratory
(ETRL), 2020); in the UK, allocation relies on simple linear
models that vastly underestimate the complexity of organ-
to-patient interaction (Neuberger et al., 2008; NHSBT Liver
Advisory Group (LAG), 2019). In addition, these allocation
protocols only score patient-organ compatibility, but do not
provide a systematic approach to managing the influx of
patients and organs arriving into the system over time.

Organ allocation is a hard problem. In this paper, we pro-
1International Normalised Ratio, Creatinine, and Bilirubin;

USA also includes Sodium.
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vide a first formulation for the problem of allocating organs
to recipient patients over time. We identify four challenges
associated with this problem: (i) an organ is unique and can
only be assigned to a single patient, hence there are many
unobserved counterfactual combinations of patients and or-
gans that we do not observe in the data. The di�culty does
not end there, as the available data su↵ers from selection
bias since organs are not distributed randomly (they are dis-
tributed according to inplace assignment policies); (ii) organ
and patient interaction is highly complex, yet outcome pre-
diction for decision support requires interpretability, making
a naive non-linear model unfit for the task; (iii) allocating an
organ to a single individual a↵ects all others on the wait-list
as their waiting is inevitably prolonged. As such, it is impor-
tant to take into account not only outcome prediction, but
also every patient’s maximum estimated waiting time until
premature death; and (iv), there are many valid objectives
in organ-allocation, all boiling down to who is prioritised
over whom. An allocation policy should be able to easily
adapt to other objectives than, for example, population life
years (Gimson, 2020).

Contributions. To address these challenges, we introduce
OrganSync; a novel decision support system for organ al-
location. With OrganSync, we innovate in two ways: by
introducing an interpretable high-dimensional potential out-
comes estimator, addressing challenge (i) and (ii); and we
integrate its predictions into a queueing-theoretic frame-
work, addressing challenge (iii) and (iv). Furthermore, we
introduce a simulation to evaluate organ-allocation policies—
accurately testing organ-allocation is non-trivial as tested
policies will almost immediately deviate from data that is
collected under an alternative policy.

Using machine learning, allocation has improved in terms
of added life-years (Yoon et al., 2017; Berrevoets et al.,
2020). However, such models lack interpretability, limiting
their adoption. Furthermore, these models (including those
currently in use) rely heavily on ranking in function of the
available organ, o↵ering little perspective for patients on
the wait-list as their future rank is essentially random due
to the randomness of available organs; i.e. once on the
wait-list, a patient has no idea how long they will have to
wait, often in agony. We argue that machine learning should
aid allocations polices, and work in tandem with queueing
theory to provide a fixed yet accurate ranking.

2. Problem formulation
Conceptually, a transplant system involves three compo-
nents that interact and evolve in real-time: the patients
arriving and leaving the wait-list, the organs arriving for
transplant, and a policy that decides which patient to receive
the organ (an overview of this is provided in Figure 1).

Notation. Let X ⇢ Rd denote the space of all possible
patients, and let O ⇢ Re denote the space of all possible
organs. Let X 2 X denote the feature vector of a patient and
O 2 O the feature vector of an organ. We assume we have
an observational dataset containing N patients, X1, ...,XN .
Each patient either received an organ Oi (unique to each
patient) or did not receive an organ, for which we will
slightly abuse notation and write Oi = ;. Each patient has
an associated survival time Yi +Wi that breaks down into
their waiting time Wi 2 R+, indicating the time spent on
the wait-list (until they either receive an organ or die while
waiting), and their survival post-transplant Yi 2 R+ (which is
0 if the patient did not receive an organ). In addition, some
patients are censored, where we write �i = 1 if the patient
died and �i = 0 if they were censored. Note that censoring
can happen both during Wi and during Yi. Together, these
create a datasetD = {(Xi,Oi,Yi,Wi, �i) : i = 1, ...,N}.

