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Abstract
In general, graph representation learning methods
assume that the train and test data come from the
same distribution. In this work we consider an
underexplored area of an otherwise rapidly devel-
oping field of graph representation learning: The
task of out-of-distribution (OOD) graph classifi-
cation, where train and test data have different
distributions, with test data unavailable during
training. Our work shows it is possible to use a
causal model to learn approximately invariant rep-
resentations that better extrapolate between train
and test data. Finally, we conclude with synthetic
and real-world dataset experiments showcasing
the benefits of representations that are invariant
to train/test distribution shifts.

1. Introduction
In general, graph representation learning methods assume
that the train and test data come from the same distribu-
tion. Unfortunately, this assumption is not always valid in
real-world deployments (Hu et al., 2020; Koh et al., 2020;
D’Amour et al., 2020). When the test distribution is different
from training, the test data is described as out of distribution
(OOD). Differences in train/test distribution may be due to
environmental factors such as those related to the way the
data is collected or processed.

Particularly, in graph classification tasks, where G is the
graph and Y its label, we often see different graph sizes
and/or distinct arrangements of vertex attributes associated
with the same target label. How should we learn a graph
representation for out-of-distribution inductive tasks (extrap-
olations), where the graphs in training and test (deployment)
have distinct characteristics (i.e., Ptr(G) 6= Pte(G))? Are
inductive graph neural networks (GNNs) robust to distribu-
tion shifts between Ptr(G) and Pte(G)? If not, is it possible
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Figure 1. The twin network DAG (Balke & Pearl, 1994) of our
structural causal model (SCM). Gray (resp. white) vertices repre-
sent observed (resp. hidden) random variables.

to design a graph classifier that is robust to such OOD shifts
without access to samples from Pte(G)?

In this work we consider an OOD graph classification task
with different train and test distributions based on graph
sizes and vertex attributes. Our work focuses on simple (no
self-loops) undirected graphs with discrete vertex attributes.
We make the common assumption of independence between
cause and mechanisms (Bengio et al., 2020; Besserve et al.,
2018; Johansson et al., 2016; Louizos et al., 2017; Raj et al.,
2020; Schölkopf, 2019; Arjovsky et al., 2019), which states
that P(Y |G) remains the same between train and test. We
also assume we do not have access to samples from Pte(G),
hence covariate shift adaptation methods (such as Yehudai
et al. (2021)) are unfit for our scenario. In our setting we
need to learn to extrapolate from a causal model.

Contributions. Our contributions are as follows:

1. We provide a causal model that formally describes a class
of graph classification tasks where the training (Ptr(G))
and test (Pte(G)) graphs have different size and vertex
attribute distributions.

2. Assuming Independence between Cause and Mechanism
(ICM) (Louizos et al., 2017; Shajarisales et al., 2015),
we introduce a graph representation method based on
the work of Lovász & Szegedy (2006) and Graph Neural
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Networks (GNNs) (Kipf & Welling, 2017; Hamilton
et al., 2017; You et al., 2019) that is invariant to the
train/test distribution shifts of our causal model. Unlike
existing invariant representations, this representation can
perform extrapolations from single training environment
(e.g., all training graphs have the same size).

3. Our empirical results show that, in most experiments,
neither Invariant Risk Minimization (IRM) (Arjovsky
et al., 2019) nor the GNN extrapolation modifications
proposed by Xu et al. (2021) are able to perform well in
graph classification tasks over the OOD test data.

2. Graph Classification: A Causal Model
Based on Random Graphs

Out-of-distribution (OOD) shift. For any joint distri-
bution P(Y,G) of graphs G and labels Y , there are in-
finitely many causal models that give the same joint distri-
bution (Pearl, 2009). This phenomenon is known as model
underspecification. Hence, if the training data distribution
Ptr(Y,G) does not have the same support as the test distri-
bution Pte(Y,G), a model trained with samples drawn from
Ptr(Y,G) needs to be able to extrapolate in order to correctly
predict Pte(Y |G). In this work, we assume Independence be-
tween Cause and Mechanism (ICM): Ptr(Y |G) = Pte(Y |G),
which is a common assumption in the causal deep learn-
ing literature (Bengio et al., 2020; Besserve et al., 2018;
Johansson et al., 2016; Louizos et al., 2017; Raj et al., 2020;
Schölkopf, 2019; Arjovsky et al., 2019).

In inductive graph classification tasks, ICM implies that
the shift between train and test distributions Ptr(Y,G) 6=
Pte(Y,G) comes from Ptr(G) 6= Pte(G), since Ptr(Y |G) =
Pte(Y |G). And because our task is inductive, i.e., no data
from Pte(G) or a proxy variable, we must make assumptions
about the causal mechanisms in order to extrapolate.

Causal model. A graph representation that is robust (in-
variant) to shifts in Pte(G) must know how the distribution
shifts. Either we are given some examples from Pte(G)
(a.k.a. covariate shift adaptation (Sugiyama et al., 2007))
or we are given a causal structure that describes how the
test distribution can shift. Our paper focuses on the latter
by giving a Structural Causal Model (SCM) for the data
generation process in Definitions 1 and 2. The definition
of the Structural Causal Model (SCM) is needed since the
observational probability itself does not provide any causal
information (see observational equivalence in Pearl (2009,
Theorem 1.2.8)). Figure 1 depicts the Directed Acyclic
Graph (DAG) of our causal model. It uses the twin network
DAGs structure first proposed by Balke & Pearl (1994)
(see Pearl (2009, Chapter 7.1.4)) in order to define how the
test distribution can change.

In what follows we detail the SCM in Definitions 1 and 2.
Our causal model is inspired by Stochastic Block Models
(SBMs) (Diaconis & Freedman, 1981; Snijders & Now-
icki, 1997) and their connection to graphon random graph
models (Airoldi et al., 2013; Lovász & Szegedy, 2006):
Definition 1 (Training Graph G tr

N tr ). The training graph
SCM is depicted at the left side of the twin network DAG in
Figure 1.

• The training graph is characterized by a graphon W ∼
P(W ), where W : [0, 1]2 → [0, 1] is a random symmetric
measurable function (Lovász & Szegedy, 2006) sampled
(according to some distribution) from DW , the set of all
symmetric measurable functions on [0, 1]2 → [0, 1]. W
defines both the graph’s target label and some of its struc-
tural and attribute characteristics, but W is unknown.

• The training environmentEtr ∼ Ptr(E) is a hidden envi-
ronment variable that represents specific graph properties
that change between the training and test. Etr ∈ E for
some properly defined environment space E.

• The graph’s size is determined by its environment N tr :=
η(Etr), where η is an unknown deterministic function.

• The graph’s target label is given by Y := h(W,ZY ),
Y ∈ Y, with Y some properly defined discrete target
space. ZY is an independent random noise variable and
h is a deterministic function on the input space DW × R.

