Supplementary Material

A. Proof of Proposition 1

Proposition 1. [E-invariant Representation’s Effect on
OOD Classification] Consider a permutation-invariant
graph representation T : U2 {0,1}"*" x X" — R?,
d > 1, and a downstream function p : Y x R? — [0, 1] (e.g.,
a feedforward neural network (MLP) with softmax outputs)
such that, for some €,6 > 0, the generalization error over
the training distribution is: Yy € Y,

P([P(Y = y|Gxw) — p(y, D(Grw))| <€) =13,

I" is said to be environment-invariant (E-invariant) if
Ve € supp(E™), Vel € supp(E™),

[(G%|E™ = e) = T(G%.|E"* = ef).

If T is E-invariant, then the OOD test error is the same as
the generalization error over the training distribution, i.e.,

Yy €Y,

P(P(Y =y|Gxe) — p(y, T(GRe)) S €) 21 =0, (2)

Proof. First note that Y is only a function of W and an
independent random noise (following Definitions 1 and 2,
depicted in Figure 1). Therefore, Y is E-invariant, and thus

P(Y|gtem - E]f\:]tc) - P(Y|gtr tr — t]{/‘lr),

since the observed graphs in test (Gt;‘,‘e) and training (G'\«)
only differ due to the change of environments while shar-
ing the same graphon variable W and the other random
variables.

The definition of E-invariance states that Ve € supp(E"),
Vel € supp(E"“),

D(GYe | EB™ = e) = T(GY | B = e).
So, the E-invariance of I" yields
p(y; T(Gi)) = p(y, T(GNe)),

concluding our proof. O

B. Proof of Theorem 1

Theorem 1 (Approximately E-invariant Graph Representa-
tion). Let G¥. and G%.. be two samples of graphs of sizes
N" and N* from the training and test distributions, respec-
tively, both defined over the same graphon variable W and

satisfying Definitions I and 2. Assume the vertex attribute
Sunction gx (-, -) of Definitions 1 and 2 is invariant to E"
and E' (the reason for this assumption will be clear later).
Let || - ||oo denote the L-infinity norm. For any integer
k < min(N", N™), and any constant 0 < ¢ < 1,

P(IT 10 (Gr) — T 10t (Gie)l > €) <
EQN" €2Nte
2|f§k|(exp(*m) JreXP(*W»-)

Proof. We first replace tinq by tinj, which is defined by

inj(Fr, Gy

tinj(Fk7g;k\V) = m’

(10)
where inj(Fy, G-) is the number of injective homomor-
phisms of F}, into Gy.. Then, we know from Lovdsz &
Szegedy (2006, Theorem 2.5) that for unattributed graphs
g;/'*7
R €
P(|tinj(Fk,QN*) - t(Fk, W)| > 6) S 26Xp(—@N),

1D

where W is the graphon function as illustrated in Defini-
tions 1 and 2. As defined in Lovasz & Szegedy (2000),

H(Fo, W) = /

(0,1]%

W (x;, x;)dxy - - - dzy,
ijEE(Fy)

where E(F},) denotes the edge set of F},. This bound shows
that tinj (Fj, G+) converges to t(Fj,, W) as N* — co. Ac-
tually, we can get similar bounds for t;,q using a similar
proof technique. Although the value it converges to is dif-
ferent, the difference between values is preserved as it will
be proved in the following text. More importantly, it can
be extended to vertex-attributed graphs under our SCM as-
sumptions depicted in Definitions 1 and 2.

‘We can have this extension because, for the vertex-attributed
graphs in Definitions 1 and 2, gx operates on attributed
graphs similarly as the graphon does on unattributed graphs.
We can consider the graph generation procedure as first
generating the underlying structure, and then adding vertex
attribute accordingly to its corresponding random graphon
value U,, € Uniform(0, 1) and graphon W. gx (-,) being
invariant to £ and E' means for any two environments
e € supp(E"), e € supp(E*), gx (e,-) = gx (e,).

Then for a given vertex-attributed graph F}, with k vertices,
and a given (whole) graph size N, we can define ¢ as an

Size-Invariant Graph Representations for Graph Classification Extrapolations

induced map ¢ : [k] — [N"], which can be thought about
as how the k vertices in F}, are mapped to the vertices in
Q;‘V*. Define Cy = 1 if ¢ is a homomorphism from F}, to
the W-random graph Q;'V*, otherwise Cy, = 0. We define
G, as the subgraph of G induced by vertices {1, ..., m}.
Note here m has two meanings. First, it represents the m-th
vertex. Second, it indicates the size of the subgraph. We
define B, = ﬁzq{)P(C(z, =1|G,,),0 <m < N" as
k

the expected induced homomorphism densities once we
observe the subgraph G.,. Here By = (N—l) > P(Cs=1)
denotes the expectation before we obserl\cle any vertices.
B,, is a martingale for unattributed graphs (Lovasz &
Szegedy, 2006, Theorem 2.5). And since in Definitions 1
and 2 we also use the graphon W and gx operates on at-
tributed graphs using the graphon W and U,, it is also a
martingale for vertex-attributed graphs based on our def-
initions. We do not need to care about the environment
variable E™ here because the function gx 1s invariant to E”
and, therefore, it can be treated as a constant. Then,

|Bm_ Bm—1|
1 * *
:m‘ Y P(Cs =1|G,,) = P(Cy = 1|G,, 1))
k ¢
1

< > IP(Cy = 11G,,) = P(Cy = 1IG,,).
o

N
(%)
Here, for each ¢ : [k] — [N"] that does not contain the value
m in its image (which means no vertex in F}, is mapped to
the m-th vertex in gf\,*), the difference is 0. For all other
terms, the terms are at most 1. Thus,

