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Abstract

Low-rank approximation is a classic tool in data
analysis, where the goal is to approximate a ma-
trix A with a low-rank matrix L so as to minimize
the error ‖A− L‖2F . However in many applica-
tions, approximating some entries is more impor-
tant than others, which leads to the weighted low
rank approximation problem. However, the addi-
tion of weights makes the low-rank approximation
problem intractable. Thus many works have ob-
tained efficient algorithms under additional struc-
tural assumptions on the weight matrix (such as
low rank, and appropriate block structure). We
study a natural greedy algorithm for weighted low
rank approximation and develop a simple condi-
tion under which it yields bi-criteria approxima-
tion up to a small additive factor in the error. The
algorithm involves iteratively computing the top
singular vector of an appropriately varying ma-
trix, and is thus easy to implement at scale. Our
methods also allow us to study the problem of low
rank approximation under `p norm error.

1. Introduction
Matrix low rank approximation is one of the most classic
dimension reduction methods in data analysis. The standard
least squared error version can also be solved efficiently
using the singular value decomposition, and we know how
to do this in time comparable to the input sparsity (Clarkson
& Woodruff, 2017). Despite its utility, natural variants of
low-rank approximation turn out to be intractable. Weighted
low-rank approximation is one well studied example: in
many applications, some of the entries of a matrix may be
less important to approximate than others (e.g., they might
be known to be noisy), and thus we may have a weight
associated with each entry. While standard least-squares
regression for vectors can incorporate weights directly, the
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matrix version turns out to be challenging. Formally, the
weighted low-rank approximation problem is defined as
follows: given A ∈ Rd×n, a non-negative weight matrix
W ∈ Rd×n and a parameter k, the goal is to find a rank k
matrix L that minimizes Cost(L),

Cost(L) :=
∑
i,j

Wij · (Aij − Lij)2. (1)

The problem and its difficulty were recognized as early
as Young (1941), and it has been well-studied in the ML
literature starting with the work of Srebro & Jaakkola
(2003). Unlike the unweighted version (which corresponds
to W = 1d×n) low-rank approximation, the problem above
is NP-hard in general (Gillis & Glineur, 2011). Much of the
early work such as Srebro & Jaakkola (2003); Manton et al.
(2003); Eriksson & van den Hengel (2010) thus developed
heuristics for the problem. The first provably efficient al-
gorithms were obtained in the work of Razenshteyn et al.
(2016) (see also references therein for work on matrix com-
pletion which is closely related). Razenshteyn et al. (2016)
as well as more recent works (Musco et al., 2020; Ban et al.,
2019b) assume thatW has low rank, and develop algorithms
that achieve a (1 + ε) (multiplicative) approximation to the
optimum cost, while having a running time exponential in
the rank of W .

Very recently, Musco et al. (2020) initiated a study of ad-
ditive error bounds for weighted low rank approximation.
Here the goal is to obtain an L′ such that Cost(L′) ≤
OPT + ε ‖A‖2F , where OPT is the optimal cost. Additive
error guarantees have been a classic notion in the litera-
ture on low rank approximation (starting with the seminal
work of Frieze et al. (2004) on sampling for low rank ap-
proximation with additive error). Additive guarantees are
realistic in applications where the optimal error is a small
yet constant fraction of the total mass (e.g., when a low rank
approximation may capture 90% of the Frobenius mass).

So far, our discussion has been restricted to error in the
squared norm. However, low rank approximation has also
been studied in entrywise `p norms for p 6= 2. While any
p > 0 ensures that the matrix L approximates A, the choice
of p determines how the non-uniformity in approximation
error is penalized. For example, an `1 penalty allows some
errors |Aij − Lij | to be much larger than others (as long
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as the total sum is small), while as p → ∞, higher errors
are penalized severely. Thus small values of p are used
when some entries can be ignored as outliers (e.g., Candes
& Recht (2008)), while higher values of p ensure a more
uniform approximation.

The works of Song et al. (2017) and Ban et al. (2019a)
develop sketching based algorithms for `p norm approxima-
tion, particularly for p ∈ [1, 2]. They aim to find low-rank
approximations whose objective value is ≤ (1 + ε) times
the optimum. Chierichetti et al. (2017) develop approxi-
mation guarantees in much more generality, for all p ≥ 1
(including p =∞). Their result gives a simple O(k log n)
multiplicative approximation to the optimal error.

Goals. Our goal in this paper is to consider weighted low
rank approximation with `2 and `p error objectives and
develop efficient and practical algorithms. We prove the
efficacy of the greedy procedure under a novel yet natural
assumption and establish additive error guarantees.

1.1. Our Results

In all our results, we assume that A is the input matrix, and
that W is the non-negative weight matrix which has been
re-scaled to satisfy Wij ∈ [0, 1] for all i, j.