• The vertices are numbered V tr = {1, . . . , N tr}. Each
vertex v ∈ V tr has an associated hidden variable Uv ∼
Uniform(0, 1) sampled i.i.d.. The graph is undirected and
its adjacency matrix Atr ∈ {0, 1}N tr×N tr

is defined by

Atr
u,v := 1(Zu,v>W (Uu, Uv)),∀u, v ∈ V tr, u 6=v. (1)

The diagonals are set to 0 because there is no self-
loop. Here 1 is an indicator function, and {Zu,v =
Zv,u}u,v∈V tr are independent uniform noises on [0, 1].

• The graph may contain discrete vertex attributes X tr ∈
XN tr

defined as

X tr
v := gX(Etr,W (Uv, Uv)), ∀v ∈ V tr,

where X tr
v ∈ X, and X is some properly defined attribute

space. gX is a deterministic function that determines a
vertex attribute usingW (Uv, Uv) ∈ [0, 1] via, say, inverse
sampling (Tweedie, 1945) the vertex attribute distribution.

• Then, the training graph is

G tr
N tr := (Atr, X tr).

The test data comes from the following (coupled) distri-
bution, that is, the model uses some of the same random
variables of the training graph model, effectively only re-
placing Etr by Ete, as shown in the DAG of Figure 1.
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Definition 2 (Test Graph G te
N te ). The SCM of the test graph

is given by the right side of the twin network DAG in Fig-
ure 1, changing the following variables from Definition 1:

• The test environment Ete ∼ Pte(E), and Ete ∈ E be-
longs to the same space as Etr. It represents specific
properties of the graphs that change between the test and
training data. Denote supp(·) := {x|P(x) > 0} as the
support of a random variable. The supports of Ete and
Etr may not overlap (i.e., supp(Ete) ∩ supp(Etr) = ∅).

• The change in environment from Etr to Ete may change
the graph’s size as N te := η(Ete), where η is the same
unknown deterministic function as in Definition 1.

• The vertices are numbered V te = {1, . . . , N te}. The
adjacency matrix Ate ∈ {0, 1}N te×N te

is defined as in
Equation (1).

• The graph may contain discrete vertex attributes X te ∈
XN te

defined as

X te
v := gX(Ete,W (Uv, Uv)), ∀v ∈ V te,

with gX as given in Definition 1.

• Then the test graph is

G te
N te := (Ate, X te).

Our SCM has a direct connection with graphon random
graph model (Lovász & Szegedy, 2006), and extends it by
considering vertex attributes. Now we introduce examples
of our graph classification tasks based on Definitions 1 and 2
using two classic random graph models.

Notation: (G*
N * , E

*, A*, V *, X*) In what follows we use
the superscript * as a wildcard to describe both train and test
random variables. For instance, G*

N * is a variable that is a
wildcard for referring to either G tr

N tr or G te
N te . Also, from now

on we define Pte(G) = P(G te
N te) and Ptr(G) = P(G tr

N tr).

Erdős-Rényi example. Consider a random training en-
vironment Etr such that N tr = η(Etr) is the number of
vertices for graphs in our training data. Let p be the prob-
ability that any two distinct vertices of the graph have an
edge. DefineW as a constant function that always outputs p.
Sample independent uniform noises Zu,v ∼ Uniform(0, 1)
(for each possible edge, Zu,v = Zv,u). An Erdős-Rényi
graph can be defined as a graph whose adjacency matrix
Atr is Atr

u,v = 1(Zu,v > W (Uu, Uv)) = 1(Zu,v > p),
∀u, v ∈ V tr, u 6= v. Here vertex attributes are not con-
sidered and we can define X tr

v = Ø,∀v ∈ V tr as the null
attribute.

In the test data, we have a different environment Ete and
graph size N te = η(Ete), with supp(N te) ∩ supp(N tr) =

∅. The variable {Zu,v}u,v∈{1,...,max(supp(N tr)∪supp(N te))} can
be thought as the seed of a random number generator to
determine if two distinct vertices u and v are connected by
an edge. The above defines our training and test data as a
set of Erdős-Rényi random graphs of sizes N tr and N te with
probability p. The targets of the Erdős-Rényi graphs can
be, for instance, the value Y = p in Definition 1, which is
determined by W and invariant to graph sizes.

Stochastic Block Model (SBM) (Snijders & Nowicki,
1997). An SBM can be seen as a generalization of Erdős-
Rényi graphs. SBMs partition the vertex set into disjoint
subsets S1, S2, ..., Sr (known as blocks or communities)
with an associated r × r symmetric matrix P , where the
probability of an edge (u, v), u ∈ Si and v ∈ Sj is Pij ,
for i, j ∈ {1, . . . , r}. In the training and test data, we
still have i.i.d sampled Zu,v = Zv,u and different envi-
ronments Etr, Ete. Divide the interval [0, 1] into disjoint
convex sets [t0, t1), [t1, t2), . . . , [tr−1, tr], where t0 = 0
and tr = 1, such that if Uv ∼ Uniform(0, 1) satisfies
Uv ∈ [ti−1, ti), then vertex v belongs to block Si. Thus
W (Uu, Uv) =

∑
i,j∈{1,...,r} Pij1(Uu ∈ [ti−1, ti))1(Uv ∈

[tj−1, tj)). An SBM graph in training or test can be defined
as a graph whose adjacency matrix A* is A*

u,v = 1(Zu,v >

W (Uu, Uv)), ∀u, v ∈ V *, u 6= v. Now we have a set of
SBM random graphs of sizes N tr and N te with P . Consider
if there are only two blocks, the target Y can be P1,2 which
is the probability of an edge connecting vertices between
the blocks, determined by W and invariant to graph sizes.

SBM with vertex attributes. For the SBM, assume the
vertex attributes are tied to blocks, and are distinct for each
block. The environment variable operates on changing the
distributions of attributes assigned in each block. Con-
sider the following SBM example with two blocks: Define
W (Uv, Uv) = Uv

2t1
1(Uv ∈ [0, t1)) + ( 1

2 + Uv−t1
2(1−t1) )1(Uv ∈

[t1, 1]). So W (Uv, Uv) <
1
2 if and only if v belongs to the

first block. We only change the values of W for points on a
zero-measure space. Let gX be such that it defines constants
as 0 < αE*,1 <

1
2 < αE*,2 < 1, and vertex attributes as

X*
v=gX(E*,W (Uv, Uv))=


1(W (Uv, Uv)∈ [0, αE*,1))
1(W (Uv, Uv)∈ [αE*,1, .5))
1(W (Uv, Uv)∈ [.5, αE*,2))
1(W (Uv, Uv)∈ [αE*,2, 1])

,
where the attribute of vertex v, X*

v , is one-hot encoded to
represent 4 colors: red and blue (if v is in block 1) and green
and yellow (if v is in block 2).

3. E-Invariant Graph Representations
In this section we discuss shortcomings of traditional graph
representation methods for out-of-distribution (OOD) graph
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classification tasks. We will base our discussion on our
Structural Causal Model (SCM) (described in Definitions 1
and 2 and Figure 1). We show that there is an approximately
environment-invariant graph representation that is able to
extrapolate to OOD test data.

