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Abstract

We consider the sample complexity of learning
with adversarial robustness. Most prior theoretical
results for this problem have considered a setting
where different classes in the data are close to-
gether or overlapping. We consider, in contrast,
the well-separated case where there exists a clas-
sifier with perfect accuracy and robustness, and
show that the sample complexity narrates an en-
tirely different story. Specifically, for linear clas-
sifiers, we show a large class of well-separated
distributions where the expected robust loss of any
algorithm is at least Q(%), whereas the max mar-
gin algorithm has expected standard loss O(2).
This shows a gap in the standard and robust losses
that cannot be obtained via prior techniques. Ad-
ditionally, we present an algorithm that, given
an instance where the robustness radius is much
smaller than the gap between the classes, gives a
solution with expected robust loss is O(L). This
shows that for very well-separated data, conver-
gence rates of O(%) are achievable, which is not
the case otherwise. Our results apply to robust-
ness measured in any £, norm with p > 1 (includ-

ing p = 00).

1. Introduction

Motivated by the use of machine learning in safety-critical
settings, adversarially robust classification has been of much
recent interest. Formally, the problem is as follows. A
learner is given training data drawn from an underlying
distribution D, a hypothesis class #, a robustness metric d,
and aradius r. The learner’s goal is to find a classifier h € ‘H
which has the lowest robust loss at radius r. The robust loss
of a classifier is the expected fraction of examples where
either f(z) # y or where there exists an z’ at distance
d(xz,2") < rsuchthat f(x) # f(«’). Robust classification
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thus aims to find a classifier that maximizes accuracy on
examples that are distance r or more from the decision
boundary, where distances are measured according to the
metric d.

In this work, we ask: how many samples are needed to learn
a classifier with low robust loss when 7 is the class of linear
classifiers, and d is an £,-metric? Prior work has provided
both upper (Yin et al., 2019; Dan et al., 2020) as well as
lower bounds (Schmidt et al., 2018; Dan et al., 2020) on
the sample complexity of the problem. However, almost
all look at settings where the data distribution itself is not
separated — data from different classes overlap or are close
together in space. In this case, the classifier that minimizes
robust loss is quite different from the one that minimizes
error, which often leads to strong sample complexity gaps.
Many real tasks where robust solutions are desired however
tend to involve well-separated data (Yang et al., 2020), and
hence it is instructive to look at what happens in these cases.

With this motivation, we consider in this work robust clas-
sification of data that is linearly r-separable. Specifically,
there exists a linear classifier which has zero robust loss
at robustness radius r. This case is thus the analog of the
realizable case for robust classification, and we consider
both upper and lower bounds in this setting.

For lower bounds, prior work (Cullina et al., 2018) shows
that both standard and robust linear classification have VC-
dimension O(d), and consequently have similar bounds on
the expected loss in the worst case. However, these results
do not apply to this setting since we are specifically consid-
ering well-separated data, which greatly restricts the set of
possible worst-case distributions. For our lower bound, we
provide a family of distributions that are linearly r-separable
and where the maximum margin classifier, given n indepen-
dent samples, has error O(1/n). In contrast, any algorithm
for finding the minimum robust loss classifier has robust
loss at least Q(d/n), where d is the data dimension. These
bounds hold for all £,-norms provided p > 1, including
p = 2 and p = oo. Unlike prior work, our bounds do not
rely on the difference in loss between the solutions with op-
timal robust loss and error, and hence cannot be obtained by
prior techniques. Instead, we introduce a new geometric con-
struction that exploits the fact that learning a classifier with
low robust loss when data is linearly r-separated requires
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seeing a certain number of samples close to the margin.

For upper bounds, prior work (Yin et al., 2019) provides
a bound on the Rademacher complexity of adversarially
robust learning, and show that it can be worse than the
standard Rademacher complexity by a factor of d'/9 for Ly-
norm robustness where 1/p+ 1/q = 1. Thus, an interesting
question is whether dimension-independent bounds, such as
those for the accuracy under large margin classification, can
be obtained for robust classification as well. Perhaps sur-
prisingly, we show that when data is really well-separated,
the answer is yes. Specifically, if the data distribution is
linearly r + ~y-separable, then there exists an algorithm that
will find a classifier with robust loss O(A? /42n) at radius
r where A is the diameter of the instance space. Observe
that much like the usual sample complexity results on SVM
and perceptron, this upper bound is independent of the data
dimension and depends only on the excess margin (over
r). This establishes that when data is really well-separated,
finding robust linear classifiers does not require a very large
number of samples.