B, < o) _k

e .
(k) n
By definition, By = ﬁz¢ P(Cy = 1) = t'(Fy, W),
k
and By+ = (Nlé)ind(Fk,gfv*) =
k

t*(Fy, W) is defined as By, is the expected induced ho-
momorphism densities if we only know the graphon W and
we did not observe any vertex in the graph.

|Bm -

tind(Fi, Gy), Where

Then, we can use Azuma’s inequality for Martingales,

€2

N (RN
= exp(—%]\f*).

P(By+ — Bo > €) < exp(—

Since By« = tina(Fk, G+), and By =t (F),, W), we get
the similar bound as in Equation (11),

2
2k2

P([tina(Fi, Gy) =t (Fioy W)| > €) < 2exp(— 55 N').

Since [ting(Fr, G%u) — t (Fie, W)| < 5, |tina(Fi, G%e) —
t"(Fi, W)| < § imply |ting(Fi, Gie) — tina(Fi, Gy)| < €
we have,

P(|tind(Fi, Gre) — tind(Fi, Gnee)| > €)

=1 = P(|tina(Fi, Gve) — tina(Fle, Gve)| < €)
* €
<1 —P(|tina(F, Ge) — t (Fi, W)| < 5)
* €
P(|ting(Fr, %) = (Fp, W)| < 5)
€2 €2
tr te
<1-(1- 2eXP(—8ﬁN)1 — 2exp(——8k2N))
62 tr 62 te
= 2(eXp(—8?N) + eXp(—@N)
2
€ I
—dexp(— gz (N 4+ N¥))
< N < N 12
< 2(eXp(*@N)+6Xp(7@N). (12)

Then we know,

P([|T110t(Gxe) — Lihot(Gnve) loo < €)
= P(|tina(Fir, Gxe) — tind(Fir, Gnee)| < €, VEy € F<y)

Z 1-— Z P(|tind(Fk/7 g}{[u‘) - tind(Fk/7 g}%lu‘) > 6)
FkIE}_gk
62]\[& 62A]\/'te
>1- 2|}'5k|(exp(—W) + eXP(_W» (13)

It follows from the Bonferroni inequality that P(N}Y_; 4;) >
1— Zf\;l P(Ai), where A; and its complement A; are any
events. Therefore,

P(||T 1 hot(Ge) = Tionot(Gvee) oo > €)

2 pTtr

8k2

€2 Nt

€
< 2| F<k|(exp(— =

) +exp(—

)

concluding the proof. O

C. Biases in estimating induced
homomorphism densities
Induced (connected) homomorphism densities of a given

graph Fj over all possible k’-vertex (k' < k) connected
graphs for an N -vertex graph gjv are defined as

_ il’ld(Fk/, gj\/*)
ZFkle]:gk iIld(F'k/7 g;v»)

W(Fk’7gj\1*)

This is a slightly different definition from the induced ho-
momorphism densities in Equation (3). In the main text,
the denominator is the total number of possible mappings
(which can include mappings that are disconnected). Here
we consider the total numbers of induced mappings that are
connected as is common practice.

Size-Invariant Graph Representations for Graph Classification Extrapolations

Achieving unbiased estimates for induced (connected) ho-
momorphism densities usually requires sophisticated meth-
ods and significant amount of time. We show that a biased
estimator can also work for the GNN™ in Equation (7) if
the bias is multiplicative and the READOUTT is simply the
sum of the vertex embeddings. We formalize it as follows.

Proposition 2. Assume &(Fy,G) is a biased estimator
for w(Fy,Gy.) for any k" and k'-sized connected graphs
Fy in a N -vertex Gy., such that E(&(Fy,Gy.)) =
B(F)w(Fy,G), where B(Fy) (B(-) > 0) is the bias
related to the graph F}/, and the expectation is over
the sampling procedure. The expected learned represen-
tation E(ZFVE]_-Q &(F, Gy) 1T (GNNT (Fy))) can be
the same as using the true induced (connected) homomor-
phism densities w(Fy,Gy.),VEy € F<y.