Our first result is to develop a simple greedy algorithm
that gives an additive error approximation to weighted low-
rank approximation. Unlike prior work, our analysis does
not require any explicit assumptions on the weight matrix
itself. It works as long as the target matrix (the intended
low rank approximation) has a Frobenius norm not too large
compared to A. Formally, our theorem is the following:

Theorem 1. Suppose there exists a rank k matrix L that
satisfies the two conditions: (a) Cost(L) ≤ Γ and (b)
‖L‖2F ≤ Λ ‖A‖2F for some parameters Λ,Γ. Then for any
ε > 0, there exists an efficient algorithm that outputs a
matrix L′ of rank at most O(kΛ/ε2) that satisfies

Cost(L′) ≤ Γ + ε ‖A‖2F .

Remark. Note that the guarantee is not in terms of the
optimal error but in terms of Γ. This is because we could
have the optimal matrix L∗ having a large value of ‖L∗‖F ,
but there may exist an L with only a slightly larger cost, but
a much smaller value of ‖L‖2F .

We also note that in the unweighted case (W = 1d×n), the
bound on ‖L‖F / ‖A‖F is automatically satisfied: indeed,
the ratio is always ≤ 1. However in the weighted case,
there can be pathological cases where a low-rank approxi-
mation has a much higher Frobenius norm than A. As an
example, consider the case of A = W = In (n × n iden-
tity). The matrix L = 1n×n (all ones) is a rank-one matrix
that achieves zero weighted approximation error. However,

we have ‖L‖2F / ‖A‖
2
F = n. Informally, our assumption is

equivalent to requiring that even the “unimportant” entries in
A are not too different in magnitude from the corresponding
entries in L, on average. We believe that this is a reason-
able assumption when approximating A by L. Moreover,
under this assumption, the theorem requires no structural
assumptions on W (as in prior work).

Remark. It is natural to ask if a dependence on Λ is nec-
essary in general. Showing lower bounds in terms of this
parameter is an interesting open direction. However, we
note that the known hardness results for matrix comple-
tion give an evidence for hardness when A,W are sparse
(in this case, ‖L‖F / ‖A‖F is Θ(n)). Specifically, Hardt
et al. (2014) show that for matrix completion, given a matrix
A which is the restriction to indices Ω of a rank-k matrix
L with entries of magnitude O(1), for any constant c, it
is hard to construct a matrix B of rank r = ck such that∑

(i,j)∈Ω |Aij−Bij |2 ≤ εn. (This is assuming the hardness
of an appropriate variant of coloring.) Viewing W as the
binary mask matrix corresponding to Ω, this also shows the
hardness of weighted low rank approximation. The catch
is that the amount of additive error allowed above is quite
small; it is ε ‖A‖2F only when the matrix is sparse.

The algorithm is a greedy procedure that iteratively adds a
rank 1 matrix to a decomposition, similar to Frank-Wolfe
methods (see, e.g., Clarkson (2010)). The crux of the analy-
sis is in showing that in spite of potentially bad choices in
the past, there exists an update that can significantly improve
the decomposition. A powerful feature of our techniques is
that we can extend them to weighted approximation with
`p norm error. We study the entrywise `p version of the
objective in (1), defined as

Costp(L) =
∑
i,j

Wij · |Aij − Lij |p.

Here, additive error will correspond to an `p analog of the

Frobenius norm, ‖X‖Fp
:=
(∑

i,j |Xij |p
)1/p

.
Theorem 2. Let p > 2, and suppose there exists a rank k
matrix L that satisfies: (a) Costp(L) ≤ Γ and (b) ‖L‖pFp

≤
Λ ‖A‖pFp

for some parameters Λ,Γ. Then for any ε > 0,
there exists an efficient algorithm that outputs a matrix L′

that satisfies Costp(L′) ≤ Γ + ε ‖A‖pFp
. Moreover the rank

of L′ is at most O
(
k2Λ2/p

ε
1+ 2

p

)
.

We remark that this does not strictly dominate Theorem 1
because of the additional factor of k. For p 6= 2, this extra
factor appears because the choice of basis for the target
low-rank subspace is important to analyzing the greedy
algorithm. As we discuss in Section 3, we need to use a
carefully chosen basis for our argument.

Another remark is that our ideas only apply to p > 2. When
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p < 2, the maximization problem in each iteration of our
current approach turns out to be that of computing the hy-
percontractive norm of a matrix, which is known to be
hard (Barak et al., 2012; Ban et al., 2019a).

Our algorithm follows a similar outline as the one for The-
orem 1, but it turns out to be much harder to analyze the
improvement. We end up using tools from recent works
on `p regression (Adil et al., 2019; Bubeck et al., 2018).
Moreover, finding a rank-one update in each step requires
approximately computing the p 7→ 2 operator norm of an
appropriate matrix, which can be done efficiently for p > 2
using semidefinite programming, as shown by Nesterov
(1998); Bhattiprolu et al. (2019).