While the main focus of this work is on linear classifiers,
we also show how to generalize our upper bounds to Kernel
Classification, where we find a similar dynamic with the
loss being governed by the excess margin in the embedded
kernel space. However, we defer a thorough investigation
of robust kernel classification as an avenue for future work.

Our results imply that while adversarially robust classifi-
cation may be more challenging than simply accurate clas-
sification when the classes overlap, the story is different
when data is well-separated. Specifically, when data is
linearly (exactly) r-separable, finding an r-separated solu-
tion to robust loss € may require §2(d/¢) samples for some
distribution families where finding an accurate solution is
easier. Thus in this case, there is a gap between the sample
complexities of robust and simply accurate solutions, and
this is true regardless of the £, norm in which robustness
is measured. In contrast, if data is even more separated —
linearly r + y-separable — then we can obtain a dimension-
independent upper bound on the sample complexity, much
like the sample complexity of SVMs and perceptron. Thus,
how separable the data is matters for adversarially robust
classification, and future works in the area should consider
separability while discussing the sample complexity

1.1. Related Work

There is a large body of work (Carlini & Wagner, 2017; Liu
et al., 2017; Papernot et al., 2017; 2016a; Szegedy et al.,
2014; Hein & Andriushchenko, 2017; Katz et al., 2017;
Papernot et al., 2016b; Raghunathan et al., 2018; Sinha et al.,
2018) empirically studying adversarial examples primarily
in the context of neural networks. Several works (Schmidt
et al., 2018; Raghunathan et al., 2020; Tsipras et al., 2019)

have empirically investigated trade-offs between robust and
standard classification.

On the theoretical side, this phenomenon has been studied
in both the parametric and non-parametric settings. On the
parametric side, several works (Khim & Loh, 2018; Attias
etal., 2019; Montasser et al., 2019; Yin et al., 2019; Ashtiani
et al., 2020) have focused on finding distribution agnostic
bounds of the sample complexity for robust classification.
In (Montasser et al., 2019), Srebro et. al. showed through
an example that the VC dimension of robust learning may
be much larger than standard or accurate learning indicating
that the sample complexity bounds may be higher. However,
their example did not apply to linear classifiers.

(Diakonikolas et al., 2020) considers learning linear clas-
sifiers robustly, but is primarily focused on computational
complexity as opposed to sample complexity.

In (Yin et al., 2019), Bartlett et. al. investigated the
Rademacher complexity of robustly learning linear clas-
sifiers as well as neural networks. They showed that in both
cases, the robust Rademacher complexity can be bounded
in terms of the dimension of the input space — thus indicat-
ing a possible gap between standard and robust learning.
However, as with the works considering VC dimension, this
work is fundamentally focused on upper bounds — they do
not show true lower bounds on data requirements.

Because of it’s simplicity and elegance, the case where the
data distribution is a mixture of Gaussians has been par-
ticularly well-studied. The first such work was (Schmidt
et al., 2018), in which Schmidt et. al. showed an Q(\/&)
gap between the standard and robust sample complexity for
a mixture of two Gaussians using the ¢, norm. This was
subsequently expanded upon in (Bhagoji et al., 2019), (Do-
briban et al., 2020) and (Dan et al., 2020). (Bhagoji et al.,
2019) introduces a notion of “optimal transport,” which
they subsequently apply to the Gaussian case, deriving a
closed form expression for the optimally robust linear clas-
sifier. Their results apply to any £, norm. (Dobriban et al.,
2020) applies expands upon (Schmidt et al., 2018) by con-
sider mixtures of three Gaussians in both the /5 and /.,
norms. Finally, (Dan et al., 2020) fully generalizes the re-
sults of (Schmidt et al., 2018) providing tight upper and
lower bounds on the standard and robust sample complexi-
ties of a mixture of two Gaussians, in any norm (including ¢,,
for p € [1, 00]). (Schmidt et al., 2018) and (Dan et al., 2020)
bear the most relevance with our work, and we consequently
carefully compare our results in section 3.1.

Another approach for lower and upper bounds on sample
complexities for linear classifiers can be found in (Cullina
et al., 2018), which examines the robust VC dimension of
learning linear classifiers. They show that the VC dimension
is d+1, just as it is in the standard case. This implies that the
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bounds in the robust case match the bounds in the standard
case and in particular shows a lower bound of Q(d/n) on
the expected loss of learning a robust linear classifier from
n samples.

While this result appears to match our lower bound, there
is a crucial distinction between the bounds. Our bound
implies that there exists some distribution with a large ¢
margin for which the expected robust loss must be Q(d/n).
On the other hand, standard results about learning linear
classifiers on large margin data implies that the expected
standard loss will be O(1/n) (when running the max-margin
algorithm). For this reason, our paper provides a case in the
well-separated setting in which learning linear classifiers is
provably more difficult (in terms of sample complexity) in
the robust setting than in the standard setting. By contrast,
(Cullina et al., 2018) does not show this. Their paper only
implies (through standard VC constructions) the existence
of some distribution that is difficult to learn, and the standard
PAC bounds cannot ensure that such a distribution also has
a large /5 margin.