Proof. W.L.O.G, assume GNN{ (F}) is the representation
we can learn from the true induced (connected) homomor-
phism densities w(Fk/,ngf),VFk/ € F<j. When only
using the biased estimators, if we are able to learn the
representation GNN™ (Fy/) = GNN{ (Fy/)/B(Fy) for all
Fyr € F<i, then we can still get the graph representation in
Equation (7) the same as using the true induced (connected)
homomorphism densities. This is possible because GNN™
is proven to be a most expressive k’-vertex graph represen-
tation, thus it is able to learn any function on the graph Fj..
Then,

E| Y @Fw,Gy)1T(GNNT(Fy)) | =
Fk/G]:Sk

Y w(F, Gy)1T(GNNG (Fy)), (14)
Fyy E}_gk

where 1T (GNN™(F}/)) is the sum of the vertex embed-
dings given by the GNN™ if it is an equivariant representa-
tion of the graph. O

D. Review of Graph Neural Networks

Graph Neural Networks (GNNs) constitute a popular class
of methods for learning representations of vertices in a graph
or graph-wide representations (Kipf & Welling, 2017; At-
wood & Towsley, 2016; Hamilton et al., 2017; Gilmer et al.,
2017; Velickovi¢ et al., 2018; Xu et al., 2019; Morris et al.,
2019; You et al., 2019; Liu et al., 2019; Chami et al., 2019).
Graph-wide representations can also be obtained by apply-
ing GNNs to the connected induced subgraphs in a larger
graph and then averaging the resulting subgraph represen-
tations. That is, in our work, we have applied GNNs to
connected induced subgraphs in a graph, and then aggre-
gated (averaged) them to obtain the representation of the
graph. We briefly summarize the idea, but more details

can be found in texts such as by Hamilton (2020) and re-
views by Wu et al. (2020) and Zhang et al. (2020) and the
references therein.

Suppose we have a graph G with vertex set V =
{1,..., N}, and each vertex in our data may carry some
vertex attribute (also called a feature). For instance, in a
molecule, vertices may represent atoms, edges may rep-
resent bonds, and features may indicate the atomic num-
ber (Duvenaud et al., 2015). These vertex features can be
stored in an N x d matrix X, where d is the dimension of
the vertex feature vector. In particular, row v € V of X,
holds the attribute associated with vertex v.

Roughly speaking, GNNs proceed by passing messages
among vertices, later passing the result through a learnable
function such as an MLP, and repeating T" € Z> times.
At each iteration t = {1,2,...,T}, all vertices v € V
are associated with a learned vector h(*). Specifically, we
begin by initializing a vector as hq(JO) = X, for every vertex
v € V. Then, we recursively compute an update such as the
following

RO = MLPO (R, S RED), eV, (1)

ueN (v)

where A/ (v) C V denotes the neighborhood set of v in the
graph, MLP® denotes a multi-layer perceptron, and whose
superscript ¢ indicates that the MLP at each recursion layer
may have different learnable parameters. We can replace
the summation with any permutation-invariant function of
the neighborhood. We see that GNNs recursively update
vertex states with states from their neighbors and their state
from the previous recursion layer. Additionally, we can
sample from the neighborhood set rather than aggregating
over every neighbor. Generally speaking there is much
research into the variations of this recursion step and we
refer the reader to aforementioned references for details.

To learn a graph representation, we can aggregate the ver-
tex representations using a so-called READOUT function
defined to be permutation-invariant over the labels. A graph
representation h by a GNN is then
. t
he = READOUT({hg>}U¢EVX{1“.7T}),

where the vertex features hg,t) are as in Equation (15).
READOUT may or may not contain learnable weights.
We denote it as XU-READOUT to not confuse with our
notation READOUTT.

The entire function is differentiable and can be learned end-
to-end. These models are thus typically trained with variants
of Stochastic Gradient Descent. In our work, we apply this
scheme over connected induced subgraphs in the graph,
making them a differentiable module in our end-to-end rep-
resentation scheme.

Size-Invariant Graph Representations for Graph Classification Extrapolations

E. Further Related Work

This section provides a more in-depth discussion placing
our work in the context of existing literature. We explain
why existing state-of-the-art graph learning methods will
struggle to extrapolate, subgraph methods, and more in
Graph Neural Networks literature.

Extrapolation. Geometrically, extrapolation can be
thought as reasoning beyond a convex hull of a set of train-
ing points (Hastie et al., 2012; Haffner, 2002; King & Zeng,
2006; Xu et al., 2021). However, for neural networks—
and their arbitrary representation mappings—this geomet-
ric interpretation is insufficient to describe a truly broad
range of tasks. Rather, extrapolations are better described
through counterfactual reasoning (Neyman, 1923; Rubin,
1974; Pearl, 2009; Scholkopf, 2019).

As shown in Geirhos et al. (2020), the ability of deep neural
networks to capture shortcuts for predictions tends to results
in poor extrapolation performances. Therefore, specific
methods or strategies must be adopted to obtain extrapola-
tion abilities.

There are other approaches for conferring models with ex-
trapolation abilities. These ideas have started to permeate
graph literature, which we touch on here, but remain out-
side the scope of our systematic counterfactual modeling
framework.

Incorporating domain knowledge is an intuitive approach to
learn a function that predicts adequately outside of the train-
ing distribution, data collection environment, and heuristic
curation. This has been used, for example, in time series
forecasting (Scott Armstrong & Collopy, 1993; Armstrong
et al., 2005). This can come in the form of re-expressing phe-
nomena in a way that can be adequately and accurately rep-
resented by machine learning methods (Lample & Charton,
2020) or specifically augmenting existing general-purpose
methods to task (Klicpera et al., 2020). In the context of
graphs, it has been used to pre-process the graph input to
make a learned graph neural network model a less complex
function and thus extend beyond training data (Xu et al.,
2021), although this does not necessarily fall into the frame-
work we consider here.