Finally, as discussed in the introduction, even the un-
weighted version of low-rank approximation with entry-
wise `p error has received a lot of interest, and is known
to be challenging. Here, we obtain the following additive
approximation.

Theorem 3. Let p > 2, and let OPTk denote the error of
the best rank-k approximation of a given matrix A in the
entrywise `p norm. There exists an efficient (polynomial

time) algorithm that outputs an L′ of rank O
(

k2

ε
1+ 2

p

)
that

satisfies the error bound

‖A− L′‖pFp
≤ OPTk + ε ‖A‖pFp

.

Unlike the previous theorems, this result is unconditional.
Indeed, it is a simple consequence of Theorem 2 (see Sec-
tion 3.4). But to the best of our knowledge, such an additive
error approximation for `p low rank approximation was not
known for p > 2. Given known hardness results for purely
multiplicative approximation, it is interesting to study addi-
tive error guarantees (see Ban et al. (2019a)).

Our algorithm for Theorem 3 can be viewed as extending
the familiar iterative peeling algorithm for `2 low-rank ap-
proximation to the `p setting, for p > 2. The iterative step
is different (now involving a p 7→ 2 norm computation), and
we obtain an additive error guarantee. The theorem also
complements the sketching-based algorithms for obtaining
bi-criteria algorithms for p ∈ [1, 2) from Ban et al. (2019a).
Finally, note that when the optimal error OPTk is very small
� ε

k logn ‖A‖
p
Fp

, the algorithm of Chierichetti et al. (2017)
has a better guarantee than Theorem 3.

1.2. Notation and Overview

All the matrix and vector notations used in the paper will be
defined at first use. We begin in Section 2 with the greedy
algorithm for the weighted Frobenius error. The framework
is then extended to the case of weighted `p norm error in
Section 3. The case of unweighted `p error (Theorem 3)
follows as a corollary and is presented in Section 3.4.

2. Algorithm for Squared Error
We now present the greedy framework that underlies all of
our algorithms.

Outline. Our algorithm proceeds by maintaining a low-rank
approximation for A and iteratively adding a rank-1 compo-
nent that ensures sufficient error reduction. This is done by
finding a vector z and subtracting an appropriate multiple of
z from the residuals of each column. The analysis proceeds
in a column-by-column fashion, and thus we begin with a
few useful lemmas about approximating a single column,
and present Algorithm 1 and its analysis in Section 2.1.

Our analysis is similar in spirit to the analysis of the
greedy algorithm for column subset selection and sparse
coding, (Altschuler et al., 2016; Bhaskara & Tai, 2019), but
we need a different view in order to incorporate weights for
entries. We begin with a few lemmas about approximating a
single column using a collection of vectors. Let a ∈ Rd be
a vector, and w ∈ Rd be weights for the coordinates. Define
the function fw : Rd 7→ R as:

fw(v) =
∑
i∈[d]

wi(ai − vi)2, (2)

where wi, ai, vi denote the ith entries of the corresponding
vectors. Next, suppose that x is a vector (which will be
our current approximation for a). Assume that x is “lo-
cally optimal” in the sense that increasing or decreasing the
magnitude of x does not reduce the value of fw. Formally,
x satisfies 〈∇fw(x), x〉 = 0. The gradient has a simple
form in our setting, ∇fw(v) = 2w ◦ (a− v) (recall that ◦
denotes the Hadamard or element-wise product). The fol-
lowing lemma shows how moving along a certain direction
improves the value of fw. First, we define

gw(x, u) = min
η
fw(x− ηu), (3)

which is the least possible value of fw that can be obtained
by moving from x along the direction u. (As we can set
η = 0, gw(x, u) is always ≤ fw(x).)
Lemma 4. Let a, x, w be defined as above, and let u ∈ Rd
be a vector such that |〈∇fw(x), u〉| ≥ γ and

∑
i wiu

2
i ≤ 1.

Then we have

gw(x, u) ≤ fw(x)− γ2

4
.

The proof follows by a direct expansion of fw, and we defer
the details to the supplement.

Next, we show a lemma that is central to our argument. It
says that if there is some u such that fw(u) < fw(x), and
if u can be written as a linear combination of some basis
vectors using “small” coefficients, then one of the basis
directions can lead to a sufficiently large reduction in the
value of fw. Formally,
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Lemma 5. Let u1, u2, . . . , uk ∈ Rd be arbitrary vectors,
and suppose u =

∑
j αjuj , where

∑
j α

2
j = B. Let a, x, w

be defined as above, and suppose that fw(u) < fw(x).
Then

k∑
j=1

|〈∇fw(x), uj〉|2 ≥
(fw(x)− fw(u))2

B
.