The shortcomings of standard graph representation
methods. Figure 1 shows that our target variable Y is
a function only of the graphon variable W , rather than
the training or test environments, Etr and Ete, respectively.
However, Y is not independent of Etr given G tr

N tr , since both
Etr and W affect Atr and X tr (which are colliders), and
Y depends on W . Hence, traditional graph representation
learning methods can pick up this easy spurious correlation
in the training data (via shorcut learning (Geirhos et al.,
2020)), which would prevent the model learning the correct
OOD test predictor.

To address the challenge of correctly predicting Y in our
OOD test data, regardless of spurious correlations between
the variables, we need an estimator that can account for
it. In what follows we focus on environment-invariant
(E-invariant) graph representations. To show the ability of
E-invariant representations to extrapolate to OOD test data,
we introduce the definition and the effect on downstream
OOD classification tasks in the following proposition.

Proposition 1. [E-invariant Representation’s Effect on
OOD Classification] Consider a permutation-invariant
graph representation Γ : ∪∞n=1{0, 1}n×n × Xn → Rd,
d ≥ 1, and a downstream function ρ : Y×Rd → [0, 1] (e.g.,
a feedforward neural network (MLP) with softmax outputs)
such that, for some ε, δ > 0, the generalization error over
the training distribution is: ∀y ∈ Y,

P( |P(Y = y|G tr
N tr)− ρ(y,Γ(G tr

N tr))| ≤ ε) ≥ 1− δ,

Γ is said to be environment-invariant (E-invariant) if
∀e ∈ supp(Etr),∀e† ∈ supp(Ete),

Γ(G tr
N tr |Etr = e) = Γ(G te

N te |Ete = e†).

If Γ is E-invariant, then the OOD test error is the same as
the generalization error over the training distribution, i.e.,
∀y ∈ Y,

P(|P(Y = y|G te
N te)− ρ(y,Γ(G te

N te))| ≤ ε) ≥ 1− δ. (2)

Proposition 1 shows that an E-invariant representation will
perform no worse on the OOD test data (extrapolation sam-
ples from (Y,G te

N te)) than on a test dataset having the same
environment distribution as the training data (samples from
(Y,G tr

N tr)). Our task now becomes finding an E-invariant
graph representation Γ that can be used to predict Y .

The shortcomings of Invariant Risk Minimization
(IRM). Invariant Risk Minimization (IRM) (Arjovsky

et al., 2019) aims to learn a representation that is invari-
ant across all training environments, ∀e ∈ supp(Etr), by
adding a regularization penalty on the empirical risk. How-
ever, IRM will fail if: (i) supp(Ete) 6⊆ supp(Etr), since the
penalty provides no guarantee that the representation will
still be invariant w.r.t. e† ∈ supp(Ete)\supp(Etr) if the rep-
resentation is a nonlinear function of the input (Rosenfeld
et al., 2020); and (ii) if the training data only contains a
single environment, i.e., supp(Etr) = {e}. For instance, the
training data may contain only graphs of a single size. In
this case, we are unable to apply IRM for size extrapola-
tions. Our experiments show that the IRM procedure does
not seem to work for graph representation learning.

In what follows we leverage the stability of subgraph densi-
ties (more precisely, induced homomorphism densities) in
graphon random graph models (Lovász & Szegedy, 2006)
to learn E-invariant representations for the SCM defined in
Definitions 1 and 2, whose DAG is illustrated in Figure 1.

3.1. An Approximately E-Invariant Graph
Representations for Our Model

Let G*
N * denote either an N tr-sized train or N te-sized test

graph from the SCM in Definitions 1 and 2. For a given k-
vertex graph Fk (k < N *), let ind(Fk,G*

N *) be the number
of induced homomorphisms of Fk into G*

N * , informally, the
number of mappings from V (Fk) to V (G*

N *) such that the
corresponding subgraph induced in G*

N * is isomorphic to
Fk. The induced homomorphism density is defined as

tind(Fk,G*
N *) =

ind(Fk,G*
N *)

N *!/(N * − k)!
, (3)

where the denominator is the number of possible mappings.
Let F≤k be the set of all connected vertex-attributed graphs
of size k′ ≤ k. Using the subgraph densities (induced ho-
momorphism densities) {tind(Fk′ ,G*

N *)}Fk′∈F≤k
we will

construct a (feature vector) representation for G*
N * , similar

to Hancock & Khoshgoftaar (2020); Pinar et al. (2017),

Γ1-hot(G*
N *)=

∑
Fk′∈F≤k

tind(Fk′ ,G*
N *)1one-hot{Fk′ ,F≤k}, (4)

where 1one-hot{Fk′ ,F≤k} assigns a unique one-hot vector
to each distinct graph Fk′ in F≤k. For instance, for k = 4,
the one-hot vectors could be (1,0,. . . ,0)= , (0,1,. . . ,0)= ,
(0,0,. . . ,1,. . . ,0)= , (0,0,. . . ,1)= , etc.. In Section 3.2 we
show that the (feature vector) representation in Equation (4)
is approximately environment-invariant in our SCM model.

An alternative approach is to replace the one-hot vector
representation with learnable graph representation mod-
els. We first use Graph Neural Networks (GNNs) (Kipf
& Welling, 2017; Hamilton et al., 2017; You et al., 2019) to
learn representations that can capture information from ver-
tex attributes. Simply speaking, GNNs proceed by vertices
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passing messages, amongst each other, through a learnable
function such as an MLP, and repeating L ∈ Z≥1 layers.

Consider the following simple GNN example. Let V * be
the set of vertices. At each iteration l ∈ {1, 2, . . . , L}, all
vertices v ∈ V * are associated with a learned vector h(l)

v .
Specifically, we begin by initializing a vector as h(0)

v = Xv

for every vertex v ∈ V *. Then, we recursively compute an
update such as the following ∀v ∈ V *,

h(l)
v = MLP(l)

(
h(l−1)
v ,READOUTNeigh((h(l−1)

u )u∈N(v))
)
,

(5)
where N (v) ⊆ V * denotes the neighborhood set of v in the
graph, READOUTNeigh is a permutation-invariant function
(e.g. sum) of the neighborhood learned vectors, MLP(l)

denotes a multi-layer perceptron and whose superscript l
indicates that the MLP at each recursion layer may have
different learnable parameters. There are other alternatives
to Equation (5) that we will also test in our experiments.

Then, we arrive to the following representation of G*
N * :

ΓGNN(G*
N *) =∑

Fk′∈F≤k

tind(Fk′ ,G*
N *)READOUTΓ(GNN(Fk′)), (6)

where READOUTΓ is a permutation-invariant function that
maps the vertex-level outputs of a GNN to a graph-level
representation (e.g. by summing all vertex embeddings).
Unfortunately, GNNs are not most-expressive representa-
tions of graphs (Morris et al., 2019; Murphy et al., 2019;
Xu et al., 2019) and thus ΓGNN(·) is less expressive than
Γ1-hot(·). A representation with greater expressive power is

ΓGNN+(G*
N *) =∑

Fk′∈F≤k

tind(Fk′ ,G*
N *)READOUTΓ(GNN+(Fk′)), (7)

where GNN+ is a most-expressive k′-vertex graph repre-
sentation, which can be achieved by any of the methods
of Vignac et al. (2020); Maron et al. (2019a); Murphy
et al. (2019). Since GNN+ is most expressive, GNN+

can ignore attributes and map each Fk′ to a one-hot vec-
tor 1one-hot{Fk′ ,F≤k}; therefore, ΓGNN+(·) generalizes
Γ1-hot(·) of Equation (4). But note that greater expressive-
ness does not imply better extrapolation.

