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Abstract

We consider a linear autoencoder in which the
latent variables are quantized, or corrupted by
noise, and the constraint is Schur-concave in the
set of latent variances. Although finding the op-
timal encoder/decoder pair for this setup is a
nonconvex optimization problem, we show that
decomposing the source into its principal com-
ponents is optimal. If the constraint is strictly
Schur-concave and the empirical covariance ma-
trix has only simple eigenvalues, then any opti-
mal encoder/decoder must decompose the source
in this way. As one application, we consider a
strictly Schur-concave constraint that estimates
the number of bits needed to represent the latent
variables under fixed-rate encoding, a setup that
we call Principal Bit Analysis (PBA). This yields
a practical, general-purpose, fixed-rate compres-
sor that outperforms existing algorithms. As a
second application, we show that a prototypi-
cal autoencoder-based variable-rate compressor
is guaranteed to decompose the source into its
principal components.

1. Introduction

Autoencoders are an effective method for representation
learning and dimensionality reduction. Given a centered
dataset 1, o, ..., T, € R? (ie., >, x; = 0), an autoen-
coder (with latent dimension k < d) consists of an encoder
f : R? — RF and a decoder g : RF — R?. The goal is
to select f and g from prespecified classes Cy and C4 such
that if a random point x is picked from the data set then
g(f(x)) is close to  in some sense, for example in mean
squared error. If Cy and C, consist of linear mappings then
the autoencoder is called a linear autoencoder.

Autoencoders have achieved striking successes when f
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and g are selected through training from the class of func-
tions realized by multilayer perceptrons of a given architec-
ture (Hinton & Salakhutdinov, 2006). Yet, the canonical
autoencoder formulation described above has a notable fail-
ing, namely that for linear autoencoders, optimal choices
of f and g do not necessarily identify the principal com-
ponents of the dataset; they merely identify the principal
subspace (Bourlard & Kamp, 1988; Baldi & Hornik, 1989).
That is, the components of f(x) are not necessarily propor-
tional to projections of x against the eigenvectors of the
covariance matrix

det 1
K:EZ;:BZ»-:CZT, (1)

which we assume without loss of generality is full rank.
Thus, linear autoencoders do not recover Principal Compo-
nent Analysis (PCA). The reason for this is that both the
objective (the distortion) and the constraint (the dimension-
ality of the latents) are invariant to an invertible transfor-
mation applied after the encoder with its inverse applied
before the decoder. It is desirable for linear autoencoders
to recover PCA for two reasons. First, from a representa-
tion learning sandpont, it guarantees that the autoencoder
recovers uncorrelated features. Second, since a conventional
linear autoencoder has a large number of globally optimal
solutions corresponding to different bases of the principal
subspace, it is preferable to eliminate this indeterminism.

s

Autoencoders are sometimes described as “‘compressing’
the data (Bishop, 2006; Bourlard & Kamp, 1988; Liao et al.,
2021; do Espirito Santo, 2012), even though f can be in-
vertible even when £ < d. We show that by embracing
this compression-view, one can obtain autoencoders that
are able to recover PCA. Specifically, we consider linear
autoencoders with quantized (or, equivalently, noisy) latent
variables with a constraint on the estimated number of bits
required to transmit the quantized latents under fixed-rate
coding. We call this problem Principal Bit Analysis (PBA).
The constraint turns out to be a strictly Schur-concave func-
tion of the set of variances of the latent variables (see the
supplementary for a review of Schur-concavity). Although
finding the optimal f and g for this loss function is a non-
convex optimization problem, we show that for any strictly
Schur-concave loss function, an optimal f must send projec-
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tions of the data along the principal components, assuming
that the empirical covariance matrix of the data has only sim-
ple eigenvalues. That is, imposing a strictly Schur-concave
loss in place of a simple dimensionality constraint suffices
to ensure recovery of PCA. The idea is that the strict concav-
ity of the loss function eliminates the rotational invariance
described above. As we show, even a slight amount of “cur-
vature” in the constraint forces the autoencoder to spread the
variances of the latents out as much as possible, resulting
in recovery of PCA. If the loss function is merely Schur-
concave, then projecting along the principal components is
optimal, but not necessarily uniquely so.