Another way of moving beyond the training data is robust-
ness. Relevant for deep learning systems are adversarial
attacks (Papernot et al., 2017). Neural networks can be
highly successful classifiers on the training data but become
wildly inaccurate with small perturbations of those train-
ing examples (Goodfellow et al., 2015). This is important,
say, in self-driving cars (Sitawarin et al., 2018), which can
become confused by graffiti. This becomes particularly
problematic when we deploy systems to real-world environ-
ments outside the training data. Learning to defend against

adversarial attacks is in a way related to performing well
outside the environment and curation heuristics encountered
in training. An interesting possibility for future work is to
explore the relationships between the two approaches.

Overfitting will compromise even in-distribution general-
ization. Regularization schemes such as explicit penalties
are a well known and broadly applicable strategy (Hastie
et al., 2012). Another implicit approach is data augmen-
tation (Herndndez-Garcia & Konig, 2018), and the recent
GraphCrop method proposes a scheme for graphs that ran-
domly extracts subgraphs from certain graphs in a minibatch
during training (Wang et al., 2020b). These directions differ
from our own in that we seek a formulation for extrapo-
lation even when overfitting is not necessarily a problem.
Still these two approaches are both useful in the toolbox of
representation learning.

We would like to point out that representation learning on
dynamic graphs (Kazemi et al., 2020), including tasks like
link prediction on growing graphs (Anonymous, 2021), is
a mostly separate research direction from what we con-
sider here (although it is now understood that temporal and
static graph representations are equivalent for observational
predictions (Gao & Ribeiro, 2021)). In these scenarios,
there is a direct expectation that the process we model will
change and evolve. For instance, knowledge bases — a form
of graph encoding facts and relationships — are inevitably
incomplete (Sun et al., 2018). Simply put, developments
in information and society move faster than they can be
curated. Another important example is recommendation
systems (Kumar et al., 2019) based on evolving user-item
networks. These concepts are related to the counterfactu-
als on graphs (Eckles et al., 2016) that we discuss. This is
fundamentally different from our work where we do graph-
wide learning and representation of a dataset of many graphs
rather than one constantly evolving graph.

Subraph methods and Graphlet Counting Kernels. A
foundational principle of our work is that, by exploiting
subgraphs, we confer graph classifications models with both
the ability to fit the training data and to extrapolate to graphs
from a different distribution (OOD generalization). As de-
tailed in Section 3.2, this insight follows from the Aldous-
Hoover representation of jointly exchangeable distributions
(graphs) (Hoover, 1979; Aldous, 1981; Kallenberg, 2006;
Orbanz & Roy, 2014) and work on graph limits (Lovész,
2012). We now discuss the larger literature that uses sub-
graphs in machine learning.

Counting kernels (Shervashidze et al., 2009) measures
the similarity between two graphs by the dot product of
their normalized counts of connected induced subgraphs
(graphlet). This can be used for classification via ker-
nelized methods like Support Vector Machines (SVM).

Size-Invariant Graph Representations for Graph Classification Extrapolations

Yanardag & Vishwanathan (2015) argues that the dot prod-
uct does not capture dependence between subgraphs and
extend to a general bilinear form over a learned similarity
matrix. These approaches are related to the Reconstruc-
tion Conjecture, which posits graphs can be determined
through knowledge of their subgraphs (Kelly et al., 1957;
Ulam, 1960; Hemminger, 1969; McKay, 1997). It is known
that computing a maximally expressive graph kernel, or
one that is injective over the class of graphs, is as hard as
the Graph Isomorphism problem, and thus intractable in
general (Gértner et al., 2003; Kriege et al., 2020). Kriege
et al. (2018) shows graph properties that subgraph counting
kernels fail to predict. The work then proposes a method
to make them more expressive, but only for graphs without
vertex attributes.

Most applications of graphlet counting do not exploit vertex
attributes, and even those that do (e.g. Wale et al. (2008)) are
likely to fail under a distribution shift over attributes; this
is because counting each type of attributed subgraph (e.g.
red clique, blue clique) is sensitive to distribution shift. In
comparison, our use of GNNs confers our framework with
the ability learn a compressed representation of different
attributed subgraphs, tailored for the task, and extrapolate
even under attribute shift. We demonstrate this in Table 2.
Last, a recent work (Ye et al., 2020) proposes to pass the
attributed subgraph counts to a downstream neural network
model to better compress and represent the high dimensional
feature space. However, with attribute shifts, it may be
that the downstream layers did not see enough attributed
subgraph of certain types in training to learn how to correctly
represent them. We feel that it is better to compress the
attributed signal in the process of representing the graph to
handle these vertex features, the approach we take in this
work.