More importantly, GNN and GNN+ representations allow
us to increase their E-invariance by adding a penalty for
having different representations of two graphs Fk′ and Hk′

with the same topology but different vertex attributes (say,
Fk′ = and Hk′ = ), as long as these differences do
not significantly impact downstream model accuracy in the
training data. Note that this is more powerful than simply
masking vertex attributes, since it allows same-topology

graphs with distinct vertex attributes to have different rep-
resentations if it is important to distinguish them for the
target prediction (see Section 5.2). We will discuss more
about these theoretical underpinnings in the next section.
Hence, for each k′-sized vertex-attributed graph Fk′ , we
consider the set H(Fk′) of all k′-sized vertex-attributed
graphs having the same underlying topology as Fk′ but with
all possible different vertex attributes. We then define the
regularization penalty

1

|F≤k|
∑

Fk′∈F≤k

EHk′∈H(Fk′ )
‖READOUTΓ(GNN∗(Fk′))

− READOUTΓ(GNN∗(Hk′))‖2, (8)

where GNN∗ = GNN if we choose the representation ΓGNN,
or GNN∗ = GNN+ if we choose the representation ΓGNN+ .
In practice, we assume Hk′ is uniformly sampled from
H(Fk′) and we sample one Hk′ for each Fk′ in order to
obtain an unbiased estimator of Equation (8).

Practical considerations. Efficient algorithms exist to ob-
tain induced homomorphism densities over all possible con-
nected k-vertex subgraphs (Ahmed et al., 2016; Bressan
et al., 2017; Chen & Lui, 2018; Chen et al., 2016; Rossi
et al., 2019; Wang et al., 2014). For unattributed graphs and
k ≤ 5, we use ESCAPE (Pinar et al., 2017) to obtain exact
densities. For attributed graphs or unattributed graphs with
k > 5, exact counting becomes intractable, so we use R-
GPM (Teixeira et al., 2018) to obtain unbiased estimates of
densities. Finally, Proposition 2 in Appendix C shows that
certain biased estimators can also be used if READOUTΓ

is the sum of vertex embeddings.

3.2. Theoretical Description of our E-Invariant Graph
Representations

In this section, we show that the graph representations
seen in the previous section are approximately environment-
invariant in our SCM model under mild assumptions.
Theorem 1 (Approximately E-invariant Graph Representa-
tion). Let G tr

N tr and G te
N te be two samples of graphs of sizes

N tr and N te from the training and test distributions, respec-
tively, both defined over the same graphon variable W and
satisfying Definitions 1 and 2. Assume the vertex attribute
function gX(·, ·) of Definitions 1 and 2 is invariant to Etr

and Ete (the reason for this assumption will be clear later).
Let || · ||∞ denote the L-infinity norm. For any integer
k ≤ min(N tr, N te), and any constant 0 < ε < 1,

P(‖Γ1-hot(G tr
N tr)− Γ1-hot(G te

N te)‖∞ > ε) ≤

2|F≤k|(exp(−ε
2N tr

8k2
) + exp(−ε

2N te

8k2
)). (9)

Theorem 1 shows how the graph representations given in
Equation (4) are approximately E-invariant. Note that for
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unattributed graphs, we can define gX(·, ·) = Ø as the null
attribute, which is invariant to any environment by con-
struction. For graphs with attributed vertices, gX(·, ·) being
invariant toEtr andEte means that for any two environments
e ∈ supp(Etr), e† ∈ supp(Ete), gX(e, ·) = gX(e†, ·).

Theorem 1 shows that for k � min(N tr, N te), the represen-
tations Γ1-hot(·) of two possibly different-sized graphs with
the same W are nearly identical, indicating Γ1-hot(G*

N *) is
an approximately E-invariant representation.

Theorem 1 also exposes a trade-off, however. If the ob-
served graphs tend to be relatively small, the required k for
approximately E-invariant representations can be small, and
then the expressiveness of Γ1-hot(·) gets compromised. That
is, the ability of Γ1-hot(G*

N *) to extract information about W
from G*

N * reduces as k decreases. Finally, this guarantees
that for appropriate k, passing the representation Γ1-hot(G*

N *)
to a downstream classifier provably approximates the classi-
fier in Equation (2) of Proposition 1.

Note that when the vertex attributes are not invariant to the
environment variable, Γ1-hot(·) is not E-invariant and we can
not extrapolate using Γ1-hot(·). Thankfully, for the GNN-
based graph representations ΓGNN(G*

N *) and ΓGNN+(G*
N *)

in Equations (6) and (7), respectively, the regularization
penalty in Equation (8) pushes the graph representation to
be more E-invariant, making it more likely to satisfy the
conditions of E-invariance in Theorem 1. Equation (8) is
inspired by the asymmetry learning procedure of Mouli
& Ribeiro (2021), which induces symmetry priors in the
neural network, which can be broken (making the neural
network asymmetric) only when imposing the symmetry
significantly increases the training loss.

To understand the effect of our asymmetry learning in reg-
ularizing towards topology, consider the attributed SBM
example in Section 2. The environment operates by chang-
ing the distributions of attributes assigned within each block.
If we are going to achieve E-invariance (and correctly pre-
dict cross-block edge probabilities in the test data (see Sec-
tion 5.2)), we need graph representations that treat attributes
assigned to the same block as equivalent. By regularizing
the GNN-based graph representations towards focusing only
on topology rather than vertex attributes, the regularization
forces the GNN to treat all within-block vertex attributes as
equivalent, and achieve an approximately E-invariant repre-
sentation in this setting. And since treating the across-block
vertex attributes as equivalent hurts the training loss in this
setting, these will not be considered equivalent by the GNN.

4. Related Work
This section presents an overview of the related work. Due
to space constraints, a more in-depth discussion with further
references is given in Appendix E.

OOD extrapolation in graph classification and size ex-
trapolation in GNNs. Our work ascertains a causal re-
lationship between graphs and their target labels. We are
unaware of existing work on this topic. Xu et al. (2021)
is interested on a geometric (non-causal) definition of ex-
trapolation for a class of graph algorithms. Hu et al. (2020)
introduces a large graph dataset presenting significant chal-
lenges of OOD extrapolation, however, their shift is on the
two-dimensional structural framework distribution of the
molecules, and no causal model is provided. The parallel
work of Yehudai et al. (2021) improves size extrapolation in
GNNs using self-supervised and semi-supervised learning
on both the training and test domain, which is orthogonal
to our problem. Previous works also examine empirically
the ability of graph neural networks to extrapolate in var-
ious applications, such as physics (Battaglia et al., 2016;
Sanchez-Gonzalez et al., 2018), mathematical and abstract
reasoning (Santoro et al., 2018; Saxton et al., 2019), and
graph algorithms (Bello et al., 2017; Nowak et al., 2017;
Battaglia et al., 2018; Joshi et al., 2020; Veličković et al.,
2020; Tang et al., 2020). These works do not provide guar-
antees of test extrapolation performance, a causal model, or
a proof that the tasks require extrapolation over different
environments.