Using this theorem, we can efficiently solve PBA. We vali-
date the solution experimentally by using it to construct a
fixed-rate compression algorithm for arbitrary vector-valued
data sources. We find that the PBA-derived compressor
beats existing linear, fixed-rate compressors both in terms
of mean squared error, for which it is optimized, and in
terms of the structural similarity index measure (SSIM) and
downstream classification accuracy, for which it is not.

A number of variable-rate multimedia compressors have
recently been proposed that are either related to, or directly
inspired by, autoencoders (Tschannen et al., 2018; Toderici
et al., 2017; Ballé et al., 2016; Toderici et al., 2016; Theis
et al., 2017; Rippel & Bourdev, 2017; Habibian et al., 2019;
Agustsson et al., 2017; Ballé et al., 2018; Zhou et al., 2018;
Agustsson et al., 2019; Ballé et al., 2021). As a second
application of our result, we show that for Gaussian sources,
a linear form of such a compressor is guaranteed to recover
PCA. Thus we show that ideas from compression can be
fruitfully fed back into the original autoencoder problem.

The contributions of the paper are

e We propose a novel linear autoencoder formulation in
which the constraint is Schur-concave. We show that
this generalizes conventional linear autoencoding.

e If the constraint is strictly Schur-concave and the co-
variance matrix of the data has only simple eigenvalues,
then we show that the autoencoder provably recovers
PCA, providing a new remedy for a known limitation
of linear autoencoders.

e We use the new linear autoencoder formulation to effi-
ciently solve a fixed-rate compression problem that we
call Principal Bit Analysis (PBA).

e We demonstate experimentally that PBA outperforms
existing fixed-rate compressors on a variety of data sets
and metrics.

e We show that a linear, variable-rate compressor that is
representative of many autoencoder-based compressors

in the literature effectively has a strictly Schur-concave
loss, and therefore it recovers PCA.

Related Work. Several recent works have examined how
linear autoencoders can be modified to guarantee recovery
of PCA. Most solutions involve eliminating the invariant
global optimal solutions by introducing regularization of
some kind. (Oftadeh et al., 2020) propose a loss function
which adds £ penalties to recover the k principal directions,
each corresponding to recovering up to the first ¢ < k prin-
cipal directions. (Kunin et al., 2019) show that /5 regular-
ization helps reduce the symmetry group to the orthogonal
group. (Bao et al., 2020) further break the symmetry by
considering non-uniform {5 regularization and determin-
istic dropout. (Ladjal et al., 2019) consider a nonlinear
autoencoder with a covariance loss term to encourage find-
ing orthogonal directions. Recovering PCA is an important
problem even in the stochastic counterpart of autoencoders.
(Lucas et al., 2019) analyze linear variational autoencoders
(VAEs) and show that the global optimum of its objective is
identical to the global optimum of log marginal likelihood
of probabilistic PCA (pPCA). (Rolinek et al., 2019) analyze
an approximation to the VAE loss function and show that
the linear approximation to the decoder is orthogonal.

Our result on variable-rate compressors is connected to the
sizable recent literature on compression using autoencoder-
like architectures. Representative contributions to the liter-
ature were noted above. Those works focus mostly on the
empirical performance of deep, nonlinear networks, with
a particular emphasis on finding a differentiable proxy for
quantization so as to train with stochastic gradient descent.
In contrast, this work considers provable properties of the
compressors when trained perfectly. Learned, neural fixed-
rate compressors have been considered in (Li et al., 2018;
Toderici et al., 2016). However, we don’t compare against
these since ours is a linear scheme.

Notation. We denote matrices by bold capital letters e.g.
M, and vectors by bold small, e.g. v. The j™ column of a
matrix M is denoted by m; and the j t entry of a vector v
by [v];. We denote the set {1,2,---d} by [d]. A sequence
ay,asz,-- - a, is denoted by {a;}_ ;. We denote the zero
column by 0. Logarithms without specified bases denote
natural logarithms.