Proof. We first observe that because of the convexity of fw
(it is a non-negative sum of convex functions), we have that

fw(u) ≥ fw(x)+〈∇fw(x), u−x〉 = fw(x)+〈∇fw(x), u〉.

The last equality is because of our assumption that scaling x
will not improve fw. Because fw(u) < fw(x), this implies
that |〈∇fw(x), u〉| ≥ fw(x) − fw(u). Now, plugging in
u =

∑
j αjuj and applying Cauchy-Schwartz, we obtain:∑

j

α2
j

∑
j

|〈∇fw(x), uj〉|2
 ≥ (fw(x)− fw(u))2.

The first term is B by definition, and this completes the
proof of the lemma.

2.1. Algorithm for Weighted Approximation

The algorithm proceeds as follows: at time step t = 0, 1, . . . ,
an approximation x

(t)
j is maintained for every column aj .

Unlike in the single column case above, we now have (po-
tentially) different weight vectors wj for each column j.
We thus define

fj(v) =
∑
r∈[d]

wj,r(aj,r − vr)2, (4)

where wj,r denotes the rth coordinate of wj (similarly for
aj). Since our goal is an additive error approximation, an
ideal goal is to bring fj(v) within ε ‖aj‖22 of the optimal
approximation for column j, for all j. (Algorithm 1 gives a
full description of the procedure.)

Remark. Steps 7 and 8 of the algorithm involve a line
search. This is easy in our case because the associated
functions of η are univariate quadratics.

We start with some notation concerning the target rank-k so-
lution L (as promised by the statement of Theorem 1). Sup-
pose that L = UV T , where the columns of U are orthonor-
mal, and let uj ∈ Rd,vj ∈ Rk denote the jth columns
of U and V T respectively. Because of the orthonormal
columns in U , we have ‖vj‖2 = ‖Lj‖2, where Lj is the
jth column of L. Our first goal is to obtain a column-wise
control on ‖Lj‖ / ‖aj‖. Define the column j to be good if
‖Lj‖2 / ‖aj‖2 ≤ Λ/ε and bad otherwise. In what follows,
we denote by G the set of all good columns. The following
lemma is easy to see.

Algorithm 1 Weighted low rank approximation with L2 error

1: Input: Matrix A ∈ Rd×n, error parameter ε
2: Output: Low-rank approximation L′ ∈ Rd×n whose

columns are spanned by a set of vectors Z, with |Z| = k′ :=
8kΛ/ε2.

3: Initialize Z = ∅, set x(0)
j = 0 for all j

4: for t = 1, 2, . . . , k′ do
5: Using fj defined in (4), let z ∈ Rd, ‖z‖2 = 1 be the vector

that maximizes
∑

j〈∇fj(x
(t−1)
j ), z〉2, and add z to Z

6: for each j ∈ [n] do
7: Compute η that minimizes fj(x

(t−1)
j +ηz), and set x′ =

x
(t−1)
j + ηz

8: Compute η that minimizes fj(ηx′) and set x(t)
j = ηx′

9: end for
10: end for
11: Return Z and the associated low rank approximation L′

Lemma 6. The total mass of the bad columns of A is small.
I.e.,

∑
j 6∈G ‖aj‖

2 ≤ ε ‖A‖2F .

Proof. Suppose the contrary, and assume that the inequality
fails to hold. By the definition of bad, we have that∑

j 6∈G

‖Lj‖2 >
∑
j 6∈G

Λ

ε
‖aj‖2 ≥ Λ ‖A‖2F .

This contradicts our assumption about the bound on ‖L‖2F
(property (b) in Theorem 1).

The lemma allows us to focus on the good columns for most
of our analysis. We now introduce the following notation to
track the progress of the algorithm.

Notation. We denote

δj =
fj(Lj)

‖aj‖22
, θ

(t)
j =

fj(x
(t)
j )

‖aj‖22
. (5)

Thus, informally, our goal is to ensure that θ(t)
j ≥ δj − ε on

average. We also study the following weighted averages:

δ∗ =

∑
j∈G ‖aj‖

2
2 δj

‖AG‖2F
, ψ(t) =

∑
j∈G ‖aj‖

2
2 θ

(t)
j

‖AG‖2F
, (6)

where AG is the submatrix of A comprising only the good
columns. The next lemma shows that if ψ(t) − δ∗ is large,
then the (t + 1)th iteration makes considerable progress.
Formally,

Lemma 7. Suppose that after the t’th iteration of the al-
gorithm we have ψ(t) > δ∗. Then there exists a z such
that ∑

j∈G
|〈∇fj(x(t)

j ), z〉|2 ≥
ε ‖AG‖2F (ψ(t) − δ∗)2

kΛ
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Proof. The idea will be to prove that one of the {ui}i∈[k]

satisfies the condition of the lemma. We do this by ap-
plying Lemma 5 to each of the good columns. Step 8 en-
sures that the current representation for each column cannot
be improved by rescaling, which is essential for applying
Lemma 5. Consider any j ∈ G. This implies that Lj can be
written as