There are many graph kernel methods that do not leverage
subgraph counts but other features to measure graph simi-
larity, such as the count of matching walks, e.g. Kashima
et al. (2003); Borgwardt et al. (2005); Borgwardt & Kriegel
(2005). The WL Kernel uses the WL algorithm to compare
graphs (Shervashidze et al., 2011) and will inherit the limita-
tions of WL GNNgs like inability to represent cycles. Rieck
et al. (2019) propose a persistent WL kernel that uses ideas
from Topological Data Analysis (Munch, 2017) to better
capture such structures when comparing graphs. Methods
that do not count subgraphs will not inherit properties regard-
ing a graph-size environment change — from our analysis
of asymptotic graph theory — but all extrapolation tasks re-
quire an assumption and our framework can be applied to
studying the ability of various kernel methods to extrapo-
late under different scenarios. Those relying on attributes
to build similarities are also likely to suffer from attribute
shift.

Subgraphs are studied to understand underlying mechanisms
of graphs like gene regulatory networks, food webs, and
the vulnerability of networks to attack, and sometimes used
prognostically. A popular example investigates motifs, sub-
graphs that appear more frequently than under chance (Stone
& Roberts, 1992; Shen-Orr et al., 2002; Milo et al., 2002;
Mangan & Alon, 2003; Sporns & Kotter, 2004; Bascompte
& Melian, 2005; Alon, 2007; Chen et al., 2013; Benson
et al., 2016; Stone et al., 2019; Dey et al., 2019; Wang et al.,
2020a). Although the study of motifs is along a different
direction and often focus on one-graph datasets, our frame-
work learns rich latent representations of subgraphs. An-
other line of work uses subgraph counts as graph similarity
measures, an example being matching real-world graphs to
their most similar random graph generation models (Przulj,
2007).

Other machine learning methods based on subgraphs have
also been proposed. Methods like mGCMN (Li et al., 2020),
HONE (Rossi et al., 2018), and MCN (Lee et al., 2018) learn
representations for vertices by extending classical methods
over edges to a new neighborhood structure based on sub-
graphs; for instance, mGCMN runs a GNN on the new
graph. These methods do not exploit all subgraphs of size
k and will not learn subgraph representations in a manner
consistent with our extrapolation framework. Teru et al.
(2020) uses subgraphs around vertices to predict missing
facts in a knowledge base. Further examples include the
Subgraph Prediction Neural network (Meng et al., 2018)
that predicts subgraph classes in one dynamic heteroge-
neous graph; counting the appearance of edges in each type
of subgraph for link prediction tasks (Abuoda et al., 2019);
and SEAL (Zhang & Chen, 2018) runs a GNN over sub-
graphs extracted around candidate edges to predict whether
an edge exists. While these methods exploit small subgraphs
for their effective balance between rich graph information
and computational tractability, they are along an orthogonal
research direction.

Graph Neural Networks. Among the many approaches
for graph representation learning and classification, which
include methods for vertex embeddings that are subse-
quently read-out into graph representations (Belkin &
Niyogi, 2002; Perozzi et al., 2014; Niepert et al., 2016;
Ou et al., 2016; Kipf & Welling, 2016; Grover & Leskovec,
2016; Yu et al., 2018; Qiu et al., 2018; Maron et al., 2019b;a;
Wau et al., 2020; Hamilton, 2020; Chami et al., 2020), we
focus our discussion and modeling on Graph Neural Net-
work (GNN) methods (Kipf & Welling, 2017; Atwood &
Towsley, 2016; Hamilton et al., 2017; Gilmer et al., 2017,
Velickovié et al., 2018; Xu et al., 2019; Morris et al., 2019;
You et al., 2019; Liu et al., 2019; Chami et al., 2019). GNNs
are trained end-to-end, can straightforwardly provide latent
graph representations for graphs of any size, easily handle

Size-Invariant Graph Representations for Graph Classification Extrapolations

vertex/edge attributes, are computationally efficient, and
constitute a state-of-the-art method. However, GNNs lack
extrapolation capabilities due also to their inability to learn
latent representations that capture the topological structure
of the graph (Xu et al., 2019; Morris et al., 2019; Garg
et al., 2020; Sato, 2020). Relevantly, many cannot count
the number of subgraphs such as triangles (3-cliques) in a
graph (Arvind et al., 2020; Chen et al., 2020). In general,
our theory of extrapolating in graph tasks requires properly
capturing graph structure. In our work we consider GIN (Xu
etal., 2019), GCN (Kipf & Welling, 2017) and PNA (Corso
et al., 2020) as baseline GNN models. GIN and GCN are
some of the most widely used models in literature. PNA
generalizes different GNN models by considering multiple
neighborhood aggregation schemes. Note that since we
compare against PNA we do not need to consider other
neighboorhod aggregation schemes in GNNs, as studied
in Velickovic et al. (2020). To test whether more expressive
models are able to extrapolate, we employ RPGIN (Murphy
et al., 2019). In our experiments, we show that these state-
of-the-art methods are expressive in-distribution but fail to
extrapolate.

F. Experiments

In this appendix we present the details of the experimen-
tal section, discussing the hyperparameters that have been
tuned. Training was performed on NVIDIA GeForce RTX
2080 Ti, GeForce GTX 1080 Ti, TITAN V, and TITAN Xp
GPUs.

F.1. Model implementation

All neural network approaches, including the models pro-
posed in this paper, are implemented in PyTorch (Paszke
et al., 2019) and Pytorch Geometric (Fey & Lenssen, 2019).