In the non-parametric setting, there are several works which
contrast standard learning with robust learning. (Wang et al.,
2018) considers the nearest neighbors algorithm, and shows
how to adapt it for converging towards a robust classifier.
In (Yang et al., 2019), Yang et. al. propose the r-optimal
classifier, which is the robust analog of the Bayes optimal
classifier. Through several examples they show that it is
often a fundamentally different classifier - which can lead
to different convergence behavior in the standard and ro-
bust settings. (Bhattacharjee & Chaudhuri, 2020) unified
these approaches by specifying conditions under which non-
parametric algorithms can be adapted to converge towards
the r-optimal classifier, thus introducing r-consistency, the
robust analog of consistency.

2. Preliminaries

We consider binary classification over R? x {£1}. Our
metric of choice is the £, norm, where p > 1 (including
p = oo) is arbitrary. For x € R?, we will use ||z, to denote
the £, norm of z, and consequently will use ||z — y||, to
denote the /,, distance between x and y. We will also let £,
denote the dual norm to ¢, - that is, % + 1% =1.

We use B,(x,r) to denote the closed £, ball with center x
and radius r. For any S C R?, we let diam,(S) denote its
diameter: that is, diam,,(S) = sup, ,es || — yllp-

2.1. Standard and Robust Loss

In classical statistical learning, the goal is to learn an accu-
rate classifier, which is defined as follows:

Definition 1. Let D be a distribution over R x {+1}, and

let f € {£1Y*" be a classifier. Then the standard loss
of f over D, denoted L(f, D), is the fraction of examples
(z,y) ~ D for which f is not accurate. Thus

L(f,D) = Play)~olf(x) # yl.

Next, we define robustness, and the corresponding robust
loss.

Definition 2. A classifier f € {£1}*" is said to be robust
at x with radius v if f(x) = f(2') forall ' € By(z,r).
Definition 3. The robust loss of f over D, denoted
L.(f, D), is the fraction of examples (x,y) ~ D for which
f is either inaccurate at (x,y), or [ is not robust at (x,y)
with radius r. Observe that this occurs if and only if there
is some x' € By (x,r) such that f(z') # y. Thus

ﬁr(fa D) = P(;c,y)NDElx/ € B;D(xa 7“) S.1. f(.’t/) 7é y}

2.2. Expected Loss and Sample Complexity

The most common way to characterize the performance of
a learning algorithm is through an (¢, §) guarantee, which
computes €,, d,, such that an algorithm trained over n sam-
ples has loss at most ¢,, with probability at least 1 — §,,.

In this work, we use the simpler notion of expected loss,
which is defined as follows:

Definition 4. Let A be a learning algorithm and let D be
a distribution over R? x {£1}. For any S ~ D", we let
Ag denote the classifier learned by A from training data
S. Then the expected standard loss of A with respect to
D, denoted EL™ (A, D) where n is the number of training
samples, is defined as

EE“(A, D) =5 ]ESN'D" E(AS, D)

Similarly, we define the expected robust loss of A with re-
spect to D as

EL?(A,D) = Egupn L, (As, D).

Our main motivation for using this criteria is simplicity. Our
primary goal is to compare and contrast the performances of
algorithms in the standard and robust cases, and this contrast
clearest when the performances are summarized as a single
number (namely the expected loss) rather than an (e, §) pair.

Next, we address the notion of sample complexity. As above,
sample complexity is typically defined as the minimum
number of samples needed to guarantee (e, d) performance.
In this work, we will instead define it solely with respect to
€, the expected loss.

Definition 5. Let D be a distribution over R% x {£1} and
A be a learning algorithm. Then the standard sample com-
plexity of A with respect to D, denoted m®(A, D), is the
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minimum number of training samples needed such that A
has expected standard loss at most €. Formally,

m (A, D) = min({n: EL"(A, D) < €}).
Similarly, we can define the robust sample complexity as

ms(A, D) =min({n: EL"(A, D) < e}).

2.3. Linear classifiers

In this work, we consider linear classifiers, formally defined
as follows:

Definition 6. Let w € RY be a vector. Then the linear
classifier with parameters w € R and b € R over R% x +1,
denoted fy,, is defined as ,

fun(z) = {—i—l (w,z) > b

-1 (w,z)<b

Learning linear classifiers is well understood in the stan-
dard classification setting. We now consider the linearly
separable case, in which some linear classifier has perfect
accuracy. We will later define linear r-separability as the
robust analog of separability.

