Confidence Scores Make Instance-dependent Label-noise Learning Possible

A. Related works

Besides the works aforementioned, we survey other ap-
proaches to learning with noisy labels.

Robust losses.  Various approaches propose to use a prov-
ably robust loss function in the learning process. In the case
of class-dependent label noise, (Natarajan et al., 2013) con-
structed an unbiased estimator of any loss function under the
noisy distribution. (Masnadi-shirazi & Vasconcelos, 2009)
introduced a robust non-convex loss. Recently, works on
symmetric losses showed that such loss offer theoretical ro-
bustness results to various types of noise (Ghosh et al., 2017;
Charoenphakdee et al., 2019). Motivated by the robustness
to noise of the mean absolute error loss (MAE) shown in
(Ghosh et al., 2017), (Zhang & Sabuncu, 2018) introduced
generalized cross entropy loss that allows for a trade-off
between the efficient learning properties of the CCE loss
and the noise-robustness of MAE. (Shen & Sanghavi, 2019)
introduced a trimmed loss with an iterative minimization
process that allows for theoretical guarantees in the simpler
setting of generalized linear models.

Annotator-level modelling. Another recent line of re-
lated works attempts to model labels and worker’s quality
directly during the crowdsourcing annotation process, in
order to produce more accurate labels efficiently. (Branson
et al., 2017) modeled the annotators’ skill and instances
difficulty while incrementally training a computer vision
model during the annotation process, effectively reducing
the time burden of the annotation process as well as the
error rate in the assigned labels. (Guan et al., 2018) mod-
eled each annotator individually in order to better aggregate
labels based on each worker’s skill and area of expertise.
(Khetan et al., 2018) introduced a method that allows to
learn each workers’ skill even when each example is only
annotated once, by jointly modelling the assigned labels and
the workers during the annotation process.

Learning with multiple noisy labels. A closely related
setting is learning from multiple noisy labels, where the
aim is to predict an unknown ground-truth label from
(X, (Y7);), each Y7 referring to a noisy annotation. This
setting can arise for example from crowdsourcing tasks;
(Snow et al., 2008) showed that using multiple non-expert
annotators to train a classifier can be as effective as using
gold standard annotations from experts. In (Raykar et al.,
2009), the authors derive a Bayesian approach to jointly
learn the expertise of each annotator, the actual true label
and the classifier. (Yan et al., 2010) extends this Bayesian ap-
proach by considering that each annotator’s expertise varies
across the input space. This setting differs from ours as it
takes place before the aggregation of multiple annotations,
which, for CSIDN, is only a way among others to obtain a

confidence score for each noisy label.

Explicit/implicit regularizers. Recently, several other
regularization techniques have shown good robustness in
weakly-supervised settings. Temporal Ensembling (TE)
(Laine & Aila, 2017) method labels some additional unla-
beled instances using a consensus of predictions from mod-
els from previous epochs and with different regularizations
and input augmentation conditions. Mean-teacher (MT)
(Tarvainen & Valpola, 2017) instead uses predictions from a
model obtained by averaging the weights of a set of models
similar to TE, as using the prediction from a unique model
is more efficient when a large amount of unlabeled data is
available. Virtual Adversarial Training (Miyato et al., 2018)
regularizes the network using a measure of local smoothness
of the conditional label distribution given the input, defined
as the robustness of the prediction to local adversarial per-
turbations in the input space. Introduced in (Zhang et al.,
2018), mixup trains a neural network on convex combina-
tions of instance pairs and their respective labels, and has
been shown to reduce the memorization of corrupted labels.

Weak supervision. Recent approaches in weakly super-
vised learning provide alternatives to noisy label learning.
Instead of considering a single imperfect labeller on the
whole dataset, Data Programming (Ratner et al., 2016; 2020)
considers a set of labelling functions providing approxi-
mate labels on subsets of the dataset and aggregates them
by estimating their respective noise rates and modelling
their dependencies. Meanwhile, Adversarial Data Learning
(Arachie & Huang, 2019) considers a set of weak labellers
providing soft labels of the data along with estimated error
bounds, and trains a model minimizing the error rate on
labels selected by an adversarial agent.

B. Synthetic dataset

Figure 7 shows three synthetic datasets, which cover clean,
IDN and CSIDN models.

C. Baselines

Here we detail the four baselines used in our experiments.

Forward correction. Introduced in (Patrini et al., 2017),
forward correction estimates a fixed transition matrix T’
before training, and trains a classifier with the corrected loss

Ir: (y,9) = Uy, T9).

Mean absolute error loss. Due to its symmetric property,
the Mean Absolute Error (MAE) has been theoretically jus-
tified to be robust to label noise under assumptions (Ghosh
et al., 2017). However, this loss is more difficult to train,
especially on complex datasets.
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(a) Clean data distribution. (b) Data distribution with IDN. (c) Data distribution with CSIDN.

Figure 7. Synthetic dataset. The clean distribution (a) consists in three classes of concentric circles. In the IDN setting (b), each point x
has a probability P(Y # Y|z) = p (m + 1) /2 with w = (0, 1) of being corrupted, where p is a parameter controlling the mean
noise rate. Therefore the noise is the strongest towards the direction (0, 1) and the weakest in the direction (0, —1). If corrupted, the label
is flipped to another class uniformly. The CSIDN setting (c) is similar to the IDN setting, but each point is associated with measure of the

confidence in the assigned label. A lower confidence is represented by a lower opacity in the figure.

L, norm. Introduced in (Zhang & Sabuncu, 2018), L, noise, would be equipped with confidence information and
norm or Generalized Cross Entropy (GCE) Loss attempts therefore could be tackled with our proposed algorithm.

to bring the best of both worlds between the CCE and the

MAE loss: the CCE is easy to train, while the MAE is robust

to label noise. The authors therefore define this loss using

the negative box-cox transformation:

Ly (h@),e;) = L=

)

so that the L, tends to the CCE when ¢ — 0 and to the
MAE when ¢ = 1. In the following experiments, we set
g = 0.7, suggested by authors.

Co-teaching (Han et al., 2018b). Co-teaching algorithm
is a small-loss approach where two classifiers are trained in
parallel. At each epoch, each classifier selects the instances
with the smallest loss, and feed them to the other network
as a training set for the next iteration. This work has proved
to be a leading benchmark in the field of noisy labels.

D. Examples of real-world datasets

An example application of this work in building large real-
world datasets with limited resources is constructing a
dataset with images scraped from the web, and automat-
ically labelling them from neighbouring text fields using a
classifier such as a recurrent neural network. Then, a small
subset of curated images can be used at the beginning of the
process to calibrate the classifier, in order to make the pre-
dictions of the softmax output faithful to the confidence in
each label. This way, one can build a very large dataset for a
very low-cost that, while involving some instance-dependent