We assume that the survival times, Yi, are generated accord-
ing to the Neyman-Rubin potential outcomes framework
(Rubin, 2005) so that associated with each patient, we as-
sume there is a set of potential outcomes {Y(o) : o 2 O} and
that the observed survival time Yi = Y(Oi) is consistent with
the potential outcome for the observed organ.

Our goal is to perform inference in a live setting with
streams of both patients and organs. At discrete times,
t = 1, 2, ..., we denote by Q(t) = {X j : j = 1, ..., n(t)} ⇢ X
the patients on the transplant wait-list2. At each time step,
an organ, O(t), arrives and must be assigned to a patient on
the wait-list.

Goal. We wish to define an allocation-policy,

⇡(t) = ⇡(O(t),Q(t)) = j 2 {1, ..., n(t)}, (1)

that maximises the population life-years given by

max
⇡

lim
t!1

1
|X(t)|

X

X2X(t)

E⇡,O(t)
h
W + Y |X

i
(2)

where X(t) =
S

st Q(s) (i.e. all patients that have ever been
in the system) and O(t) = {O(1), ...,O(t)} (i.e. the sequence
of organs observed in the system).

In order to optimise Eq.(2), a policy, ⇡, must not only con-
sider the immediate benefit that a current organ has for each
individual in the wait-list, but also the potential future or-
gans that will become available, and how long each person
on the wait-list can survive without an organ. Importantly,
we consider the setting in which organs are perishable (e.g.
heart, liver) and as such it never makes sense to wait with
an organ for a future patient that is not yet in the queue
and might be a “better” fit - we therefore do not model the
arrival of future patients.

2Note that the index j does not correspond to the dataset index
i in any way - these are new patients
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Therefore at each time-step, t, we require the following:
(i) A good estimate of survival given an organ, E[Y(O(t))|X],
for each X 2 Q(t). In order to obtain this estimate using
the censored data we have available inD (indicated by �i),
we model Y(O) through survival analysis, with a patient’s
conditional survival function,

S (y|X,O) = p(Y(O) > y|X), 8y 2 R+. (3)

(ii) A good estimate of survival without an organ,
E[W |X,O = ;, � = 1], for each X 2 Q(t). As with our
estimate for the survival with organ, we use survival analy-
sis to leverage the censored dataset to compute the expected
survival without an organ.

(iii) An approximation of the arrival distribution of future
organs. To obtain such an approximation, we reduce the
problem to a system with multiple queues and leverage
Little’s law (Little, 1961) in order to obtain wait-times for
specific organ “types”.

To our knowledge, OrganSync is the only method that esti-
mates and uses these elements to optimise Eq.(2) through
leveraging knowledge gained from each.

3. OrganSync
OrganSync weighs three di↵erent components: (i) patient
survival with the current organ; (ii) patient survival without
any organ; and (iii) an approximation of the arrival distri-
bution of future organs. For a policy to be truly useful,
these components have to be learned in an interpretable way
(Doshi-Velez & Kim, 2017).

Overview. OrganSync operates in five major steps: [Step
1], we learn a non-linear representation of the patient-organ
space; [Step 2], in this representation space we compose a
patient-organ pair’s synthetic control; [Step 3], using the
synthetic control, we compute a patient’s survival; [Step 4],
with the survival estimates, we search for a patient’s optimal
organ-type; and [Step 5], with the priority and optimal organ-
type, we assign the patient to one of K priority queues. Each
step is explained in detail below and annotated in Figure 2.

3.1. Interpretable survival analysis (Steps 1, 2, and 3).

For each patient, we wish to make two survival estimates:
without an organ and with an organ. This is a challenging
problem due to selection bias: simply regressing Y on X⇥O
and W on X will yield biased estimates due to past applied
policies. While Berrevoets et al. (2020) solve this problem
using adversarially balancing a representation, we identify
two shortcomings of their method which we solve in this
paper: (i) our method is interpretable as it is explicitly based
on past observations through composition of a synthetic
control (Abadie et al., 2015); and (ii) by utilising survival
curves instead of a point estimate we leverage censored data.