∑
i∈[k] αiui, where

∑
i α

2
i ≤ Λ

ε ‖aj‖
2
2 (indeed

the αi are precisely the entries of the column vj). Thus, by
applying Lemma 5, we get

∑
i∈[k]

|〈∇fj(x(t)
j ),ui〉|2 ≥

ε(fj(x
(t)
j )− fj(Lj))2

+

Λ ‖aj‖22

=
ε ‖aj‖22 (θ

(t)
j − δj)2

+

Λ
, (7)

where (x)+ = max(x, 0).

We first show that the sum of the RHS above over j ∈ G is
large. By viewing ‖aj‖22

‖AG‖2F
as a probability distribution over

the indices j ∈ G and using the fact that E[X2] ≥ E[X]2,
we get

∑
j∈G

‖aj‖22
‖AG‖2F

(θ
(t)
j − δj)

2
+ ≥

∑
j∈G

‖aj‖22
‖AG‖2F

(θ
(t)
j − δj)+

2

Using the observation that for any real numbers c, d, (c)+ +
(d)+ ≥ (c+ d)+ (and generalizing this to a sum of multiple
terms), the RHS above can be simplified (using (6)) as

∑
j∈G

‖aj‖22
‖AG‖2F

(θ
(t)
j − δj)+ ≥ (ψ(t) − δ∗)+.

The RHS is positive by assumption, and thus plugging the
above back into (7), we get:

∑
i∈[k]

∑
j∈G
|〈∇fj(x(t)

j ),ui〉|2 ≥
ε ‖AG‖2F (ψ(t) − δ∗)2

Λ
.

Thus, by averaging, there exists an index i that satisfies the
conclusion of the lemma. This completes the proof.

The next lemma bounds the progress after t steps of the
algorithm.

Lemma 8. Let ε < 1/2 be a given error parameter. The
number of iterations needed to achieve ψ(t) − δ∗ ≤ 2ε is
O
(
kΛ
ε2

)
.

Proof. Recall that ψ(t) and δ∗ only involve the good
columns. Define βt := ψ(t) − δ∗, and note that βt clearly
only reduces as t increases. We are done if βt ≤ 2ε, and
thus consider some t ≤ 8kΛ

ε2 and assume that βt > 2ε.

We claim that in the next O(kΛ/εβt) steps, the value of βt
reduces by a factor 2. To see this, suppose the contrary.

Now in each iteration, the algorithm finds some z with
‖z‖ = 1 such that the total leftover mass (over all the
columns) reduces by at least the bound given by Lemma 7.
This is because the algorithm finds z that maximizes∑

j〈∇fj(x
(t−1)
j ), z〉2, and by Lemma 4, this also quan-

tifies the total mass reduction. (Note that we have used
the fact that all the weights are ∈ [0, 1] when applying the
Lemma.) Thus, since βt′ ≥ βt/2 for all the time steps t′ we
are considering, the mass reduction is at least

ε ‖AG‖2F β2
t

4kΛ
≥
ε ‖A‖2F β2

t

8kΛ
,

where we used ε < 1/2 and Lemma 6. Thus if this continues
for 8kΛ/εβt steps, the total mass reduction (which includes
the reduction on bad columns) is ≥ βt ‖A‖2F . But since
βt > 2ε and at most ε ‖A‖2F of the mass is on the bad
columns, this contradicts our assumption that βt did not
reduce by a factor 2.

Thus, we have argued that as long as βt > 2ε, it takes
≤ 8kΛ/εβt steps for βt to reduce to βt/2. Since β0 ≤ 1,
we have that it takes ≤ 2j · 8kΛ

ε steps for βt to reduce from
2−j to 2−(j+1). Thus, as the geometric series converges to
twice the last term, we have that βt reduces to ≤ 2ε after
2
2ε ·

8kΛ
ε steps, completing the proof of the lemma.

We can now complete the proof of Theorem 1.

Proof of Theorem 1. Lemma 8 gives us that after O
(
kΛ
ε2

)
steps, we have ψ(t) − δ∗ ≤ 2ε. Combined with Lemma 6,
we have that the overall error in approximation is at most
2ε ‖AG‖2F + ε ‖A‖2F ≤ 3ε ‖A‖2F . This completes the proof
(after replacing ε by ε/3 throughout).

3. Low Rank Approximation with `p Error
The high level outline of our algorithm is similar to the `2
setting. However, we need the right target decomposition,
and need to set up the analysis carefully so as to make the
rank-one update at every step efficient.