Causal reasoning and invariances. Recent efforts have
brought counterfactual inference to machine learning mod-
els, including Independence of causal mechanism (ICM)
methods (Bengio et al., 2020; Besserve et al., 2018; Johans-
son et al., 2016; Louizos et al., 2017; Parascandolo et al.,
2018; Raj et al., 2020; Schölkopf, 2019), Causal Discovery
from Change (CDC) methods (Tian & Pearl, 2001), and rep-
resentation disentanglement methods (Bengio et al., 2020;
Goudet et al., 2017; Locatello et al., 2019). Invariant risk
minimization (IRM) (Arjovsky et al., 2019) is a type of
ICM (Schölkopf, 2019). Risk Extrapolation (REx) (Krueger
et al., 2021) optimizes by focusing on the training environ-
ments that have the largest impact on training.

Broadly, the above efforts look for representations (or mech-
anism descriptions) that are invariant across multiple envi-
ronments observed in the training data. In our work, we are
interested in techniques that can work with a single training
environment and when the test support is not a subset of the
train support — a common case in graph data. To the best
of our knowledge, the only representation learning work
considering single environment extrapolations is Mouli &
Ribeiro (2021). However, none of these methods is specifi-
cally designed for graphs, and it is unclear how they can be
efficiently adapted for graph tasks. Finally, we also note that
domain adaptation techniques and recent work on domain-
predictors (Chuang et al., 2020) aim to learn invariances
that can be used for the predictions. However, these require
access to test data during training, which is not our scenario.
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Graph classification using induced homomorphisms.
A related set of works looks at induced homomorphism
densities as graph features for a kernel (Shervashidze et al.,
2009; Yanardag & Vishwanathan, 2015; Wale et al., 2008).
These methods can perform poorly in some tasks (Kriege
et al., 2018). Recent work has also shown an interest in in-
duced subgraphs, which are used to improve predictions of
GNNs (Bouritsas et al., 2020) or treated as inputs for newly-
proposed architectures (Toenshoff et al., 2021). None of
these methods focus on invariant representations or extrapo-
lations.

Expressiveness of graph representations. The expres-
siveness of a graph representation method is a measure of
model family bias (Morris et al., 2019; Xu et al., 2019;
Gärtner et al., 2003; Maron et al., 2019a; Murphy et al.,
2019). That is, given enough training data, a neural net-
work from a more expressive family can achieve smaller
generalization error over the training distribution than a
neural network from a less expressive family, assuming ap-
propriate optimization. However, this power is a measure of
generalization capability over the training distribution, not
OOD extrapolation. Hence, the question of representation
expressiveness is orthogonal to our work.

5. Empirical Results
This section is dedicated to the empirical evaluation of our
theoretical claims, including the ability of the representa-
tions in Equations (4), (6) and (7) to extrapolate as predicted
by Proposition 1 for tasks that abide by Definitions 1 and 2.
Due to space constraints, our results are summarised here,
while further details are relegated to Appendix F. Our code
is also available1.

We explore the extrapolation power of Γ1-hot, ΓGIN and
ΓRPGIN of Equations (4), (6) and (7) using the Graph Isomor-
phism Network (GIN) (Xu et al., 2019) as our base GNN
model, and Relational Pooling GIN (RPGIN) (Murphy et al.,
2019) as a more expressive GNN. The graph representations
are then passed to a L-hidden layer feedforward neural net-
work (MLP) with softmax outputs that give the predicted
classes, L ∈ {0, 1}. As described in Section 3.1, we obtain
induced homomorphism densities of connected graphs. For
practical reasons, we focus only on densities of graphs of
size exactly k, which is treated as a hyperparameter. Note
that the number of parameters for our ΓGNN and ΓGNN+ does
not depend on k (for Γ1-hot it does), and the forward pass on
the k-sized graphs can be performed in parallel.

Baselines. Our baselines include the Graphlet Counting
kernel (GC Kernel) (Shervashidze et al., 2009), which uses
the Γ1-hot representation as input to a downstream classi-

1https://github.com/PurdueMINDS/
size-invariant-GNNs

fier. We report Γ1-hot separately from GC Kernel since Γ1-hot
differs from GC Kernel in that we add the same feedfor-
ward neural network (MLP) classifier used in the ΓGNN
model. We also include GIN (Xu et al., 2019), GCN (Kipf
& Welling, 2017) and PNA (Corso et al., 2020), considering
the sum, mean, and max READOUTs as proposed by Xu
et al. (2021) for extrapolations (which we denote as XU-
READOUT to not confuse with our READOUTΓ). We also
examine a more-expressive GNN, RPGIN (Murphy et al.,
2019), and the WL Kernel (Shervashidze et al., 2011). We
do not use the method of Yehudai et al. (2021) as a base-
line since it is a covariate shift adaptation approach that
requires samples from P(G te

N te), which are not available in
our setting.

Experiments with single and multiple graph sizes in
training. Our single-environment experiments consist of a
single graph size in training, and different sizes in test (differ-
ent from the training size). Whenever multiple environments
are available in training —multiple environments implies
different graph sizes—, we employ Invariant Risk Minimiza-
tion (IRM), considering the penalty proposed by Arjovsky
et al. (2019) for each environment (defined empirically as a
range of training examples with similar graph sizes).

For each task, we report (a) training accuracy (b) validation
accuracy, which are new examples sampled from P(Y,G tr

N tr);
and (c) extrapolation test accuracy, which are new OOD
examples sampled from P(Y,G te

N te). In our experiments we
perform early stopping as per Hu et al. (2020).

5.1. Size extrapolation tasks for unattributed graphs

Schizophrenia task. We use the fMRI brain graph data
on 71 schizophrenic patients and 74 controls for classify-
ing individuals with schizophrenia (De Domenico et al.,
2016). Vertices represent brain regions (voxels) with edges
as functional connectivity. We process the graph differently
between training and test data, where training graphs have
exactly 264 vertices (a single environment) and control-
group graphs in test have around 40% fewer vertices. We
employ a 5-fold cross-validation for hyperparameter tuning.

Erdős-Rényi task. We simulate Erdős-Rényi graphs (Gilbert,
1959; Erdős & Rényi, 1959) as a simple graphon random
graph model. The task is to classify the edge probability
p ∈ {0.2, 0.5, 0.8} of the generated graph. First we consider
a single-environment version of the task, where we train
and validate on graphs of size 80 and extrapolate to graphs
with size 140 in test. We also consider another experiment
with training/validation graph sizes uniformly selected from
{70, 80} (so we can use IRM), with the test data same as
before (graphs of size 140 in test).