In what follows, we outline how we build up our estimate for
Y , and our estimate for W is done in the same way, without
a dependence on O.

[Step 1] - A non-linear representation. Let f : X ⇥ O !
U be a non-linear representation of the patient-organ pair
with u 2 U ⇢ Rh, and let,

Ŷ(O) = �>u + ✏, (4)

where � 2 Rh are latent coe�cients, and ✏ is a noise term.

We learn f and � using supervised learning through Eq.(4),
but this comes with a limitation: f and � are not inter-
pretable. Rather than performing inference through Eq.(4),
we will use f to compose a synthetic patient-organ pair from
other pairs inD.

[Step 2] - Synthetic patient-organ pairs. Let (X,O) be
a patient-organ pair for which we want to estimate Y(O).
While using Eq.(4) might yield an accurate point-estimate, it
remains non-interpretable, nor will it help us in constructing
a survival estimate like in Eq.(3)— as is required (outlined
in Section 2). Instead, we construct a similar synthetic pair
in the representation space:

ũ = Ua (5)

where U 2 Rh⇥N is a matrix comprised of the non-linear
representations of the patient-organ pairs in D, and a =
a(X,O) 2 [0, 1]N is a vector used to build a convex combi-
nation of various patient-organ pairs in the data. We con-
strain a in three ways: (i) the sum of elements in a equal
one (

P
m am = 1); (ii) a should be sparse such that ũ is

interpretable as a composition of only a few past observa-
tions; and (iii) each element in a is positive. Note that a is a
function of the patient-organ pair (X,O) according to

a(X,O) = min
a2[0,1]N

kUa � f (X,O)k22 + �kak1, (6)

where the second term corresponds to an L1 regulariser
governed by � 2 [0, 1], encouraging sparsity (Tibshirani,
1996). As per Eq.(4), Ŷ(O) relates linearly to u, allowing
Ŷ(O) to be estimated as,

Ŷ(O) = Y>a (7)

with Y the vector of outcomes inD (Abadie & Gardeazabal,
2003; Abadie et al., 2015). Elements in a can be interpreted
as percentages, due to the constraints discussed above, al-
lowing us to know exactly which past seen cases an estimate
is based upon, and by how much.

We have illustrated our estimator in the leftmost part of
Figure 2, where: the patient-organ space, X ⇥ O is mapped
to a non-linear representation space,U, in such a way that
it relates linearly to Y; and the patient is then combined
synthetically to possible organs in O from which we predict
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Figure 2. Detailed overview of OrganSync. Whenever a patient enters the transplant system, we estimate their survival without organ
using a synthetic patient-organ pair, and similarly estimate which organ-type would yield the highest survival. To cope with complex
organ-to-patient interaction, we build the synthetic pairs in a non-linear representation space. Using the patient’s synthetic survival without
an organ, we select an appropriate queue according to their optimal organ-type, and the estimated waiting time; as well as, assign priority
within the chosen queue. When a new organ arrives it is predicted a type, and is granted to the first-in-line of the organ type’s queue.

an optimal organ-type, as well as patient survival, discussed
next.

[Step 3] - Survival estimates. To estimate the patient’s
counterfactual survival under a di↵erent organ allocation,
we use a Kaplan-Meijer survival estimate (Chen, 2020; Be-
ran, 1981), where our dataset is based on the patient-organ
pairs that compose ones synthetic control. Specifically, let
I(a) ⇢ {1, ...,N} be the non-zero elements in a, which in
practice will correspond to elements higher than some small
threshold. A conditional survival estimate is then given by
the Kaplan-Meijer survival estimate:

Ŝ (y|X,O) =
Y

t<y

 
1 �

da(t)
na(t)

!
, (8)

with, da(t) =
P

j2I(a) � jI{Yj  t} the amount of deaths up to
t, and na(t) =

P
j2I(a) � jI{Yj > t} +  the amount of patients

seen up to t, where  > 0 is a small constant to avoid divid-
ing by zero in Eq.(8). Basing our survival estimates on the
synthetic control results in interpretable estimates. Further-
more, the similarity of patient-organ pairs is calculated in
the non-linear representation space while the survival esti-
mates remain non-parametric. These estimates determine
priority in Q, discussed in Section 3.2.