Organization. The balance of the paper is organized as
follows. We describe our constrained linear autoencoder
framework in Section 2. This results in an optimization
problem that we solve for any Schur-concave constraint in
Section 2.1. In Section 3, we recover linear autoencoders
and PBA under our framework. We apply the PBA solu-
tion to a problem in variable-rate compression of Gaussian
sources in Section 4. Section 5 contains experiments com-
paring the performance of the PBA-based fixed-rate com-
pressor against existing fixed-rate linear compressors on
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image and audio datasets. Complete proofs of all theorems
can be found in the supplementary.

2. Linear Autoencoding with a
Schur-Concave Constraint

Throughout this paper we consider C; and C, to be the
class of linear functions. The functions f and g can then
be represented by d-by-d matrices, which we denote by W
and T, respectively. Thus, we have

f(x) =W'x, and g(x) = Tx. 2)

We wish to design W and T' to minimize the mean squared
error when the latent variables W T z are quantized, subject
to a constraint on the number of bits needed to represent the
quantized latents. We accomplish this via two modifications
to the canonical autoencoder. First, we perturb the d latent
variables with zero-mean additive noise with covariance
matrix 021, which we denote by e. Thus, the input to the
decoder is

Wiz+e (3)

and our objective is to minimize the mean squared error
2
*ZE i - Wzt e) [} @

This is equivalent to quantizing the latents, in the following
sense. Let Q(+) be the function that maps any real number
to its nearest integer and € be a random variable unformly
distributed over[—1/2,1/2]. Then for X independent of
g, the quantities Q(X + ¢) — ¢ and X + ¢ have the same
distribution (Zamir & Feder, 1992). Thus (4) is exactly
the mean squared error if the latents are quantized to the
nearest integer and 02 = 12, assuming that the quantization
is dithered. The overall system is depicted in Fig. 1.

We wish to constrain the number of bits needed to describe
the latent variables. We assume that the jth quantized latent
is clipped to the interval

\/(Qa)ijTij +1 \/(Za)ijTK'wj +1
B 2 ’ 2 ’

where a > 0 is a hyperparameter and the covariance matrix
K is as defined in (1). The idea is that for sufficiently large
a, the interval

(—a\/w;erj, a\/w;erj}

contains the latent with high probability, and adding 1 ac-
counts for the expansion due to the dither. The number of
bits needed for the jth latent is then

log (w /4a2'w;'—ij + 1) =

1
5 log (4a2ijij + 1) .

We arrive at our optimization problem:

d

1
bjectto R > —log (4a’w, Kw; +1).
subject to _j=120g(awl w; + 1)

Note that the function

d
1
T d 2, T
{w; Kw;}j_; Zl 3 log (40w, Kw; + 1)
=
is strictly Schur-concave (see supplementary for a brief re-
view of Schur-concavity). Our first result only requires that

the constraint is Schur-concave in the set of latent variances,
so we will consider the more general problem
2
+)]3]

B 2 [l

subjectto R > p ({wj ij}j:l)

WT:cl
6)

where p(-) is any Schur-concave function. Since 1" does not
appear in the rate constraint, the optimal 7" can be viewed
as the Linear Least Squares Estimate (LLSE) of a random
x given W T x 4 e. Therefore, the optimal decoder, T for
a given encoder W is (e.g. (Kay, 1998)):

T = KW(W' KW 4 ¢I)7". (7)

Substituting for 7" in (6) yields an optimization problem
over only W. Using standard linear algebra, we rewrite the
objective in terms of K and W as

inf tr(K)

inf —tr(KW (W' KW +0%I)"'W'TK)

subjectto R > p ({w;erj}jd) .
®)

This problem is nonconvex in general. In the following
subsection, we prove a structural result about the problem
for a Schur-concave p. Namely, we show that the nonzero
rows of W must be eigenvectors of K. In Section 3, we
solve the problem for the specific choice of p in (5). We
also show how this generalizes conventional autoencoders.

2.1. Optimal Autoencoding with a Schur-Concave
Constraint

The following is the main theoretical result of the paper.
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Figure 1. Compression Block Diagram

Theorem 1. For Schur-concave p : R, — Rsq and
R > 0, the set of matrices whose nonzero columns are
eigenvectors of the covariance matrix K is optimal for (8).
If p is strictly Schur-concave and K contains distinct eigen-
values, this set contains all optimal solutions of (8).