Results. Table 1 shows that all methods perform well in val-
idation (generalization over the training distribution). How-

https://github.com/PurdueMINDS/size-invariant-GNNs
https://github.com/PurdueMINDS/size-invariant-GNNs
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Table 1. Extrapolation performance over unattributed graphs shows clear advantage of our environment-invariant representations,
with or without GNN, over standard methods or IRM in extrapolation test accuracy. Table shows mean (standard deviation)
accuracy. Bold emphasises the best test average. NA value indicates IRM is not applicable (when training data has a single graph size).

ACCURACY IN SCHIZOPHRENIA TASK ACCURACY IN ERDŐS-RÉNYI TASK

TRAINING HAS A SINGLE GRAPH SIZE TRAINING HAS A SINGLE GRAPH SIZE TRAINING HAS TWO GRAPH SIZES

TRAIN [P (Y,GTR
N TR )] VAL. [P (Y,GTR

N TR )] TEST (↑) [P (Y,GTE
N TE )] TRAIN [P (Y,GTR

N TR )] VAL. [P (Y,GTR
N TR )] TEST (↑) [P (Y,GTE

N TE )] TRAIN [P (Y,GTR
N TR )] VAL. [P (Y,GTR

N TR )] TEST (↑) [P (Y,GTE
N TE )]

PNA 0.99 (0.00) 0.76 (0.08) 0.61 (0.08) 1.00 (0.00) 1.00 (0.00) 0.65 (0.12) 1.00 (0.00) 1.00 (0.00) 0.64 (0.12)
PNA (MEAN XU-READOUT) 0.99 (0.00) 0.77 (0.07) 0.53 (0.10) 1.00 (0.00) 1.00 (0.00) 0.62 (0.12) 1.00 (0.00) 1.00 (0.00) 0.51 (0.19)
PNA (MAX XU-READOUT) 0.99 (0.00) 0.75 (0.07) 0.42 (0.06) 1.00 (0.00) 1.00 (0.00) 0.59 (0.16) 0.99 (0.01) 1.00 (0.00) 0.57 (0.15)
PNA + IRM NA NA NA NA NA NA 1.00 (0.00) 1.00 (0.00) 0.65 (0.13)
GCN 0.74 (0.04) 0.74 (0.08) 0.55 (0.09) 0.99 (0.01) 1.00 (0.00) 0.88 (0.10) 0.98 (0.01) 1.00 (0.00) 0.87 (0.10)
GCN (MEAN XU-READOUT) 0.72 (0.04) 0.73 (0.08) 0.65 (0.08) 0.99 (0.01) 1.00 (0.00) 0.79 (0.15) 0.98 (0.02) 1.00 (0.00) 0.75 (0.20)
GCN (MAX XU-READOUT) 0.86 (0.07) 0.75 (0.07) 0.54 (0.06) 0.99 (0.01) 1.00 (0.00) 0.90 (0.07) 0.96 (0.04) 1.00 (0.00) 0.87 (0.09)
GCN + IRM NA NA NA NA NA NA 0.98 (0.02) 1.00 (0.00) 0.88 (0.08)
GIN 0.72 (0.02) 0.74 (0.05) 0.36 (0.09) 1.00 (0.00) 1.00 (0.00) 0.64 (0.12) 1.00 (0.00) 1.00 (0.00) 0.65 (0.12)
GIN (MEAN XU-READOUT) 0.78 (0.02) 0.72 (0.05) 0.43 (0.05) 1.00 (0.00) 1.00 (0.00) 0.63 (0.09) 1.00 (0.00) 1.00 (0.00) 0.61 (0.09)
GIN (MAX XU-READOUT) 0.85 (0.02) 0.72 (0.05) 0.35 (0.06) 0.99 (0.01) 1.00 (0.00) 0.65 (0.12) 1.00 (0.00) 1.00 (0.00) 0.65 (0.07)
GIN + IRM NA NA NA NA NA NA 1.00 (0.00) 1.00 (0.00) 0.66 (0.08)
RPGIN 0.70 (0.02) 0.74 (0.05) 0.37 (0.06) 1.00 (0.00) 1.00 (0.00) 0.61 (0.16) 1.00 (0.00) 1.00 (0.00) 0.60 (0.16)
WL KERNEL 1.00 (0.00) 0.63 (0.07) 0.40 (0.00) 1.00 (0.00) 1.00 (0.00) 0.01 (0.00) 1.00 (0.00) 1.00 (0.00) 0.30 (0.00)
GC KERNEL 0.61 (0.00) 0.61 (0.06) 0.60 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Γ1-HOT 0.71 (0.01) 0.72 (0.05) 0.72 (0.04) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ΓGIN 0.75 (0.05) 0.70 (0.04) 0.68 (0.07) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
ΓRPGIN 0.69 (0.01) 0.71 (0.06) 0.71 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table 2. Extrapolation performance over attributed graphs shows clear advantage of environment-invariant representations with
GNNs and the attribute regularization in Equation (8). Table shows mean (standard deviation) accuracy. Bold emphasises the best
test average. NA value indicates IRM is not applicable (when training data has a single graph size).

TRAINING HAS A SINGLE GRAPH SIZE 20 TRAINING HAS TWO GRAPH SIZES: 14 AND 20 TRAINING HAS TWO GRAPH SIZES: 20 AND 30

TRAIN [P (Y,GTR
N TR )] VAL. [P (Y,GTR

N TR )] TEST (↑) [P (Y,GTE
N TE )] TRAIN [P (Y,GTR

N TR )] VAL. [P (Y,GTR
N TR )] TEST (↑) [P (Y,GTE

N TE )] TRAIN [P (Y,GTR
N TR )] VAL. [P (Y,GTR

N TR )] TEST (↑) [P (Y,GTE
N TE )]