Assumptions. As is standard in causal literature on poten-
tial outcomes, we make the following assumptions (Hirano
& Imbens, 2004). Our supplemental material contains a
discussion on these assumptions.
Assumption 1 (Overlap.). For all X 2 X and all O 2 O
that have positive probability of occurring, 0 < p(O|X) < 1.
Assumption 2 (Unconfoundedness.). Conditional on X, the
full set of potential outcomes are independent of the treat-
ment, O ?? {Y(o) : o 2 O} | Xi.

Furthermore, through Eq.(4) we make an implicit assump-

tion that there exists a representation u from which the
outcome is a linear combination. Note that this is a very
general assumption as, in practice, it merely warrants the
use of a neural network with a fully connected output layer.

3.2. Organising the patients in queues (Steps 4 and 5).

We now turn to allocating organs to patients. Contrasting
existing allocation-policies— recent (Berrevoets et al., 2020;
Yoon et al., 2017) and less recent (Malinchoc et al., 2000;
Kim et al., 2008; Neuberger et al., 2008) —we resort to
queueing theory, rather than ranking.

[Step 4] - Queue assembly. In order to optimise our goal
of total life years, we need to model the arrival of organs.
The consideration of what organs will arrive in the future
is crucial to the problem of who to assign the current or-
gan to. Unfortunately, modelling the arrival distribution of
the high-dimensional organ space is di�cult. To address
this di�culty we introduce K queues, Q1, ...,QK , that cor-
respond to K clusters of organs. In doing so, we reduce
the problem of estimating the full organ arrival process, to
estimating the arrival process of k distinct “types” of organs.
In doing so we introduce a trade-o↵, a larger K leaders to
better estimates of organ-recipient outcomes for a specific
organ, but the estimation of the arrival process becomes
worse. In particular, as we take K to infinity, we recover
the uniqueness of every organ; each queue corresponds to a
specific organ in the space O.

We assign each patient to one of the K clusters, by esti-
mating their survival given each of the K cluster-centers
and comparing their survival without an organ to the es-
timated waiting time associated with each cluster Vk(X),
k 2 {1, . . . ,K}.
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Table 1. Various allocation policies in transplantation. OrganSync satisfies our key criteria: (1) use survival analysis; (2) estimate
potential outcomes; (3) provide interpretable suggestions; (4) have waiting time estimates. Data, estimands, processing, and outcomes are
denotedD, e, p, i, respectively; text above the arrow specifies how the method arrives at each node. Let ⌧ = Y(O) � Y(;.

Method Reference Overview (1) (2) (3) (4)

FIFO n.a. D i
max{waiting time}

7 7 3 3

MELD (Malinchoc et al., 2000) D e i
/Wi max{e}

7 7 3 7

MELD-na (Kim et al., 2008) D e i
/Wi max{e}

7 7 3 7

TransplantBenefit (Neuberger et al., 2008) D e i
⌧ max{e}

3 3 3 7

ConfidentMatch (Yoon et al., 2017) D e i
Y(O) max{e}

7 7 7 7

OrganITE (Berrevoets et al., 2020) D e ip
⌧ & p(O) weight predictions max{p}

3 3 7 7

OrganSync (Ours) D e ip
Ŝ & ⇢k predict k⇤ and Vk(X) select Qk 3 3 3 3

Using Little’s law (Little, 1961) we estimate Vk(X) as:

Vk(X) =
Lk(p(X))
⇢k

, (9)

where ⇢k is the arrival rate of patients into Qk; and Lk(p(X))
is the number of patients with higher priority than X in Qk.
We define the priority, p, in terms of a patient’s survival
without organ,

p(X) =
 Z

w
Ŝ (w|X, ;)dw

!�1

. (10)

We estimate ⇢k using the observational datasetD. In partic-
ular, the estimate does not account for the situation in which
an organ arrives but there is no one present in the queue to
receive it. In such a situation, the organ is moved to the next
best queue. The more frequently this occurs at inference
time, the worse our estimates for ⇢k will actually reflect the
rate of arrival of organs into a given queue. In particular,
as K ! 1, this event occurs more and more frequently, as
more and more queues are left empty at any given time.