Proof Sketch. Let the eigenvalues of K be {02}%_; with

2>02>...> O'd, andlet K =UXU " Where Yisa
diagonal matrix with nonincreasing diagonal entries and U
is an orthogonal matrix whose columns are the correspond-
ing normalized eigenvectors of K.

We first prove that the optimal value of (8) can be achieved
by a W such that W T KW is a diagonal matrix. Indeed,
for a given W, consider W = WQ where WT KW =
QAQ. Under this transformation, the objective is un-
changed; but since the eigenvalues of W T KW majorize
its diagonal elements, the rate constraint improves. Using
this fact, we prove an upper bound on the objective that
can be achieved by choosing the nonzero columns of W as
eigenvectors of K. We then prove that for a strictly Schur-
concave p and for K whose eigenvalues are distinct, this is
the only way to attain the upper bound. [

As a consequence of Theorem 1, encoding via an optimal
W can be viewed as a projection along the eigenvectors
of K, followed by different scalings applied to each com-
ponent, i.e., W = U S where S is a diagonal matrix with
entries s; > 0 and U is the normalized eigenvector matrix.
Only S remains to be determined, and to this end, we may
assume that K is diagonal with the nonincreasing diagonal
entries, implying U = I. In subsequent sections, our choice
d

of p will be of the form ) pg, where pg : R>o — RZOI is
i=1

(strictly) concave, making p (strictly) Schur-concave. There-

fore, (8) reduces to

inf u(K) - tr(KS(STKS +5*I)7'STK)

subjectto R > py ({s707}),

9)
where the infimum is over diagonal matrices S. To handle
situations for which lim,_, o, psi(s) < oo, we allow the
diagonal entries of S to be oo, with the objective for such
cases defined via its continuous extension.

15 stands for single-letter

In the next section, we will solve (9) for several specific
choices of pg;.

3. Explicit Solutions: Conventional Linear
Autoencoders and PBA

3.1. Conventional Linear Autoencoders

Given a centered dataset 1, o, - - - £, € R?, consider a
linear autoencoder optimization problem where the encoder
and decoder, W and T, respectively, are d-by-k matrices
where k£ < d is a parameter. The goal is to minimize the
mean squared error as given by (4). PCA corresponds to
the global optimal solution of this optimization problem,
where W = T = U, where U, € R%** ig a matrix
whose columns are the k eigenvectors corresponding to the
k largest eigenvalues of K. However, there are multiple
global optimal solutions, given by any encoder-decoder pair
of the form (U, V, U V'), where V is an orthogonal matrix
(Baldi & Hornik, 1989).

We now recover linear autoencoders through our framework
in Section 2. Consider the optimization problem in (9)
where pg; : R>¢ — {0, 1} is a concave function defined as

psi(x) =1[x >0]. (10)

Note that this penalizes the dimension of the latents, as
desired. Note also that this cost is Schur-concave but not
strictly so. The fact that PCA solves the conventional linear
autoencoding, but is not necessarily the unique, solution,
follows immediately from Theorem 1.

Theorem 2. If py(-) is given by (10), then an optimal so-
lution for (9) is given by a diagonal matrix S whose top
min(|R], d) diagonal entries are equal to oo and the re-
maining diagonal entries are 0.

Proof. Let F < {i e [d]:s; >0}, implying |F| < R.

Since K and S are diagonal, the optimization problem in
(9) can be written as

o%0?
inf + _og
{o) % Z 02+ o2s?
JEdN\F LeF
J 1D
subjectto R > Z 1[s; > 0].

i=1
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Since the value of sy, ¢ € F does not affect the rate con-
straint, each of the s, can be made as large as possible with-
out changing the rate constraint. Therefore, the infimum
value of the objective is > O'JQ-. Since we seek to mini-
JeldN\F
mize the distortion, the optimal F is the set of indices of the
largest | F| eigenvalues. Since the number of these eigenval-
ues cannot exceed R, we choose |F| = min(|R],d). O