PNA 1.00 (0.00) 1.00 (0.00) 0.65 (0.10) 0.96 (0.06) 0.94 (0.03) 0.57 (0.19) 0.99 (0.01) 1.00 (0.00) 0.69 (0.19)
PNA (MEAN XU-READOUT) 1.00 (0.00) 1.00 (0.00) 0.86 (0.13) 0.97 (0.02) 0.95 (0.02) 0.64 (0.11) 0.99 (0.01) 1.00 (0.00) 0.70 (0.15)
PNA (MAX XU-READOUT) 0.99 (0.01) 0.97 (0.02) 0.83 (0.13) 0.94 (0.04) 0.93 (0.03) 0.80 (0.12) 0.95 (0.05) 0.95 (0.05) 0.80 (0.15)
PNA + IRM NA NA NA 0.95 (0.05) 0.94 (0.03) 0.58 (0.19) 0.99 (0.01) 1.00 (0.00) 0.70 (0.20)
GCN 0.99 (0.01) 0.98 (0.02) 0.62 (0.09) 0.95 (0.02) 0.96 (0.02) 0.55 (0.17) 1.00 (0.00) 1.00 (0.00) 0.73 (0.17)
GCN (MEAN XU-READOUT) 0.94 (0.03) 0.99 (0.01) 0.61 (0.12) 0.93 (0.05) 0.94 (0.02) 0.69 (0.20) 1.00 (0.00) 1.00 (0.00) 0.84 (0.13)
GCN (MAX XU-READOUT) 0.99 (0.01) 1.00 (0.00) 0.76 (0.07) 0.95 (0.04) 0.98 (0.02) 0.61 (0.17) 0.98 (0.02) 1.00 (0.00) 0.70 (0.20)
GCN + IRM NA NA NA 0.93 (0.05) 0.97 (0.03) 0.65 (0.19) 1.00 (0.00) 1.00 (0.00) 0.84 (0.17)
GIN 0.97 (0.02) 1.00 (0.00) 0.64 (0.17) 0.95 (0.03) 0.96 (0.04) 0.66 (0.20) 0.98 (0.02) 1.00 (0.00) 0.74 (0.19)
GIN (MEAN XU-READOUT) 1.00 (0.00) 1.00 (0.00) 0.85 (0.14) 0.97 (0.01) 0.99 (0.01) 0.75 (0.18) 0.99 (0.01) 1.00 (0.00) 0.80 (0.15)
GIN (MAX XU-READOUT) 0.95 (0.02) 0.97 (0.03) 0.67 (0.18) 0.93 (0.06) 0.94 (0.03) 0.67 (0.17) 0.99 (0.01) 1.00 (0.00) 0.69 (0.15)
GIN + IRM NA NA NA 0.95 (0.03) 0.97 (0.04) 0.64 (0.19) 0.98 (0.02) 1.00 (0.00) 0.75 (0.19)
RPGIN 0.98 (0.02) 1.00 (0.00) 0.49 (0.15) 0.96 (0.03) 0.99 (0.01) 0.54 (0.12) 0.99 (0.01) 1.00 (0.00) 0.50 (0.13)
WL KERNEL 1.00 (0.00) 0.95 (0.00) 0.57 (0.00) 0.99 (0.00) 0.90 (0.00) 0.62 (0.00) 1.00 (0.00) 1.00 (0.00) 0.57 (0.00)
GC KERNEL 1.00 (0.00) 0.90 (0.00) 0.43 (0.00) 1.00 (0.00) 0.80 (0.00) 0.43 (0.00) 0.99 (0.00) 0.90 (0.00) 0.43 (0.00)
Γ1-HOT 1.00 (0.00) 0.90 (0.00) 0.50 (0.07) 0.97 (0.03) 0.85 (0.05) 0.50 (0.07) 0.98 (0.00) 0.96 (0.02) 0.45 (0.05)
ΓGIN 1.00 (0.00) 1.00 (0.00) 0.98 (0.02) 0.96 (0.02) 0.95 (0.01) 0.95 (0.06) 1.00 (0.00) 1.00 (0.00) 0.88 (0.12)
ΓRPGIN 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.97 (0.03) 0.95 (0.02) 0.95 (0.05) 1.00 (0.00) 1.00 (0.00) 0.93 (0.05)

ever, only Γ1-hot (GC Kernel and our simple classifier), ΓGIN,
ΓRPGIN are able to extrapolate, while displaying very sim-
ilar —often identical— accuracies in validation (sampled
from P(G tr

N tr)) and test (sampled from P(G te
N te)) in all ex-

periments, as predicted by combining the theoretical results
in Proposition 1 and Theorem 1. Using IRM in the Erdős-
Rényi task shows no improvement over not using IRM in
the multi-environment setting.

5.2. Size/attribute extrapolation for attributed graphs

We now define a Stochastic Block Model (SBM) task with
vertex attributes. The SBM has two blocks. Our goal is
to classify the cross-block edge probability P1,2 = P2,1 ∈
{0.1, 0.3} of a sampled graph. Vertex attribute distributions
depend on the blocks. In block 1 vertices are randomly
assigned red and blue attributes, while in block 2 vertices
are randomly assigned green and yellow attributes (see SBM
with vertex attributes in Section 2).

The change in environments between training and test intro-
duces a joint attribute-and-size distribution shift: In training,
the vertices are 90% red (resp. green) and 10% blue (resp.
yellow) in block 1 (resp. block 2). While in test, the dis-
tribution is flipped and vertices are 10% red (resp. green)
and 90% blue (resp. yellow) in block 1 (resp. block 2). We
consider three scenarios, with the same test data made of

graphs of size 40: (a) A single-environment case, where all
training graphs have size 20; (b) A multi-environment case,
where training graphs have sizes 14 and 20; (c) A multi-en-
vironment case, where training graphs have sizes 20 and 30.
These differences in training data will check whether having
graphs of sizes closer to the test graph sizes improves the
performance of traditional graph representation methods.

Results. Table 2 shows how traditional graph representa-
tions and Γ1-hot (both GC Kernel and our neural classifier)
tap into the easy correlation between Y and the density of
red and green vertex attributes in the training graphs, while
ΓGIN and ΓRPGIN, with their attribute regularization (Equa-
tion (8)), are approximately E-invariant, resulting in higher
test accuracy that more closely matches their validation ac-
curacy. Moreover, applying IRM has no beneficial impact,
while adding larger graphs in training (closer to test graph
sizes) increases the extrapolation accuracy of most methods.

5.3. Experiments with real-world datasets that violate
our causal model

Finally, we test our E-invariant representations on datasets
that violate Definitions 1 and 2 and the conditions of Theo-
rem 1. We consider four vertex-attributed datasets (NCI1,
NCI109, DD, PROTEINS) from Morris et al. (2020), and
split the data as proposed by Yehudai et al. (2021). As



Size-Invariant Graph Representations for Graph Classification Extrapolations

Table 3. Extrapolation performance over real-world graph datasets
with OOD tasks violating Definitions 1 and 2 and conditions of
Theorem 1. Always one of our E-invariant representations ΓGIN

and ΓRPGIN is amongst the top 4 best methods in all datasets ex-
cept NCI109. Table shows mean (standard deviation) Matthews
correlation coefficient (MCC) of the classifiers over the OOD test
data. Bold emphasises the top-4 models (in average MCC) for
each dataset.