[Step 5] - Using the queues. When a patient enters the
transplant system, we identify their ideal queue, k⇤ =
arg maxk Ŷ(Ok) where Ok is the cluster-center of cluster
k. Next, we compare the patient’s waiting time in the queue
of interest, Vk⇤ , with the patient’s expected survival using
Eq.(3). Should the queue’s waiting time be longer than the
patient is expected to live, we move the patient to the next
best queue. When an organ enters the transplant system, it
is allocated to the first-in-line of the closest queue (in terms
of cluster-center) to the available organ. Organ-allocation
in OrganSync is outlined in the right-most part of Figure 2,
and pseudo-code for our full training procedure is in our
supplemental materials.

4. Related work and benchmarks
Before we discuss our experiments, we provide a brief
overview of our considered benchmarks in potential out-
come estimation, as well as organt-to-patient allocation.

4.1. Potential outcome estimation

A key part in our work is the use of a potential outcomes
estimator (Rubin, 2005). Specifically, an estimator for more-
dimensional, continuous treatment e↵ects. This is of key
importance as, like in many clinical settings (Dahabreh et al.,
2016), organ-allocation su↵ers from selection bias (by defi-
nition). Therefore, we require methods that can cope with
biased data. While potential outcomes estimation for binary
treatment (Johansson et al., 2016; 2020; Bertsimas et al.,
2017; Athey & Imbens, 2016; Hassanpour & Greiner, 2019;
2020; Yao et al., 2018; Zhang et al., 2020), or categori-
cal treatments (Yoon et al., 2018; Alaa & van der Schaar,
2017; Alaa et al., 2017; Bica et al., 2020a), or continuous
one-dimensional treatments (Bica et al., 2020b) has been
studied profoundly; little attention has been devoted to more-
dimensional treatments (Berrevoets et al., 2020). Contrast-
ing existing methods, our method does not rely on learning a
balanced representation of the data (Berrevoets et al., 2020;
Bica et al., 2020a; Ganin et al., 2016; Schoenauer-Sebag
et al., 2019; Li et al., 2018; Johansson et al., 2016), but
rather the composition of a comparable synthetic control
(Abadie et al., 2015) as outlined in Section 3.1.

Benchmarks. In our experiments, we compare against four
other proposed high-dimensional treatment e↵ect estima-
tors: (i) TransplantBenefit (Neuberger et al., 2008), used
for liver allocation-policy in the UK today; (ii) Confident-
Match (Yoon et al., 2017), a recent organ outcome prediction
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method; (iii) a multi-task network predicting organ outcome
based on organ-types using a KMeans cluster, also com-
pared against in Berrevoets et al. (2020); and (iv) OrganITE
(Berrevoets et al., 2020), to our knowledge the only other
high-dimensional potential outcome estimator. While Or-
ganITE can estimate high-dimensional treatment outcomes,
their approach di↵ers vastly from OrganSync. OrganITE
builds a balanced representation of treated and untreated
patients, such that it is harder to predict in which original
treatment group a patient belonged; while OrganSync explic-
itly builds an alternative patient-organ pair from past data.
While OrganITE loses all reference to which past patient-
organ pairs a prediction is based on, OrganSync keeps a
hard link to previous data, lending to interpretability.

Table 2. Results on organ allocation. For each dataset we report
the allocation performance of the benchmarks outlined in Table 1,
in terms of added life-years (ALY), as well as total deaths over
the course of one year. We set MELD as the baseline, to compare
against. All results are reported in percentages (“%” is dropped for
brevity) and ran over ten data-folds, standard deviation in brackets.