Definition 7. A distribution D over R? x Y is linearly

separable if its support can be partitioned into sets ST and
S~ such that:

1. S* and S~ correspond to the positively and negatively
labeled subsets of R%. In particular, Py, ,~plz € SY] = 1.

2. There exists a linear classifier, f 1, that has perfect
accuracy. That is, L( fup, D) = 0.

The standard sample complexity for linearly separable dis-
tributions can be characterized through their margin, which
is defined as follows.

Definition 8. Ler D be a linearly separable distribution
over R x {41}. Let St and S~ be as above. Then D
has margin ~ if v is the largest real number such that there
exists a linear classifier f,, , with the following properties:

1. fwp has perfect accuracy. That is, L(fyp, D) = 0.

2. Let Hyp, = {z : (z,w) = b} denote the decision
boundary of fup. Then for all x € (ST US™), z has (s
distance at least vy from H,, ;. That is,

inf - > .
zeSﬂJé‘I},zeHw,b ||x ZH2 =7

We let (D) denote the margin of D.

Observe that although we use a general norm, £,,, to measure
robustness, the margin is always measured in ¢5. This is

because the /5 norm plays a fundamental role in bounding
the number of samples needed to learn a linear classifier.

The basic idea is that when the ¢, margin is large relative
to the /5 diameter of the distribution, the max margin al-
gorithm requires fewer samples needed to learn a linear
classifier. In particular, the ratio between the ¢ margin and
the {5 diameter fully characterizes the standard sample com-
plexity of the max margin algorithm. To further simplify
our notation, we define this ratio as the aspect ratio.

Definition 9. Let D be a linearly separable distribution
over R x {£1}. Then the aspect ratio of D, p(D) is defined
as,

iama(STUS™
R

where diams(S™ U S™) denotes its diameter in the {5 norm.

We now have the following well-known result, which char-
acterizes the expected standard loss with the aspect ratio.
Theorem 10. (Chapter 10 in (Vapnik, 1998)) Let M de-
note the hard margin SVM algorithm. If D is a distribution
with aspect ratio p = p(D), then for any n > 0 we have
EgpnL(Mg,D) < O(%), where Mg denotes the classi-
fier learned by M from training data S.

We can also express this result in terms of standard sample
complexity.

Corollary 11. Ler M denote the hard margin SVM algo-
rithm. If D is a distribution with aspect ratio p = p(D),
then for any € > 0 we have m®(Mg, D) < O(é), where

Mg denotes the classifier learned by M from training data
S.

Theorem 10 and Corollary 11 will serve as a benchmark for
comparison with the robust sample complexity.

2.4. Linear r-separability

Finally, we introduce linear r-separability, which is the key
characteristic of distributions considered in this paper. This
can be thought of as the robust analog of linear separability.

Definition 12. For any r > 0, a distribution D over
Re x {£1} is linearly r-separable if there exists a linear
classifier fu, 1, such that L,.(fup, D) = 0.

This definition is the fundamental property considered in
this paper. Our goal is to understand the sample complexity
required for learning robust linear classifiers on linearly r-
separable distributions, and compare it with the standard
sample complexity given in Theorem 10.

3. Lower Bounds

In this section, we consider r-separated distributions whose
aspect ratio is constant. By Theorem 10, the standard sample
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complexity for learning them is independent of d. We will
show that in contrast, the robust sample complexity has
a linear dependence on d, and consequently establish a
substantial gap between the standard and robust cases.

We begin by defining the family of such distributions.

Definition 13. For any p,r, the set F, , is defined as the
set of all distributions D over R? x {41} such that D is
r-separated and has aspect ratio at most p.

‘We now state our main result.

Theorem 14. Let r > 0 and p > 20. Then the following
hold.

1. For every learning algorithm A, and any n > 0, there
exists D € F, , such that the expected robust loss
when A is trained on a sample of size n from D is at
least Q(%) Formally, there exists a constant ¢ > 0
such that Bgpn [L,(Ag, D)] > <.

— n

2. In contrast, by Theorem 10, for any D € F, p, the
max margin algorithm has expected standard loss

2

P

O(Z-), when trained on a sample of size n from D.

Formally, there exists a constant ¢ > 0 such that
’ 2
Egpn[L(As,D)] < cﬁ .

The condition p > 20 is required to rule out degenerate
cases. This is because for small values of p, the {5 diameter
of D is not much larger than the {5 margin of D. This forces
D to be mostly clustered around a line which leads to more
complicated behavior.