DATASETS NCI1 NCI109 PROTEINS DD

RANDOM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
PNA 0.21 (0.06) 0.24 (0.06) 0.26 (0.08) 0.24 (0.10)
PNA (MEAN XU-READOUT) 0.12 (0.05) 0.21 (0.04) 0.25 (0.06) 0.29 (0.08)
PNA (MAX XU-READOUT) 0.16 (0.05) 0.18 (0.07) 0.20 (0.05) 0.12 (0.14)
PNA + IRM 0.21 (0.07) 0.27 (0.08) 0.26 (0.10) 0.26 (0.08)
GCN 0.20 (0.06) 0.15 (0.06) 0.21 (0.09) 0.23 (0.05)
GCN (MEAN XU-READOUT) 0.20 (0.04) 0.15 (0.09) 0.23 (0.07) 0.19 (0.06)
GCN (MAX XU-READOUT) 0.20 (0.04) 0.19 (0.07) 0.20 (0.14) 0.09 (0.08)
GCN + IRM 0.12 (0.05) 0.22 (0.06) 0.20 (0.07) 0.23 (0.07)
GIN 0.25 (0.06) 0.18 (0.05) 0.23 (0.05) 0.25 (0.09)
GIN (MEAN XU-READOUT) 0.16 (0.05) 0.14 (0.05) 0.24 (0.05) 0.27 (0.12)
GIN (MAX XU-READOUT) 0.15 (0.08) 0.18 (0.08) 0.28 (0.11) 0.19 (0.07)
GIN + IRM 0.18 (0.08) 0.16 (0.04) 0.26 (0.06) 0.21 (0.09)
RPGIN 0.15 (0.04) 0.19 (0.05) 0.24 (0.09) 0.22 (0.09)
WL KERNEL 0.39 (0.00) 0.21 (0.00) 0.00 (0.00) 0.00 (0.00)
GC KERNEL 0.02 (0.00) 0.01 (0.00) 0.29 (0.00) 0.00 (0.00)
Γ1-HOT 0.17 (0.08) 0.25 (0.06) 0.12 (0.09) 0.23 (0.08)
ΓGIN 0.24 (0.04) 0.18 (0.04) 0.29 (0.11) 0.28 (0.06)
ΓRPGIN 0.26 (0.05) 0.20 (0.04) 0.25 (0.12) 0.20 (0.05)

mentioned earlier, Yehudai et al. (2021) is not part of our
baselines since it requires samples from the test distribution
P(G te

N te).

Training and test data are created as follows: Graphs with
sizes smaller than the 50-th percentile are assigned to train-
ing, while graphs with sizes larger than the 90-th percentile
are assigned to test. A validation set for hyperparameter
tuning consists of 10% held out examples from training.

Results. Table 3 shows the test results using the Matthews
correlation coefficient (MCC) — MCC was chosen due to
significant class imbalances in the OOD shift of our test
data, see Appendix F for more details. We observe that al-
ways one of our E-invariant representations ΓGIN and ΓRPGIN
is amongst the top 4 best methods in all datasets except
NCI109. We also note that the WL KERNEL performs re-
ally well at NCI1 and very poorly (random) on PROTEINS
and DD, showcasing the importance of consistency across
datasets.

Comments on Table 3. Counterfactual-driven extrapolations
have their representation methods tailored to a specific ex-
trapolation mechanism. Unlike in-distribution tasks (and
covariate shift adaptation tasks, where one sees test distri-
bution examples of the input graphs), counterfactual-driven
extrapolations rely on being robust to the distribution-shift
mechanism given by the causal model. Hence, it is expected
that the causal extrapolation mechanism that works for a
molecular task may not work as well for a social network
(unless they share a universal graph-formation mechanism).
The schizophrenia task (Section 5.1) has the same mecha-
nism as our causal model (hence, good performance). Fur-
ther research may show that every single dataset in this

subsection has its own distinct extrapolation mechanism.
We think that although these datasets violate our assump-
tions, this subsection is important (and we hope will be
copied by future work) to show which datasets may need
different extrapolation mechanisms.

6. Conclusions
In this work we looked at the task of out-of-distribution
(OOD) graph classification, where train and test data have
different distributions. By introducing a structural causal
model inspired by graphon models (Lovász & Szegedy,
2006), we defined a representation that is approximately
invariant to the train/test distribution changes of our causal
model, empirically showing its benefits on both synthetic
and real-world datasets against standard graph classification
baselines. Finally, our work contributed a blueprint for
defining graph extrapolation tasks through causal models.
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Gärtner, T., Flach, P., and Wrobel, S. On graph kernels:
Hardness results and efficient alternatives. In Learning
theory and kernel machines, pp. 129–143. Springer, 2003.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2(11):665–673, 2020.

Gilbert, E. N. Random graphs. The Annals of Mathematical
Statistics, 30(4):1141–1144, 1959.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research,
pp. 1263–1272, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations (ICLR), 2015.

Goudet, O., Kalainathan, D., Caillou, P., Guyon, I., Lopez-
Paz, D., and Sebag, M. Causal generative neural networks.
arXiv preprint arXiv:1711.08936, 2017.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proc. of KDD, pp. 855–864.
ACM, 2016.

Haffner, P. Escaping the convex hull with extrapolated
vector machines. In Advances in Neural Information
Processing Systems, pp. 753–760, 2002.

Hagberg, A. A., Schult, D. A., and Swart, P. J. Exploring net-
work structure, dynamics, and function using networkx.
In Varoquaux, G., Vaught, T., and Millman, J. (eds.), Pro-
ceedings of the 7th Python in Science Conference, pp. 11
– 15, Pasadena, CA USA, 2008.

Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen,
V. J., Meuli, R., and Thiran, J.-P. Mapping human whole-
brain structural networks with diffusion mri. PloS one, 2
(7):e597, 2007.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1024–1034, 2017.

Hamilton, W. L. Graph representation learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
14(3):1–159, 2020.

Hancock, J. T. and Khoshgoftaar, T. M. Survey on categori-
cal data for neural networks. Journal of Big Data, 7:1–41,
2020.

Hastie, T., Tibshirani, R., and Friedman, J. The elements of
statistical learning, volume 1. Springer series in statistics,
2012.

Hemminger, R. L. On reconstructing a graph. Proceedings
of the American Mathematical Society, 20(1):185–187,
1969.



Size-Invariant Graph Representations for Graph Classification Extrapolations

Hernández-Garcı́a, A. and König, P. Data augmenta-
tion instead of explicit regularization. arXiv preprint
arXiv:1806.03852, 2018.

Hoover, D. N. Relations on probability spaces and arrays
of random variables. Technical Report, Institute for Ad-
vanced Study, Princeton, NJ, 2, 1979.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems, 2020.

Johansson, F., Shalit, U., and Sontag, D. Learning repre-
sentations for counterfactual inference. In International
conference on machine learning, pp. 3020–3029, 2016.

Joshi, C. K., Cappart, Q., Rousseau, L.-M., Laurent, T., and
Bresson, X. Learning tsp requires rethinking generaliza-
tion. arXiv preprint arXiv:2006.07054, 2020.

Kallenberg, O. Probabilistic symmetries and invariance
principles. Springer Science & Business Media, 2006.

Kashima, H., Tsuda, K., and Inokuchi, A. Marginalized ker-
nels between labeled graphs. In Proceedings of the 20th
international conference on machine learning (ICML-03),
pp. 321–328, 2003.

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A.,
Forsyth, P., and Poupart, P. Representation learning for
dynamic graphs: A survey. Journal of Machine Learning
Research, 21(70):1–73, 2020.

Kelly, P. J. et al. A congruence theorem for trees. Pacific
Journal of Mathematics, 7(1):961–968, 1957.

King, G. and Zeng, L. The dangers of extreme counterfac-
tuals. Political Analysis, 14(2):131–159, 2006.

Kipf, T. and Welling, M. Semi-supervised classification
with graph convolutional networks. In International Con-
ference on Learning Representations, 2017.

Kipf, T. N. and Welling, M. Variational graph auto-encoders.
NIPS Workshop on Bayesian Deep Learning, 2016.

Klicpera, J., Groß, J., and Günnemann, S. Directional
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph attention networks. ICLR, 2018.
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