UNOS UKReg
Method Deaths ALY Deaths ALY
MELD compared against

FIFO -0.9 (.01) -2.0 (.11) -1.1 (.16) -5 (.01)
M-na -0.3 (.13) +1.2 (.10) -2.1 (.18) +6 (.01)

TB +7.0 (.19) +2.4 (.21) +0.9 (.11) +8 (.03)
CM -0.01 (.09) +12.8 (.31) +0.1 (.11) +7 (.02)

O-ITE -3.6 (.18) +11.1 (.28) -3.3 (.12) +11 (.15)
OS -3.5 (.15) +13.1 (.19) -4.1 (.21) + 13 (.03)

4.2. Organ allocation benchmarks

We have summarised various allocation strategies in Table 1,
they are: First-in-first-out (FIFO), a naive queueing algo-
rithm where the patient longest in the queue receives the
next available organ; MELD (Malinchoc et al., 2000)— in
use in the EU —computes a score for every patient based
on three lab parameters: INR, Creatinine, and Bilirubin;
MELD-na (M-na) (Kim et al., 2008)— used in the USA
—takes into account Sodium alongside the MELD score;
TransplantBenefit (TB) (Neuberger et al., 2008)— currently
in use in the UK —calculates patient survival with and
without organ using two distinct Cox Proportional Hazard
models; and OrganITE (O-ITE) (Berrevoets et al., 2020),
which uses a high-dimensional treatment e↵ect estimator,
paired with an organ density to account for rarity across
patients in Q(t) by weighting the ITE prediction.

5. Experiments
We evaluate OrganSync’s performance on organ-allocation
against various benchmarks (detailed in Section 4), and

provide extensive analysis in our novel high-dimensional
individual treatment e↵ects estimator with respect to perfor-
mance, as well as interpretability. For this we use two
major datasets: the United Network for Organ Sharing
(UNOS) dataset (Cecka, 2000), and the UK transplant reg-
istry data (available upon request). With each model we
have performed an extensive hyperparameter search using a
Bayesian optimisation scheme. The chosen hyperparame-
ters are reported in the supplemental material3.

5.1. Organ-to-patient allocation

Using our novel simulation, we evaluate how well Organ-
Sync allocates organs to patients on the wait-list. Essentially,
we evaluate any policy in Table 1 providing an interface such
as in Eq.(1). With our simulation we provide highly accurate
outcome estimates for patient-organ pairs that are not well
represented in the given dataset; report deaths and added
life-years; and provide an abstract interface for interaction
with any given policy.

Deaths and average added life-years. As shown in Ta-
ble 2, we report increases up to 13.1% in average life-years
as compared to MELD; and decreases of -4.1% of premature
deaths on the wait-list. While these percentages may seem
small, they represent approximately 200 yearly deaths in the
USA liver transplant-system. We also note a comparable
performance to OrganITE, while remaining entirely inter-
pretable. Having an interpretable machine learning model
is important should it ever be adopted in healthcare (Ahmad
et al., 2018; Doshi-Velez & Kim, 2017).

5.2. Prediction and interpretability

We evaluate our first component– the potential outcomes
estimator –on outcome prediction (both factual and coun-
terfactual), as well as interpretability. Results on prediction
are reported in Table 3, and on interpretability in Figure 3.

Factual versus counterfactual evaluation. By predicting
outcomes as they are reported in the dataset, we evaluate on
factual outcomes. While OrganSync performs well in this
regard, performance on counterfactuals is more important
for a potential outcomes estimator. That is, by training on
biased data, we wish to evaluate using unbiased test data.
While indeed desirable, this is impossible using the factual
data as is. As such, from our two datasets, we create two
semi-synthetic datasets where the outcomes are replaced by
a known function: Y(O) = ⌫ exp{✓>1 X + ✓>2 O + 1

2 } + ✏Y . We
then leave the training set biased, and shu✏e patient and
organs to form random matches in the test set. A similar