Observe that when p is a constant independent of d, the
expected standard loss is O(%) while the expected robust
loss is Q(%) Thus, the ratio between the expected robust
loss and the expected standard loss is €(d), leading to a
dimensional dependent gap between the robust and standard

cases.

We also note that these bounds hold regardless of which
¢, (p € (1,00]) norm is being used. This is because our
construction of D € F,. , for which the lower bound holds
is given in terms of the norm p. More generally, the family
Fr,p is implicitly defined with respect to p.

Furthermore, our lower bound differs from the lower bound
of Q(%) shown in prior work (Cullina et al., 2018) because
it specifically holds for F;. ,, a linearly r-separated family
of distributions with constant aspect ratio. Thus, while
(Cullina et al., 2018) has shown the existence of distributions
satisfying the first condition of Theorem 14, our result is the
first to exhibit a distribution satisfying both conditions.

Finally, we note that Theorem 14 can also be expressed
in terms of sample complexities. We include this in the
following corollary.

Corollary 15. Let r > 0 and p > 20. Then the following
hold.

1. For every learning algorithm A, and any € > 0, there
exists D € F,. , such that the robust sample complexity of
A with respect to D is at least QU(2). Formally, there exists
a constant ¢ > 0 such that m&.(A, D) > <4

2. In contrast, by Theorem 10, for any D € F, p, the
max margin algorithm has standard sample complexity

2
O(Z). Formally, there exists a constant ¢ > 0 such that
/2
me(A,D) < £,

3.1. Comparison with (Dan et al., 2020) and (Schmidt
et al., 2018)

The first work to provide a robust sample complexity lower
bound that applied to linear classifiers is (Schmidt et al.,
2018); they showed a gap of Q(v/d) between the robust
and accuracy loss for a specific mixture of two Gaussians.
This was later generalized to mixtures of any two Gaussians
by (Dan et al., 2020), who also established more general
lower bounds for any £, norm. Since (Dan et al., 2020) is
a strict generalization of (Schmidt et al., 2018), we next
explain how our lower bounds differ from (Dan et al., 2020),
and why their techniques do not lead to our results. We
begin by summarizing their results.

Summary of (Dan et al., 2020) (Dan et al., 2020) consid-
ers data distributions D that are parametrized by . € R and
Y e R¥Xd % w . D,, 5 is the mixture of two Gaussians,
N(u, 2) and N'(—p, ), with equal mass, where instances
drawn from N (p, X) are labeled as +, and instances drawn
from N (—p, X) are labeled as —. They consider robust-
ness measured in any normed metric in R?, including the
¢, norm for p € (1,00]. Although their bounds apply to
any classifier, this effectively deals with linear classifiers
since it can be shown that the optimally robust and accurate
classifiers are both linear.

For any distribution D, 5, let L,..;, denote the optimal ro-
bust loss of any classifier on D,, 5, and let L4 denote the
optimal standard loss. Then the bounds shown in (Dan et al.,
2020) can restated as follows (a detailed derivation from
(Dan et al., 2020) appears in Appendix A).

Theorem 16. (Dan et al., 2020)

1. For any learning algorithm A and any n > 0, there
exists some mixture of Gaussians, D, s such that the
expected excess robust loss is at least Q(Lmb%), when
A is trained on a sample of size n from D.

2. For any distribution D, s, it is possible to learn a
classifier with expected excess standard loss at most
d
O(Lstdﬁ>'
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3. By (1.) and (2.), the ratio between the expected ex-
cess loss and expected excess standard loss can be

expressed as ratio > éfjs ).

Observe that their bounds are given through excess losses,
which is the amount by which the loss exceeds to the optimal
loss. This is necessary because in their setting, the optimal
classifiers do not have 0 loss.

Comparison with our bounds Recall that in our work,
we are concerned with the linearly r-separated case, which
occurs precisely when the optimal robust and standard losses
both equal 0. However, from Theorem 16, we see that
although (Dan et al., 2020) proves a gap between standard
and robust sample complexity, this gap is predicated on
distributions for which the optimal robust loss, L,.; and
optimal standard loss, L4 differ. Furthermore, in the case
where they obtain a gap of Q(d), we see that this requires
% = (d) which is a substantial difference. By contrast,
our results characterize a gap exclusively in the case that
this does not occur.

Finally, in the limiting case where the Gaussians they con-
sider are sufficiently far apart, their data will begin to appear
linearly r-separated, meaning both L,.,;, and L4 are close
to 0. However, even in this case, it can be shown that the ra-
tio %js diverges towards infinity, meaning that their lower
bound characterizes a very different dynamic from ours.
Precise details on this comparison can be found in appendix
A.