3.1. Identifying a Target Decomposition

Let A be the matrix to be approximated and W the weight
matrix as before. We make the same assumption: L = UV T

is the target decomposition, and we have ‖L‖pFp
/ ‖A‖pFp

≤
Λ, for some parameter Λ.

Recall that the starting point in our analysis in the case of
`2 error was to decompose L as UV T using the SVD, so
that we have a U with orthonormal columns, and a V such
that ‖Lj‖ = ‖vj‖. Implicit here is the fact that the `2 norm
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is rotation invariant (using a different basis U maintains
the norm property). Unfortunately, this is not true in the
case of `p norms. A priori, it is not clear if there exists a
good decomposition that allows a property such as the above
for all the columns, nor is it clear what normalization one
should choose for the columns of U . E.g., should they have
‖·‖p = 1, or a different norm such as `2 or the dual of `p?

So our first step is to describe the target decomposition and
its properties.
Lemma 9. Let L ∈ Rd×n be any rank k matrix with k ≤
min{d, n}. Then there exists a decomposition L = UV T

into (d× k) and (k× n) matrices such that (a) the columns
of U satisfy ‖ui‖p = 1 for all i ∈ [p], (b) for all j ∈ [n],
the columns of V T satisfy ‖vj‖∞ ≤ ‖Lj‖p.

Proof. The proof uses the following simple observation
about rank k matrices.

Observation. Let M ∈ Rd×n be a rank k matrix. Then
there exist a subset S of k columns of M with the property
that all the other columns can be expressed as

∑
i∈S αiMi,

with |αi| ≤ 1 for all i.

The observation follows by an extremal argument, consider-
ing the k columns such that the volume of the associated par-
allelopiped is maximized. We refer the reader to Chierichetti
et al. (2017) (Lemma 2) for a proof. (The argument itself
is classic, and the property above is related to the notion
of an Auerbach basis in Banach spaces. See Taylor (1947);
Martini et al. (2001). One of the early applications of this
idea in the CS literature was in the work of Awerbuch &
Kleinberg (2004).)

For our lemma, we apply the observation above to the ma-
trix M whose columns are Mj =

Lj

‖Lj‖p
. Let the chosen

columns of M be denoted by the vectors ui, for i ∈ [k].
Then we have that all the other Mj can be expressed as∑

i αiui with |αi| ≤ 1, and thus the corresponding Lj can
be expressed using coefficients |αi| ≤ ‖Lj‖p. By construc-
tion, the ui have ‖·‖p = 1, which completes the proof of
the lemma.

The lemma allows us to use the framework from Section 2
to develop an iterative algorithm.

3.2. Single Vector Analysis

The first main step is to obtain analogs of Lemmas 4 and 5

Let w, a ∈ Rd, and define the function fw,p : Rd 7→ R as:

fw,p(v) =
∑
i∈[d]

wi|ai − vi|p, (8)

where wi, ai are the ith entries as before. Observe that the
function fw,p is convex (as it is a sum of convex functions).

The key to our proof is an appropriate smoothness property
for f , which we prove use the following lemma from Adil
et al. (2019).

Lemma 10 (Lemma 4.5 of Adil et al. (2019)). Let y ∈ R
and ∆ be any parameter. Then we have

|y + ∆|p ≤ |y|p + g∆ + 2pγp(|y|,∆),

where g is the derivative of |y|p, i.e., g = p|y|p−2y, and
γp is the function (originally introduced in Bubeck et al.
(2018)):

γp(t,∆) =

{
p
2 t
p−2∆2 if |∆| ≤ t,

|∆|p +
(
p
2 − 1

)
tp otherwise.

Using this lemma, we will be able to show the following
analog of Lemma 4.

Lemma 11. Let a, x, w be defined as above, and let u ∈
Rd be a vector such that |〈∇fw,p(x), u〉| ≥ γ ≥ 0 and∑
i wi|ui|p ≤ 1. Then there exists η such that for some

constant cp = Op(1),

fw,p(x− ηu) ≤ fw,p(x)− γ2

cp(fw,p(x))
p−2
p

.

The proof of the lemma relies on Lemma 10 and a careful
analysis. We thus defer it to the supplement. Our analysis
will also need an analog of Lemma 5 where fw is replaced
by fw,p. This is immediate because the proof only relies on
the convexity of fw, and thus also applies to fw,p.

3.3. Algorithm and Analysis

Similar to the `2 case, we define

fj,p(v) =
∑
r∈[d]

wj,r|aj,r − vr|p, (9)

where wj is the weight vector for the jth column and wj,r
denotes the rth coordinate of wj (similarly for aj).