3All our code to reproduce our results is available at https:
//github.com/vanderschaarlab/mlforhealthlab, includ-
ing: model definition, simulations, data preprocessing, and semi-
synthetic data generation.

https://github.com/vanderschaarlab/mlforhealthlab
https://github.com/vanderschaarlab/mlforhealthlab
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Figure 3. Performance of OrganSync’s potential outcomes estimator with di↵erent �. We report both n-RMSE, and the average
amount of elements in a that are above 1e-5. On real data: While � heavily impacts the amount of contributors to the synthetic control
(less than half when � = 0.2, compared to 0.0), performance remains largely untouched. This is due to heavy impact from a few “large”
contributors versus “small” contributors; corresponding with high and low values in a, respectively. On semi-synth. data: The reverse is
true for semi-synthetic data; performance increases with higher �, though it seems counterfactual estimation requires more contributors,
even with high �. This makes sense as these are typically out-of-sample estimations which demand more extreme synthetic controls.

Table 3. Performance on prediction outcomes. Results are averaged over di↵erent 50 data-folds (standard deviation in brackets) on two
major datasets. The leftmost part reports n-RMSE, the rightmost part reports the mean absolute error in days. Note, that we did not report
the mean absolute error in days for synthetic data as this has no meaningful indication of expected error in reality. Lower is better.

Semi-synth. (counterf.) Real (factual)
n-RMSE Mean abs. error in days

UNOS UKReg UNOS UKReg UNOS UKReg
TransplantBenefit 2.66 (.306) 1.32 (.012) 1.75 (.264) 1.32 (.015) 2087 (20.7) 2833 (18.3)

ConfidentMatch 1.17 (.069) 0.84 (.523) 0.83 (.025) 0.90 (.082) 1328 (39.4) 1625 (236)
Multi-task .027 (.004) 0.24 (.052) 0.81 (.009) 0.76 (.201) 796 (12.1) 1076 (32.7)
OrganITE .030 (.001) 0.15 (.016) 0.79 (.010) 0.46 (.143) 761 (16.4) 634 (27.4)

OrganSync-� .049 (.002) 0.29 (.077) 0.76 (.005) 0.39 (.004) 715 (4.13) 497 (5.72)
OrganSync-SC .005 (.004) 0.09 (.005) 0.81 (.031) 0.42 (.006) 781 (19.1) 541 (14.7)

strategy was also used in Berrevoets et al. (2020).

Prediction. We report the normalised root mean squared er-
ror (n-RMSE) for factual and counterfactual estimation, and
the mean absolute error in days for factual data in Table 3.
Besides the benchmarks described in Section 4.1, we also
compare OrganSync with synthetic estimates (OrganSync-
SC), and without synthetic estimates (OrganSync-�). The
former regresses through Eq.(7), while the latter is simply
regressing Y through Eq.(4), without any consideration of
Eq.(5) or Eq.(6), essentially reducing to a standard MLP.

Interpretability. One of the major problems we wish to
solve, is that of providing interpretable potential outcome
estimates for high-dimensional treatments. All our bench-
marks are either interpretable (TransplantBenefit), or non-
linear (ConfidentMatch, Multi-task networks, and Organ-
ITE); but not both. Non-linear estimates are di�cult to
interpret as they combine all the past seen data to build a
non-linear representation space, which in the case of UNOS
amounts to roughly 80k patients, and UKReg to 15k patients
(in the training sets). OrganSync is no exception, the non-
linear component is similarly not interpretable. Furthermore,
learning a second model that functions as a “translator” may
result in unfaithful explanations, as stated by Rudin (2019).

By linearly combining patient-organ pairs, OrganSync re-
mains explicit about exactly how much each pair contributes
to the estimate. Furthermore, their contribution remain in-
terpretable as it is both linear, and constrained to sum to
one. While one might assume that synthetic controlled esti-
mates adversely a↵ect performance, Figure 3 shows this is
not the case. In Figure 3 we report prediction performance
and the size of the synthetic control given �. Having more
contributors, makes the synthetic control less interpretable,
warranting the use of higher �.