3.2. Intuition behind Theorem 14

The proof idea for Theorem 14 can be summarized with
a simple example (Figure 1). In this example, we seek to
learn a linear classifier for a linearly r-separated distribution
in R?. The key idea is to contrast the necessary conditions
for learning a robust classifier, and the necessary conditions
for learning an accurate classifier.

Observe that the distribution is precisely linearly r-
separated, that is, it is not possible to achieve robustness for
radii larger than r. Because of this, there is a unique linear
classifier f,.,p that has perfect robustness. In order to learn
this classifier, we must see examples from ST U S~ that
are close to the “boundary” of ST U S~. In our figure, this
consists of points that are close to the dotted blue and red
lines. Moreover, it can be shown that the number of such
examples we must see is related to d, the dimension.

By contrast, any classifier that separates S* from S~ has
perfect accuracy (take for example fs;q shown in the fig-
ure). It is possible to exploit this by using margin based
algorithms for learning linear classifiers. In particular, we
no longer need to see points that are extremely close to the
boundary of St U S~.

Figure 1. An example of a linearly r-separated distribution, with
positively and negatively labeled examples in S™ and S~ respec-
tively. The optimally robust classifier, fro, is shown in purple,
while the (not necessarily unique) optimally accurate classifier,
fsta, is shown in green.

General Hypothesis Classes: We now briefly consider
how to extend our methods to other hypothesis classes. For
any hypothesis class H and distribution D let

Hpo={h:heH LHND) <a}
and let
Hp.o=1h:he€H,L.(h,D) < a}.

‘Hp.o can be thought of as the set of accurate classifiers
while Hp, , can be thought of as the set of astute classifiers.
By their definitions, it is clear that H, , € Hp, . However,
in the case when 7{ is the set of linear classifiers, we see
that for small «, ’HTD’a is a much “smaller” set than Hp .
By exploiting the geometric structure inherent to , we can
much more efficiently search for some h € Hp , than we
can in Hp, . This dynamic is the crux of our lower bound:
as we essentially show that there are far more critical points
(i.e. points near the decision boundary) that we must see for
learning Hp, , that aren’t required for Hp .

Thus, for our methods to extend to an arbitrary hypothesis
class, we would require a similar dynamic. We need two
properties to hold: (1) Hp, , must be a very strict subset
of Hp  for sufficiently small alpha. (2) We must have
some kind of exploitable geometric structure about 7{ which
allows us to exploit this gap. For the case of linear classifiers,
this was the £ measured aspect ratio, y(D).
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Algorithm 1 Adversarial-Perceptron
1: Input: S = {(xz1,v1),...,(Tn,yn)} ~ D",
2: w40
3: fort=1...ndo
4 z=argming . <, yi(w,2) {finds adv. ex.}
5 if (w,y;z) <0 {checks label} then
6.
7
8
9

w + w + y;z {perceptron update}
end if
: end for
: return fy, 0

Figure 2. An algorithm combining adversarial training with the
perceptron algorithm. For each (z;, y;), we first attack it, to get z.
If z is labeled incorrectly, we do a perceptron update using z.

Kernel Classifiers: A natural choice of a more general
hypothesis class would be Kernel Classifiers, which are
linear classifiers that operate in an embedded space, H. The
main difficulty in expanding our lower bound to this more
general setting comes from the behavior near the margin:
the effects of the robustness radius in the embedded space
are considerably less behaved than they are in the standard
linear case. Nevertheless, we leave this as an important
avenue for future work.

4. Upper Bounds

In the previous section, we showed that for any algorithm,
there is some distribution D € F,. , that is difficult (i.e. re-
quires high sample complexity) to learn robustly. A natural
follow-up question is: what about distributions for which
the margin, + is very large compared to r.

Observe that in Figure 1 the robustness radius r is very
close to the margin. In particular, we can find adversarial
examples from ST and S~ that are very close to the decision
boundary f,.,. By contrast, if v >> r, then this no longer
holds which suggests that better robust sample complexities
might be possible.

In this section, we will describe a subset of F;. , that can be
learned with expected loss O(+), thus matching the stan-
dard sample complexity up to a constant factor. To do so,
we will introduce a novel concept: the robust margin. The
basic intuition is that distributions for which the margin
greatly exceeds the robustness radius are precisely distri-
butions with a large robust margin. We use the following

notation.

Observe that if D is a linearly r-separated distribution, then
D must also be linearly separable. As earlier, let ST, 5~ C
R? denote the positively and negatively labeled examples

from D. We now define
57+ - USGS+BP(Sa T) and S; - USES*B;D(Sv T)' (D

It follows that the decision boundary of any linear classifier
with perfect robustness over D must separate S, and S, .
We now define the robust margin as a measurement of this
separation.