Our GIN (Xu et al., 2019), GCN (Kipf & Welling, 2017)
and PNA (Corso et al., 2020) implementations are based on
their Pytorch Geometric implementations. We consider sum,
mean, and max READOUTS as proposed by Xu et al. (2021)
for extrapolations (denoted by XU-READOUT). For RP-
GIN (Murphy et al., 2019), we implement the permutation
and concatenation with one-hot identifiers (of dimension 10)
and use GIN as before. Other than a few hyperparameters
and architectural choices, we use standard choices (e.g. Hu
et al. (2020)) for neural network architectures. If the graphs
are unattributed, we follow convention and assign a constant
1 dummy feature to every vertex.

We use the WL graph kernel implementations provided
by the graphkernels package (Sugiyama et al., 2017). All
kernel methods use a Support Vector Machine on scikit-
learn (Pedregosa et al., 2011).

The Graphlet Counting kernel (GC kernel), as well as our

own procedure, relies on being able to efficiently count at-
tributed or unattributed connected induced homomorphisms
within the graph. We use ESCAPE (Pinar et al., 2017) and
R-GPM (Teixeira et al., 2018) as described in the main text.
The source code of ESCAPE is available online and the
authors of Teixeira et al. (2018) provided us their code. We
pre-process each graph beforehand and save the obtained
estimated induced homomorphism densities. Note that R-
GPM takes around 20 minutes per graph in the worst case
considered, but graphs can be pre-processed in parallel. ES-
CAPE takes up to one minute per graph.

All the models learn graph representations I‘(Q}kv) which
we pass to a L-hidden layer feedforward neural network
(MLP) with softmax outputs (L € {0,1} depending on
the task) to obtain the prediction. For I'gy, and I'rpgin,
we use respectively GIN and RPGIN as our base models
to obtain latent representations for each k-sized connected
induced subgraph. Then, we sum over the latent represen-
tations, each weighted by its corresponding induced homo-
morphism density, to obtain the graph representation. For
T'i hot, the representation Fl_hm(gj‘w) is a vector containing
densities of each (possibly attributed) k-sized connected
subgraph. To map this into a graph representation, we ap-
ply Tihot(G -) "W where W is a learnable weight matrix
whose rows are subgraph representations. Note that this
effectively learns a unique weight vector for each subgraph

type.

We use the Adam optimizer to optimize all the neural net-
work models. When an in-distribution validation set is
available (see below), we use the weights that achieve best
validation-set performance for prediction. Otherwise, we
train for a fixed number of epochs.

The specifics of hyperparameter grids and downstream ar-
chitectures are discussed in each section below.

F.2. Schizophrenia Task: Size extrapolation

The results of these experiments are reported in Table 1
(left). The data was graciously provided by the authors
of De Domenico et al. (2016), which they pre-processed
from publicly available data from The Center for Biomed-
ical Research Excellence. There are 145 graphs which
represent the functional connectivity brain networks of 71
schizophrenic patients and 74 healthy controls. Each graph
has 264 vertices representing spherical regions of interest
(ROIs). Edges represent functional connectivity. Originally,
edges reflected a time-series coherence between regions. If
the coherence between signals from two regions was above
a certain threshold, the authors created a weighted edge.
Otherwise, there is no edge. For simplicity, we converted
these to unweighted edges. Extensive pre-processing must
be done over fMRI data to create brain graphs. This in-
cludes discarding signals from certain ROIs. As described

Size-Invariant Graph Representations for Graph Classification Extrapolations

by the authors, these choices make highly significant im-
pacts on the resulting graph. We refer the reader to the
paper (De Domenico et al., 2016). Note that there are nu-
merous methods for constructing a brain graph, and in ways
that change the number of vertices. The measurement strat-
egy taken by the lab can result in measuring about 500 ROIs,
1000 ROIs, or 264 as in the case we consider (Hagmann
et al., 2007; Wedeen et al., 2005; De Domenico et al., 2016).

For our purposes, we wish to create an extrapolation task,
where a change in environment leads to an extrapolation set
that contains smaller graphs. For this, we randomly select
20 of the 145 graphs in the dataset, balanced among the
healthy and schizophrenic patients, to be used as test. For
each healthy-group graph in these 20 graphs, we sample
(with replacement) | 0.4 x 264] vertices to be removed. In
average, the new size for the healthy-group graphs in these
20 graphs is 178.2.

We hold out the test graphs that are later used to assess
the extrapolation capabilities. Over the remaining data,
we use a stratified 5-fold cross-validation to choose the
hyperparameters and to report the validation accuracy.

Once the best hyperparameters are chosen, we re-train the
model on the entire training data using 10 different initial-
ization seeds, and predict on the test.

For I'giy and I'rpgin, in their GNNs, the aggregation
MLP of Equation (15) has hidden neurons chosen among
{32,64,128,256} and number of layers (i.e. recursions
of message-passing) among {1,2}. The learning rate is
chosen in {0.001,0.0001}. The value of k is treated as a
hyperparameter chosen in {4,5}.

For I'| o, recall that we wish to learn the matrix W whose
rows are subgraph representations. We choose the dimen-
sion of the representations among {32, 64, 128,256} and
the learning rate in {0.001,0.0001}. The value of k is
treated as a hyperparameter chosen in {4,5}.