Algorithm. The algorithm for the `p error case is precisely
the same as before, but instead of working with the functions
fj , we work with fj,p (when taking gradients). The main
change is in Step 5 of the algorithm, where instead of finding
a vector z that maximizes

∑
j〈∇fj(x

(t)
j ), z〉2 subject to

‖z‖ = 1 (which reduces to finding the top singular vector of
an appropriate matrix), we now need to solve the following:

max
∑
j

〈∇fj,p(x(t)
j ), z〉2

(fj,p(x
(t)
j ))

p−2
p

subject to ‖z‖p = 1. (10)

This can be re-written as finding a vector z that maximizes
‖Mz‖22 subject to ‖z‖p = 1, for an appropriate matrix M
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(which we can construct since we know x
(t)
j and f ). This

is exactly the problem of computing the so-called p 7→ 2
operator norm of the matrix M . The classic result of Nes-
terov (1998) shows that the problem admits a constant factor
approximation. More recently, the work Bhattiprolu et al.
(2019) obtains nearly tight factors for the problem. Both
these algorithms are based on a semidefinite programming
relaxation for approximating the operator norm, and cru-
cially rely on p ≥ 2 in their analysis. We summarize these
results as follows.

Theorem 12. (Nesterov, 1998; Bhattiprolu et al., 2019)
For any p ≥ 2, there exists an efficient (polynomial time)
algorithm for approximating the p 7→ 2 operator norm of
a matrix M to a factor only depending on p (which indeed
turns out to be O(

√
p) using the result of Steinberg (2005))

Specifically, the algorithm outputs a z with ‖z‖p = 1, such
that the objective value in (10) is Ω

(
1
p

)
times the optimum.

Our analysis once again involves quantities δj and θ
(t)
j ,

defined as follows:

δj =
fj,p(Lj)

‖aj‖pp
, θ

(t)
j =

fj,p(x
(t)
j )

‖aj‖pp
. (11)

We also define weighted averages as before:

δ∗ =

∑
j∈G ‖aj‖

p
p δj

‖AG‖pFp

, ψ(t) =

∑
j∈G ‖aj‖

p
p θ

(t)
j

‖AG‖pFp

. (12)

The following lemma shows that as long as ψ(t) − δ∗ is
large enough, the algorithm makes significant progress.

Lemma 13. Suppose that after the t’th iteration of the
algorithm we have ψ(t) > δ∗. Then there exists a unit
vector z such that

∑
j∈G

|〈∇fj,p(x(t)
j ), z〉|2

(fj,p(x
(t)
j ))

p−2
p

≥
ε2/p ‖AG‖pFp

(ψ(t) − δ∗)2

k2Λ2/p
.

Proof. The proof follows the structure of that of Lemma 7,
and will show that one of the ui satisfy the conclusion of
the lemma. Consider some good column j.

Our updates ensure that we can apply Lemma 5 (where
fj is replaced by fj,p). The value of Λ that we use in the
lemma statement is the following: every coefficient used
is ≤ ‖Lj‖p in magnitude, from Lemma 9. Since j is a

good column, this is at most
(

Λ
ε

)1/p ‖aj‖p. As there are
k terms, the sum of squared coefficients is bounded by
k ‖aj‖2p

(
Λ
ε

)2/p
. Plugging this in, and writing C =

(
Λ
ε

)2/p

for convenience, we obtain:

∑
i∈[k]

|〈∇fj,p(x(t)
j ),ui〉|2 ≥

(fj,p(x
(t)
j )− fj,p(Lj))2

+

kC ‖aj‖2p

=
‖aj‖2pp (θ

(t)
j − δj)2

+

kC ‖aj‖2p
. (13)

Thus, since fj,p(x
(t)
j ) = θ

(t)
j

∥∥∥a(t)
j

∥∥∥p
p

by definition, we have

(after plugging in above and simplifying the exponent of
‖aj‖p)

∑
i∈[k]

|〈∇fj,p(x(t)
j ),ui〉|2

(fj,p(x
(t)
j ))

p−2
p

≥
‖aj‖pp (θ

(t)
j − δj)2

+

kC(θ
(t)
j )

p−2
p

≥
‖aj‖pp (θ

(t)
j − δj)2

+

kC
.

The second inequality uses the fact that p ≥ 2 and θ(t)
j ∈

(0, 1]. Then, we can sum over the columns j ∈ G, and
mimicking the idea from the proof of Lemma 7 (this time
using ‖aj‖pp / ‖AG‖

p
F,p as the distribution), we get

∑
i∈[k]

∑
j∈G

|〈∇fj,p(x(t)
j ),ui〉|2

(fj,p(x
(t)
j ))

p−2
p

≥
‖AG‖pFp

(ψ(t) − δ∗)2

kC
.

Thus by averaging and plugging in the value of C, one of
the ui must satisfy the conclusion of the lemma.

Given this lemma, the proof of Theorem 2 follows as before.