We gain further insight into how OrganSync combines
patient-organ pairs into synthetic controls through Figure 4.
In Figure 4 we have learned ten KMeans clusters over the
patient-organ space, X ⇥ O (top row), as well as the repre-
sentation space,U (bottom row). Using these clusters, we
sampled 50 patient-organ pairs per cluster from the test set,
and computed their synthetic control. We then counted the
amount of patients in each cluster that contributed to their
synthetic control and normalised the results. When compar-
ing the top row, with the bottom row, we recognise that the
non-linear representation rearranges the patient-organ pairs
in such a way that they are easily combined in a linear way.
Furthermore, having the non-linear representation allows
OrganSync to combine non-obvious pairs from the dataset
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Figure 4. Contributions of di↵erent patient-organ types to synthetic pairs. We have clustered the patient-organ pairs in the training
dataset using KMeans, with K=10. The row above depicts clusters in the patient-organ space (X ⇥ O), the row below depicts clusters in
the representation space (U). From each cluster (0-9), we sampled 50 patient-organ pairs from the test set, and composed their synthetic
pair. For each cluster (0-9), we report the contribution of all clusters to the predicted outcome of their synthetic pairs. In these plots,
”contribution” means the information contained in a group of patient-organ pairs (a cluster) has greater or lesser impact to explaining
the predicted outcome of a synthetic patient-organ pair. The vertical axis shows for each cluster, what the cluster contributes to; the
horizontal axis shows for each cluster, what other clusters they are composed of. We have normalised these outcomes for each row, such
that one square can be interpreted as a percentage. For example, in UNOS (left-above), cluster “6” is the highest frequent contributor,
while clusters “3 and 4” contribute least. Note that the cluster types have no significance across datasets. We learn that OrganSync
represents the data such that similar patient-organ pairs are nearby inU, while scattered across X ⇥ O.

(illustrated by the lower values in the top row of Figure 4).

Example. To fully cement the interpretability of Organ-
Sync, we provide one concrete example in Table 4. In
our example, we report the MELD-na features: Creatinine
(Creat.), Bilirubin (Bilir.), INR, and Sodium; for a more
complete example we refer to our supplemental materials.
Note that searching a synthetic control on the features di-
rectly, would likely result in very di↵erent contributors as
reported in Table 4. Using these types of tables, OrganSync
delivers exactly what is claimed by Rudin (2019) to be nec-
essary for machine learning models to be useful in clinical
settings— interpretation, directly provided by the model,
not by a second model functioning as a “translator”.

6. Discussion
OrganSync has the potential to transform healthcare by aid-
ing clinicians in treatment decisions while o↵ering new in-
sight through various interpretations. For example, consider
Table 4, where the top contributors to a synthetic control do
not seem to be very comparable in terms of the MELD-na
features which are for the past 13 years considered very
important in liver allocation. A sentiment that is further
explained by Figure 4 where the synthetic controls seem to
span the entire patient-organ feature space. However, It is

Table 4. Example. We report the top 3 contributors for one ex-
ample’s synthetic control. The absolute error in life-years for
OrganSync was 243 days, and 532 days for TransplantBenefit.
Note that the top 3 already span 8 years of past cases.

Contrib. Creat. Bilir. INR Sodium Year

Example 46 169 1.1 140 2019

Past patients in synthetic control
.399 254 238 1.6 134 2019
.261 71 35 1.4 135 2017
.241 72 20 1.0 142 2011

. . .

important to note that machine learning models can fail. In
particular, OrganSync relies on two assumptions outlined in
Section 3.1: overlap, and unconfoundedness. When these
assumptions are violated, OrganSync might fail to correctly
predict counterfactual scenarios. Having domain knowl-
edge about the provided data (Johnson et al., 2014; Lerut
et al., 2020) is thus crucially important to confirm these as-
sumptions. As such, we envisage OrganSync as a decision
support tool, working in tandem with clinicians. In fact, this
is exactly why interpretable decisions and predictions are
so important in OrganSync.
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