For the GNNs, we tune the learning rate in {0.01,0.001},
the number of hidden neurons of the MLP in Equation (15)
in {32, 64,128}, the number of layers among {1, 2, 3}.

For all these models, we use a batch size of 32 graphs and
a single final linear layer with a softmax activation as the
downstream classifier. We optimize for 400 epochs.

For the graph kernels, following Kriege et al. (2020), we
tune the regularization hyperparameter C in SVM over the
set {1073,1072,1071,1,10,10%,10%}. We tune the num-
ber of Weisfeiler-Lehman iterations of the WL kernel to be
in {1,2, 3,4} (see Kriege et al. (2020, Section 3.1)).

F.3. Erdos-Rényi Connection Probability: Size
Extrapolation

We simulated Erdés-Rényi graphs (Gnp model) using Net-
workX (Hagberg et al., 2008). The task is to classify the
edge probability p € {0.2,0.5,0.8} of the generated graph.
Table 1 shows results for a single environment task (middle),
where graphs in training have all size 80, and a multiple
environment task (right), where training graphs have sizes in
{70, 80} chosen uniformly at random. In both cases, the test
is composed of graphs of size 140. The training, validation,
and test sets are fixed. The number of graphs in training,
validation, and test are 80, 40, and 100, respectively. The in-
duced homomorphism densities are obtained for subgraphs
of a fixed size k = 5.

For I'j o1, we hyperparameter tune the dimension of the sub-
graph representations in {32, 64, 128, 256} and the learning
rate in {0.1,0.01,0.001}.

For the GNNSs and for I'gpy, and I'rpgin, We hyperparame-
ter tune the number of hidden neurons in the MLP of the
GNN (Equation (15)) in {32,64, 128,256} (GNN is used
to learn the representation for k-sized subgraph for I'gy,
and I'rpgn)- The number of layers is also a hyperparameter
in {1, 2,3} (3 layers only for the GNNs), and the learning
rate in {0.1,0.01,0.001}. We also hyperparameter tune the
presence or absence of the Jumping Knowledge mechanism
from Xu et al. (2018).

For IRM, we consider the two distinct graph sizes to be the
two training environments. We tune the regularizer A (Ar-
jovsky et al., 2019, Section 3) in {4, 8, 16, 32}, stopping at
32 because increasing its value decreased performances.

We train all neural models for 500 epochs with batch size
equal to the full training data. The downstream classifier is
composed by a single linear layer with softmax activations.
We perform early stopping as per Hu et al. (2020). The
hyperparameter search is performed by training all models
with 10 different initialization seeds and selecting the con-
figuration that achieved the highest mean accuracy on the
validation data. Then, we report the mean (and standard
deviation) accuracy over the training, the validation, and the
test data in Table 1 (right).

For the graph kernels, following Kriege et al. (2020), we
tune the regularization hyperparameter C in SVM over the
set {1073,1072,1071,1,10,10%,10%}. We tune the num-
ber of Weisfeiler-Lehman iterations of the WL kernel to be
among {1, 2, 3,4} (see Kriege et al. (2020, Section 3.1)).

F.4. Extrapolation performance over SBM attributed
graphs

We sample Stochastic Block Model graphs (SBM) using
NetworkX (Hagberg et al., 2008). Each graph has two

Size-Invariant Graph Representations for Graph Classification Extrapolations

blocks, having a within-block edge probability of P, ; =
P, 5 = 0.2. The cross-block edge probability is P} o =
Py, € {0.1,0.3}. The label of a graph is its cross-block
edge probability, i.e., Y = P 5.

Vertex color distributions change with train and test envi-
ronments. In training, vertices in the first block are either
red or blue, with probabilities {0.9, 0.1}, respectively, while
vertices in the second block are either green or yellow, with
probabilities {0.9, 0.1}, respectively. In test, the probability
distributions are reversed: Vertices in the first block are
either red or blue, with probabilities {0.1, 0.9}, respectively,
and vertices in the second block are green or yellow with
probabilities {0.1, 0.9}, respectively.

Table 2 shows results for the three scenarios we considered:
1. A single environment, where training graphs are of size
20 (left), 2. A multiple environment, where training graphs
have size 14 or 20, chosen uniformly at random (middle),
3. A multiple environment, where training graphs are of
size 20 or 30, chosen uniformly at random (right). The
test is the same in all cases, and contains graphs of size
40. The number of graphs in training, validation, and test
are 80, 20, and 100, respectively. We obtain the induced
homomorphism densities for I'gin, I'rpgin, I'1-not for a fixed
subgraph size k = 5.

For the GNNs and for I'gry and I'rpgiy, We choose the
number of hidden neurons in the MLP of the GNN (Equa-
tion (15)) in {32, 64,128,256}, the number of layers in
{1, 2,3} (3 layers only for the GNNs) and hyperparameter
tune the presence or absence of the Jumping Knowledge
mechanism from Xu et al. (2018). We add the regulariza-
tion penalty in Equation (8) for I'giy and I'rpgin in this
experiments. For 'y and 'rpgin, We choose the learn-
ing rate in {0.01,0.001} and the regularization weight in
{0.1,0.15}. For the GNNs we choose the learning rate in
{0.1,0.01,0.001}.