Proof of Theorem 2. We first observe that an analog of
Lemma 8 also holds in the current setting, with two dif-
ferences. The first is the change from ε

kΛ to ε2/p

k2Λ2/p in the
coefficient for the improvement at each step. Secondly, we
only solve the p 7→ 2 norm problem approximately, and this
adds an additional factor of p to the bound. Thus, the num-
ber of steps needed for the βt to halve is now O

(
pk2Λ2/p

ε2/p

)
,

and thus reducing to 2ε requires number of steps equal to
the bound in the statement of the Theorem.

Finally, observing that the bound on the total mass of the bad
columns carries over to the `p case, the theorem follows.

3.4. Unconditional Result for Uniform Weights

We now show how to deduce Theorem 3 using Theorem 2.

Proof of Theorem 3. We only need to check that the matrix
achieving the optimal error (say L∗) satisfies the conditions
of Theorem 2. This is true because

‖L∗‖Fp
= ‖(L∗ −A) +A‖Fp

≤ ‖L∗ −A‖Fp
+ ‖A‖Fp

.
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Figure 1. Error of wlra-iter, svd, wsvd, rwlra-sk as k′ is increased.
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Figure 2. Error of wlra-iter, svd, wsvd, rwlra-sk as SNR is increased.

By definition, ‖L∗ −A‖Fp
= OPTk, which is ≤ ‖A‖Fp

.
This implies that the assumption holds with Λ = 2p.

4. Experiments
In this section we evaluate our algorithm (wlra-iter) for
weighted low rank approximation by comparing its perfor-
mance with three baselines: (a) applying SVD to the matrix
A (svd) (b) applying SVD to weighted matrix W ◦A (wsvd)
(c) regularized weighted low rank approximation algorithm
with sketching in Ban et al. (2019b) (rwlra-sk). In (c), we
use the alternating minimization based algorithm provided
in Ban et al. (2019b). We present experiments on synthetic
data below and defer other results to the supplement.

We conduct two sets of experiments. In the first set, we
vary the output rank k′ and show how the error changes
for each algorithm. In the second set, we demonstrate how
the error in each algorithm changes as the signal to noise
ratio (SNR) varies: the signal is a low rank matrix and we
add Gaussian noise to it. In each experiment, we measure
the scaled error (

∑
ijWij(Aij − Zij)2)/ ‖A‖2F where Z

is the solution output by each algorithm (we note that in
the experiments in Ban et al. (2019b), the objective value
is plotted instead of the error thus our experiments are not
comparable); we average results over 10 independent runs.

We first generate 500×5 dimensional matricesM1,M2 with
random orthonormal vectors as columns and a diagonal ma-
trix S with diagonal elements [1, 0.9, (0.9)2, (0.9)3, (0.9)4]

(normalized). Thus M = M1SM
T
2 is a rank 5 matrix with

‖M‖F = 1. In each experiment we create matrix A by
adding a noise matrix N with Nij ∼ N (0, σ2) to M . We
set the sketch size parameter in rwlra-sk to 100 in all experi-
ments. We generate weight matrices of 500×500 dimension
with the following configurations.

• W1: Each element is sampled from the interval [0, 1]
uniformly at random.

• W2: Elements corresponding to largest 50000 |Aij |s
are set to 0, and 1 elsewhere.

• W3: The random binary matrix is first chosen by set-
ting each entry to 1 with probability 0.1 and 0 other-
wise. Following this, the first 100 columns of first 150
rows are set to 1.

In a setting with random weights (W1), even simple base-
lines such as SVD achieve a small error as expected. How-
ever with semirandom weights (as in W3), SVD performs
much more poorly compared to a greedy approach.

In the first set of experiments, we plot the error
of each algorithm with output rank k′ in the list
(5, 10, 15, 20, 25, 30, 35, 40, 50, 60). Here we fix σ =
0.005 (thus SNR ≈ 0.16) and λ = 0.05 for weight matrix
setting W2 and λ = 0.01 for weight matrix settings W1,W3

in rwlra-wk. Figure 1 shows the error of each algorithm for
different weight matrices.

In the second set of experiments, we plot the error of each
algorithm as the SNR is increased from 0.0004 to 4. Here
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we fix k′ = 50 and λ = 0.005 for weight matrix setting W1

and λ = 0.01 for weight matrix settings W2,W3 in rwlra-
wk. We control SNR by changing σ appropriately. Figure 2
shows the error rates of each algorithm for different weight
matrices. The results show the greedy procedure achieving
small recovery error even in low SNR regimes.

In our supplement, we provide analogous results for four
other choices of weight matrices as well as two real datasets.
The full code is also provided.

5. Conclusion
We study a natural greedy algorithm for the weighted low
rank approximation problem and establish novel additive
error guarantees in `2 and `p norms for p > 2 under a new,
realistic, assumption on the target low rank matrix. Our
algorithm is easy to implement and works well in practice,
compared to natural baselines and previous approaches.
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