Definition 17. Let D be a linearly r-separable distribution
over R% x {&1}. Let St and S, be as above. Then D
has robust margin ~,. if 7y, is the largest real number such
that there exists a linear classifier f,, 1, with the following
properties:

1. fyup has perfect astuteness. That is, L(fup, D) = 0.

2. Let Hyp = {z : (z,w) = b} denote the decision
boundary of fu . Then for all z € (S;F U S;7), x has 2
distance at least -y from H,, ;. That is,
inf inf ||z —z||l2 > 7.
w€STUSy 2€Huw I e
We let +,.(D) denote the margin of D, and say that such a
distribution is r, v,-separated.

It is crucial to note that although adversarial perturbations
are measured in £, the robust margin is measured in 5. This
is because while the metric £, plays a role in constructing
B(z,r), it can be completely disregarded once the sets ST
and S, are considered, as any hyperplane separating S,
and S~ will have perfect robustness.

We now define the robust aspect ratio, which is the robust
analog of standard aspect ratio.

Definition 18. Let D be a distribution over R% x {+1}.
Then the robust aspect ratio of D, p,.(D) is defined as

diamo (ST U ST)
r D)= 5
pr(D) 7(D)

where as before, diams(S;" U S,") denotes its diameter in
the {5 norm.

We will now show that just as the aspect ratio, p(D), char-
acterized the sample complexity for standard classification,
the robust aspect ratio, p,.(D) will characterize the sam-
ple complexity for robust learning. To do so, we present a
perceptron-inspired algorithm (Algorithm 1) for learning a
robust classifier on r-separated data with robust aspect ratio

Pr

The basic idea behind Algorithm 1 is to combine the stan-
dard perceptron algorithm with adversarial training. In
particular, we iterate through the training set and do the
following on each point (refer to Algorithm 1 for precise
details).
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1. Find an adversarial example (z,y;) by attacking our
classifier, fi, 0, at (z;,y;) (line 4). This is a straightforward
convex optimization problem for linear classifiers.

2.1If fy,0(2) # vi, we update our weight vector with (z, y;)
by using the standard perceptron update (lines 5-6).

We have the following upper bound on the expected robust
loss of our algorithm.

Theorem 19. Let D be a distribution with robust aspect
ratio p,.(D). Then for any n > 0, we have

pr(D)?

Es~pr[£,(4s, D)) < 0P

),

where Ag denotes the classifier learned by Algorithm 1 from
training data S.

Observe that this expected loss is still larger than the ex-
pected standard loss in Theorem 10 as p,. (D) > p(D) for
any D. We also note that this result is not contradictory with
our lower bound; there exist distributions D € F,. , such
that +,.(D) = 0, and these are precisely the distributions for
which our lower bounds hold.

4.1. Generalization to Kernel Classifiers

Algorithm 1 can be thought of as the robust analog to the
perceptron algorithm. We now generalize this algorithm to
obtain a robust variant of the kernel perceptron algorithm.
We first briefly review kernel classifiers. A detailed expla-
nation of our generalized algorithm along with requisite
background material can be found in Appendix D

Definition 20. Let K : R? x R — R be a kernel similarity
function, T = {(x1,y1), - -, (T, Ym)} C RY x {&1} be
a set of labeled points, and o € R™ be a vector of m real
numbers. Then the kernel classifier with similarity function
K, parameters T, o, and denoted by [ ;. is defined as

K +1 Y1 K (z,x) >0
fT,a(x) = m .
-1 > oy K(xy,x) <0

Conceptually, kernel classifiers are linear classifiers operat-
ing in embedded space. With each kernel similarity function
K, there is a map ¢ : R¢ — H (where H is some Hilbert
space) such that K (z,2') = (¢(z), ¢(x’)). Thus we can
think of kernel classifiers as having a linear decision bound-
ary in H.

We now present an analog of Algorithm 1 that we call the
Adversarial Kernel-Perceptron. The essence of this algo-
rithm has not changed. For each (x¢, ;) in our training set,
we do the following.

1. Find an adversarial example (z,y;) by attacking our
classifier, f* . at (z;, y;) (line 4).

Algorithm 2 Adversarial-Kernel-Perceptron

1: Input: S = {(x1,v1), ..., (Tn,Yn)} ~ D™, Similarity
function, K
T+0, a0
fori=1...ndo
Z = argming,_, <, Yi fF o (2) {finds adv. ex.}
if fqli, o(2) < 0{checks label} then
T =TU{(z,v;)} {kern. percep. update}
o = (1,...71)‘T‘
end if
end for
return f:,{fa

R A A R ol

,_
=4

Figure 3. A kernel version of Algorithm 1. We replace the percep-
tron update step with a kernel-perceptron update step.