Unlike the conventional linear autoencoder framework, in
Section 2, the latent variables W | x are quantized, which
we model with additive white noise of fixed variance. There-
fore, an infinite value of s; indicates sending u:r x with full
precision where u; is the eigenvector corresponding to the
it" largest eigenvalue. This implies that PCA with param-
eter k corresponds to W = US, where S is a diagonal
matrix whose top k& diagonal entries are equal to oo and the
d — k remaining diagonal entries are 0. Therefore, for any R
such that | R| = k, an optimal solution to (9) corresponds
to linearly projecting the data along the top k eigenvectors,
which is the same as PCA. Note that, like (Baldi & Hornik,
1989), we only prove that projecting along the eigenvectors
is one of possibly other optimal solutions. However, even
a slight amount of curvature in p would make it strictly
Schur-concave, thus recovering the principal directions. We
next turn to a specific cost function with curvature, namely
the PBA cost function that was our original motivation.

3.2. Principal Bit Analysis (PBA)

Consider the choice of pg; : R>o — R that provided the
original impetus for Theorem 1. For y > 0—22,

1
psi(z) = 5 log(yz +1). (12)

The nature of the optimization problem depends on the
value of 7. For 1 < y0? < 2, the problem can be made
convex with a simple change of variable. For yo? = 1, the
problem coincides with the classical waterfilling procedure
in rate-distortion theory, in fact. For yo2 > 2, the problem
is significantly more challenging. Since we are interested in
relatively large values of v for our compression application
(see Section 5 to follow), we focus on the case v > 2/02.

Theorem 3. If p(-) is given by (12), then for any A > 0,
the pair Ry, Doy obtained from the output of Algorithm 1
satisfies

Dopt + )\Ropt =
inf r(K) —tr(KS(STKS +0°I)"'STK)

d
+AY pa({siel}), (14
=1

Algorithm 1 Principal Bit Analysis (PBA)
Require: \ > 0, a = vo? > 2,

0% 0 0
0 o3 0

K = ) =0, (13)
0 0 03

such that o7 > 03 > --- > 03. )
S IF A > 0?/(4(a — 1)), Output Roy = 0, Doy =

d
Zi:J 012 .

—_

2: Setd = max {i: A < o?/4(a —1)}.
3: Set R, D to zero arrays of size 2d.
4: forr € {1,2,---d} do
— 0_2 d 0_2
3 D(Q’I“ - 1) = 2(ai1) (1 - cl) + Z EZ’
i=1 i=r+1
_ T
6 R@2r—1)=3 ilog (g) +log (14 ¢)
i=1
_ r—1 o2
7 2r) = 2 e (1= 6) + ey L+ o) +
d o =
DI
i=r+1
_ T 9 r—1
8 R(2r) = 3 ilog (%) + S log(1+¢) +
i=1 i=1
log (1 — ¢;).
9: end for

10: r* < arg minje[Qd—} D(j) + AR(j).
11: Output Ry = R(r*), Doyt = D

Note that by sweeping A > 0, one can compute the lower
convex envelope of the (D, R) curve. Since every Pareto
optimal (D, R) must be a stationary point of (14), one can
also use Algorithm 1 to compute the (D, R) curve itself by
sweeping A and retaining all those stationary points that are
not Pareto dominated.

4. Application to Variable-Rate Compression

We have seen that an autoencoder formulation inspired by
data compression succeeds in providing guaranteed recovery
the principal source components. Conversely, a number
of successful multimedia compressors have recently been
proposed that are either related to, or directly inspired by,
autoencoders (Ball€ et al., 2021; 2016; Toderici et al., 2017,
2016). In particular, Ballé et al. (Ballé et al., 2018) show
that the objective minimized by their compressor coincides
with that of variational autoencoders. Following (Ballé et al.,
2021), we refer to this as the nonlinear transform coding
(NTC) objective. We next use Theorem 1 to show that any
minimizer of the NTC objective is guaranteed to recover the
principal source components if (1) the source is Gaussian
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distributed, (2) the transforms are restricted to be linear, and
(3) the entropy model is factorized, as explained below.