For IRM, we consider the two distict graph sizes to be
the two training environments. We can not treat vertex at-
tributes as environment here since we only have a single
vertex-attribute distribution in training. We tune the regu-
larizer A (Arjovsky et al., 2019, Section 3) in {4, 8, 16, 32},
stopping at 32 because increasing its value decreased per-
formances.

For I'j o, we hyperparameter tune the dimension of the sub-
graph representations in {32, 64, 128, 256} and the learning
rate in {0.01,0.001}.

We optimize all neural models for 500 epochs with batch
size equal to the full training data. We use a single layer with
softmax outputs as the downstream classifier. We perform
early stopping as per Hu et al. (2020). The hyperparameter
search is performed by training all models with 10 differ-
ent initialization seeds and selecting the configuration that

achieved the highest mean accuracy on the validation data.
Then, we report the mean (and standard deviation) accuracy
over the training, the validation, and the test data in Table 2.

For the graph kernels, following Kriege et al. (2020), we
tune the regularization hyperparameter C in SVM over the
set {1073,1072,1071, 1,10, 102, 103}. We tune the num-
ber of Weisfeiler-Lehman iterations of the WL kernel to be
among {1, 2, 3,4} (see Kriege et al. (2020, Section 3.1)).

F.5. Extrapolation performance in real world tasks that
violate our causal model

The results on graphs that violate our casusal model are
reported in Table 3. We use the datasets from Morris et al.
(2020), split into train, validation and test as proposed
by Yehudai et al. (2021). In particular, train is obtained
by considering the graphs with sizes smaller than the 50-th
percentile, and test those with sizes larger than the 90-th
percentile. Additionally, 10% of the training graphs is held
out from training and used as validation. For statistics on the
datasets and corresponding splits, see Yehudai et al. (2021).

We obtain the homomorphism densities for a fixed sub-
graph size kK = 4. We observed that larger subgraph sizes,
k > 5, implies a larger number of distinct subgraphs and
consequently a smaller proportion of shared subgraphs in
different graphs. To further reduce the number of distinct
subgraphs seen by the models, we only consider the most
common subgraphs in training and validation when neces-
sary. Specifically, for NCI1 and NCI109, we only use the
top 100 subgraphs (out of a total of around 300), and for
DD only the 30k most common (out of a total of around
200k). For PROTEINS we keep all the distinct subgraphs
(which are around 180).

For the GNNs, we follow the setup proposed in Yehudai
et al. (2021), where all the GNNs have 3 layers and a final
classifier composed of a feedforward neural network (MLP)
with 1 hidden layer and softmax outputs. We also use a
dropout of 0.3. We tune the batch size in {64, 128}, the
learning rate in {0.01,0.005,0.001} and the network width
in {32,64}. For I'gy and T'rpgin, the setup is the same,
except for the number of GNN layers that is set to 2. For
DD we use a fixed batch size of 256 to reduce the number
of times the subgraphs are passed to the network, in order
to speed up training.

For T pot, We choose the batch size in {64, 128}, the learn-
ing rate in {0.01,0.005,0.001} and the dimension of the
subgraph representations in {32, 64}.

For IRM we tune the regularizer A (Arjovsky et al., 2019,
Section 3) in {8, 32,128, 512}. The two environments are
considered to be graphs with size smaller than the median
size in the training graphs and larger than the median size
in the training graphs, respectively.

Size-Invariant Graph Representations for Graph Classification Extrapolations

Table 4. Dataset statistics, Table from Yehudai et al. (2021).

NCI1 NCI109
ALL | SMALLEST 50% | LARGEST 10% ALL | SMALLEST 50% | LARGEST 10%
CLASS A 49.95% 62.30% 19.17% | 49.62% 62.04% 21.37%
CLASS B 50.04% 37.69% 80.82% | 50.37% 37.95% 78.62%
NUM OF GRAPHS 4110 2157 412 4127 2079 421
AVG GRAPH SIZE 29 20 61 29 20 61
PROTEINS DD
ALL | SMALLEST 50% | LARGEST 10% ALL | SMALLEST 50% | LARGEST 10%
CLASS A 59.56% 41.97% 90.17% | 58.65% 35.47% 79.66%
CLASS B 40.43% 58.02% 9.82% | 41.34% 64.52% 20.33%
NUM OF GRAPHS 1113 567 112 1178 592 118
AVG GRAPH SIZE 39 15 138 284 144 746

To mitigate the imbalance between classes in training, we
reweight the classes in the loss with the training propor-
tions for each class. We train all neural models for 1000
epochs using early stopping as per Hu et al. (2020). We
test the models on the epoch achieving the highest mean
Matthew Correlation Coefficient on validation because of
the significant class imbalance in the test, see Table 4.

For the graph kernels, following Kriege et al. (2020), we
tune the regularization hyperparameter C in SVM over the
set {1073,1072,1071,1,10,10%,10%}. We fix the num-
ber of Weisfeiler-Lehman iterations of the WL kernel to 3
(see Kriege et al. (2020, Section 3.1)), which is comparable
to the 3 GNN layers.