Letz ~ N (0, K), where K is a positive semidefinite co-
variance matrix. As before, we consider an autoencoder
defined by its encoder-decoder pair (f, g), where for k < d,
f:RY = R¥and g : R¥ — R? are chosen from pre-
specified classes Cy and C,. The NTC framework assumes
dithered quantization (Agustsson & Theis, 2020; Choi et al.,
2019) as in Section 2, and seeks to minimize the Lagrangian

fecifr,lgecg Bee [”w —9(QU@) +e) -2l
+AH (Q (f(x) +¢€) —€le),

where A > 0 and € has i.i.d. Unif [-0.5, 0.5] components.
NTC assumes variable-length compression, and the quantity

H(Q(f(z) +¢) —ele)

is an accurate estimate of minimum expected codelength
of the discrete random vector Q (f(z) + ). As we noted
in Section 2, (Zamir & Feder, 1992) showed that for any
random variable x, Q (x +€) — € and « + € have the
same joint distribution with . They also showed that
H(Q(x+e)—¢€le)=1(x+e;x)) = h(x + ¢), where
h(-) denotes differential entropy. Therefore, the objective
can be written as

fecifr,lgecg Bee [”w —9(f(=@)+ 6)@
FAR(f (@) +e). (15)

(Compare eq.(13) in (Ballé et al., 2021)).

We consider the case where Cy,C, are the class of linear
functions. Let W, T be d-by-d matrices. Define f (x) =
W Tz, g (x) = Tx. Substituting this in the above equation,
we obtain

. 2
b e [l =T (WTa+e)]
+AM(Wiz+e). (16)

Since T does not appear in the rate constraint, the optimal
T can be chosen to be the minimum mean squared error
estimator of x ~ N (0, K) given W Tz +¢, as in Section 2.
This gives

12
+AM Wiz +e). (A7)

I —1
inf tr(K) — tr(KW (WTKW + ) W'K)

As noted earlier, the rate term h (WTa: + 6) is an accu-
rate estimate for the minimum expected length of the com-
pressed representation of @ (W '@ + €). This assumes

that the different components of this vector are encoded
jointly. However, in practice, one often encodes them sepa-
rately, relying on the transform W to eliminate redundancy
among the components. Accordingly, we replace the rate

term with
d

Zh(w:aﬂ— [el;) ,

i=1

to arrive at the following optimization problem

: T INT g
1‘51[/ftr(K)—tr(KW (W KW+12> W' K)
d
+AD h(wlz+[e]). (8)
i=1

Theorem 4. Suppose K has distinct eigenvalues. Then any
W that achieves the infimum in (18) has the property that
all of its nonzero rows are eigenvectors of K.

Proof. Since the distribution of € is fixed, by the Gaus-
sian assumption on @, i (w; @ + [¢];) only depends on w;
through ij Kwj;. Thus we may write

h(ij:c +e)= psl(w]Tij). (19)

By Theorem 1, it suffices to show that pg(-) is strictly
concave. Let Z be a standard Normal random variable and
let € be uniformly distributed over [—1/2,1/2], independent
of Z. Then we have

psi(s) = h(V's - Z +e). (20)
Thus by de Bruijn’s identity (Cover & Thomas, 2006),

1
Pals) = 5J(e+ Vs 2), 1)

where J(-) is the Fisher information. To show that p’,(-)
is strictly concave, it suffices to show that J(e + /s - Z)
is strictly decreasing in s.> To this end, lett > s > 0 and
let Z; and Z5 be i.i.d. standard Normal random variables,
independent of €. Then

Je+Vt-Z)=Je+s-Zi+Vt—s-Zs) (22)

and by the convolution inequality for Fisher informa-
tion (Blachman, 1965),

1
Je+s - Zi+\t—s-Zs) ”
1 1 1
Jeive ) Ti=s Za) It Zi)

(23)

2If ¢/ (-) is strictly decreasing then for all t > s, g(t) = g(s) +
f: g (u)du < g(s) + g’ (s)(t — s) and likewise for t < s. That
g(+) is strictly concave then follows from the standard first-order
test for concavity (Boyd & Vandenberghe, 2004).
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where the first inequality is strict because € + /s - Z; is not
Gaussian distributed. O

5. Compression Experiments

We validate the PBA algorithm experimentally by compar-
ing the performance of a PBA-derived fixed-rate compressor
against the performance of baseline fixed-rate compres-
sors. The code of our implementation can be found at
https://github.com/SourbhBh/PBA. Although
variable-rate codes are more commonplace in practice, fixed-
rate codes do offer some advantages over their more general
counterparts:

1. In applications where a train of source realizations will
be compressed sequentially, fixed-rated coding allows
for simple concatenation of the compressed representa-
tions, which also helps in maintaining synchrony.

2. In applications where a dataset of source realizations
are individually compressed, fixed-rate coding allows
for random access of the data points from the com-
pressed representation.

3. In streaming, bandwidth provisioning is simplified
when the bit-rate is constant over time.

Fixed-rate compressors exist for specialized sources such as
speech (McCree & Barnwell, 1995; Schroeder & Atal, 1985)
and audio more generally (Vor). We consider a general-
purpose, learned, fixed-rate compressor derived from PBA
and the following two quantization operations. The first,
Qcp(a, 02, U, x)? accepts the hyperparameter a, a variance
estimate o2, a dither realization U, and the scalar source
realization to be compressed, x, and outputs (a binary repre-
sentation of) the nearest point to z in the set

rr
{i+U:i€Zandi+U€(—2,2]}. (24)

where
I = 2l3logy (400 +1)] (25)

This evidently requires log, I' bits. The second function,

p(a® % U,b), where b is a binary string of length
log, I', maps the binary representation b to the point in (24).
These quantization routines are applied separately to each
latent component. The o2 parameters are determined dur-
ing training. The dither U is chosen uniformly over the
set [—1/2,1/2], independently for each component. We
assume that U is chosen pseudorandomly from a fixed seed
that is known to both the encoder and the decoder. For our
experiments, we fix the a parameter at 15 and hard code
this in both the encoder and the decoder. We found that this

3CD” stands for “clamped dithered.”

choice balances the dual goals of minimizing the excess dis-
tortion due to the clamping quantized points to the interval
(T'/2,T/2] while minimizing the rate.

PBA compression proceeds by applying Algorithm 1 to
a training set to determine the matrices W and T'. The
variance estimates o2, . .. 703 for the d latent variances are
chosen as the empirical variances on the training set and are
hard-coded in the encoder and decoder, as is the parameter
a®. Given a data point x, the encoded representation is the
concatenation of the bit strings b1, . . ., by, where

bi = QCD(a7J7j2an7sz$)a
., bg. and

The decoder parses the received bits into b, . .
computes the latent reconstruction g, where

gi = Q/CD(GQ, 01'2’ Uiv bl)a

The reconstruction is then T'y.

We evaluate the PBA compressor on MNIST (LeCun et al.,
1998), CIFAR-10 (Krizhevsky, 2009), MIT Faces Dataset
(Fac), Free Spoken Digit Dataset (FSDD) (Jackson). We
compare our algorithms mainly using mean-squared error
since our theoretical analysis uses mean squared error as the
distortion metric. Our plots display Signal-to-Noise ratios
(SNRs) for ease of interpretation. For image datasets, we
also compare our algorithms using the Structural Similarity
(SSIM) or the Multi-scale Structural Similarity (MS-SSIM)
metrics when applicable (Wang et al., 2004). We also con-
sider errors on downstream tasks, specifically classification,
as a distortion measure. We plot results from only selected
datasets here and defer the rest to the supplementary.

For all datasets, we compare the performance of the PBA
compressor against baseline scheme derived from PCA. The
PCA-based scheme sends some of the principal components
essentially losslessly, and sends no information about the
others. Specifically, for any given k, we choose the first
k columns of W to be aligned with the first k£ principal
components of the dataset; the remaining columns are zero.
Each nonzero column is scaled such that projections on the
column contain all significant digits. This is done so that at
high rates, the quantization procedure sends the k principal
components losslessly. The quantization and decoder oper-
ations are as in the PBA-based scheme; in particular the a
parameter is as specified above. By varying k, we trade off
rate and distortion.

5.1. SNR Performance
We examine compression performance under mean squared

error, or equivalently, the SNR, defined as

P
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Figure 3. Plot of SNR/pixel vs Rate (bits/pixel). Left to right: CIFAR-10, FSDD, CIFAR-10, MNIST. In the last two figures reconstructions
are not rounded to integers from O to 255. All figures are zoomed-in. Zoomed-out versions are in the supplementary.
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Figure 4. Number of components sent vs rate (bits/pixel). Left:
CIFAR-10, Right: MNIST.

where P is the empirical second moment of the dataset.
PBA (and PCA) is designed to minimize this objective.

In Figure 2, we display reconstructions for a particular im-
age in the Faces Dataset under PBA and PCA. The first
two figures in Figure 3 show the tradeoff for PBA and PCA
against JPEG and JPEG2000 (for CIFAR-10) and AAC (for
FSDD). All of the image datasets have integer pixel values
between 0 and 255. Accordingly, we round the reconstuc-
tions of PBA and PCA to the nearest integer in this range.
The last two figures in Figure 3 shows the same tradeoff for
PBA and PCA when reconstructions are not rounded off to
the nearest integer. We see that PBA consistently outper-
forms PCA and JPEG, and is competitive with JPEG2000,

even though JPEG and JPEG2000 are variable-rate. * We es-
timate the size of the JPEG header by compressing an empty
header and subtract this estimate from all the compression
sizes produced by JPEG. For audio data, we observe that
PBA consistently outperforms PCA and AAC. Since the
image data all use 8 bits per pixel, one can obtain infinite
SNR at this rate via the trivial encoding that communicates
the raw bits. PCA and PBA do not find this solution because
they quantize in the transform domain, where lattice-nature
of the pixel distribution is not apparent. Determining how
to leverage lattice structure in the source distribution for
purposes of compression is an interesting question that tran-
scends the PBA and PCA algorithms and that we will not
pursue here.

PCA performs poorly because it favors sending the less
significant bits of the most significant components over the
most significant bits of less significant components, when
the latter are more valuable for reconstructing the source.
Arguably, it does not identify the “principal bits.” Figure 4
shows the number of distinct components about which in-
formation is sent as a function of rate for both PBA and

“It should be noted, however, that JPEG and JPEG2000 aim to
minimize subjective distortion, not MSE, and they do not allow for
training on sample images, as PBA and PCA do. A similar caveat
applies to AAC.
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PCA. We see that PBA sends information about many more
components for a given rate than does PCA.

5.2. SSIM Performance

Structural similarity (SSIM) and Multi-Scale Structural sim-
ilarity (MS-SSIM) are metrics that are attuned to perceptual
similarity. Given two images, the SSIM metric outputs a
real value between 0 and 1 where a higher value indicates
more similarity between the images. We evaluate the perfor-
mance of our algorithms on these metrics as well in Figure 5.
We see that PBA consistently dominates PCA, and although
it was not optimized for this metric, beats JPEG at low rates
as well.

ssim

~e— JPEG2000

[} 5 n 5 E] 5 00 25 50 75 100 125 150 175 200
Rate (bits/pixel) Rate (bits/pixel)

Figure 5. SSIM vs Rate (bits/pixel).
MNIST.

Left: CIFAR-10, Right:

5.3. Performance on Downstream tasks
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Figure 6. Accuracy vs Rate (bits/pixel). Left: CIFAR-10, Right:
MNIST.

Lastly, we compare the impact of using PBA and PCA
on an important downstream task, namely classification
performance. We evaluate the algorithms on MNIST and
CIFAR-10 datasets and use neural networks for classifica-
tion. Our hyperparameter and architecture choices are in
the supplementary. We divide the dataset into three parts.
From the first part, we obain the covariance matrix that we
use for PCA and the PBA compressor. The second and third
part are used as training and testing data for the purpose of
classification. For a fixed rate, reconstructions are passed
to the neural networks for training and testing respectively.
Since our goal is to compare classification accuracy across
the compressors, we fix both, the architecture and hyperpa-
rameters, and don’t perform any additional tuning for the
algorithms separately.

Figure 6 shows that PBA outperforms PCA in terms of
accuracy. The difference is especially significant for low

rates and all algorithms attain roughly the same performance
at higher rates.
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