2. If f{{a (z) # y;, we update our weight vector with (z, y;)
by appending (z,y;) to T (lines 5-6). This corresponds to a
kernel-perceptron update that uses (z, y;) instead of (z;,y; ).

One challenging aspect of this algorithm is minimizing
f1.o(2). For linear classifiers, this has a closed form so-
lution that utilizes the dual norm. For arbitrary Kernel
classifiers, this is a somewhat more challenging problem.
However, we note that this can be solved using standard
optimization techniques, and in some cases (when K is
particularly simple), it can be solved with basic gradient
descent.

Finally, we show that this Algorithm has similar perfor-
mance to the linear case. Instead of using the robust aspect
ratio, p, (D), to bound the performance, we will require the
robust K -aspect ratio, which is the kernel analog of this
quantity. It can be thought of as the robust aspect ratio in
the embedded space H. Details about this quantity (along
with the proof of the theorem) can be found in Appendix D.

Theorem 21. Let D be a distribution with robust K -aspect
ratio pX (D). Then for any n > 0, we have
K D 2
Es~pn[L,(As, D)] < 0(%),
where Ag denotes the classifier learned by Algorithm 2 from
training data S.

This result indicates that for small values of p¥ (D), we can
achieve a very good robust sample complexity for kernel
classifiers. However, as the size of the perturbations ap-
proach this margin, this quantity goes to infinity. This phe-
nomenon mirrors the linearly separable case, and suggests
that a similar overall dynamic holds for kernel classification.
We leave finding a full generalization (including our lower
bound) for a direction in future work.
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A. Expanded summary of (Dan et al., 2020)

In this section, we derive the formulation of Theorem 16 directly from their results. In particular, their results are not stated
in terms of L, and L4, and are instead framed in terms of different parameters. To account for this, we first review these
alternative parameters, and then show how the statements in Theorem 16 can be

Recall, that (Dan et al., 2020) consider the setting in which the data distribution D,, 5; can be characterized as a pair of
Gaussians in R%, A/(y, ) and N'(—pu, X), that are symmetric about the origin with each of them representing one label
class. They consider robustness measured in any normed metric in R?, including the ¢, norm for p € [1, c0].

For any such distribution (and robustness radius r), they introduce parameters $,.op(pt, 2) and ss¢q (1, 2), which they refer
to as the robust and standard signal-to-noise ratios respectively, that are defined as follows:

Ssta(p, X) = 2/ pt Sy,

Srob (b, 2) :”rﬂln 2\/ —2)t%- —2),

where r represents the robustness radius and £, is the distance norm under which adversarial perturbations are measured.

They then show that these parameters fully characterize the sample complexity for robust and standard learning respectively.
They express this through the following results:

1. Let ® denote the cumulative density function of the standard normal distribution, and let ®(z:) = 1 — ®(x). Then for
any sz .

e the optimally accurate classifier has standard loss ® (3 sgza).

e the optimally robust classifier has robust loss ‘1>( Srob)-

2. For any learning algorithm, there exists some mixture of D, 5. such that the expected robust loss is at least
Qe= §+o(1))s7oy @ dy,
n

3. By contrast, for any distribution D,, 5, it is possible to learn a classifier with expected standard loss at most
O(sstde_ésitd%).

4. Thus, by (2.) and (3.), the gap between the robust sample complexity and the standard complexity can be bounded as

(A to(1))s2,, d

gap > ) (12"> ~ Q(e%(sitdisiob))'

e 85%wd
Sstd€” 87std

They then qualitatively analyze this gap, and observe that for large values of p and large values of r, this gap can be
arbitrarily large, even as a function of d, the dimension.

We now show how to convert (2.), (3.), and (4.) into the statements appearing in Theorem 16. As before, let us define L4
and L,y as the best possible standard and robust losses for D,, 5, respectively. In particular, by (1.), we have

—1
), and Lyop = ®(=s

— 1
LStd = (D(*S 2 g‘ob)'

2
2 std
We now express the bounds in (2.) and (4.) in terms of L4 and L,..;. To do so, we use the well known inequality bounding
O(x) as
Q X 2/2 @ O e—x2/2
- < <
(g™ < @l@) < 0(—

Substituting this into (2.) through (4.) imply the following, alternative forms.

).

2. For any learning algorithm, there exists some mixture of Gaussians, D,, s such that the expected robust loss is at least
Q(L'robé>-
n
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3. For any distribution D,, y, it is possible to learn a classifier with expected standard loss at most O(Lstd%).
4. By (2.) and (3.), the gap between robust sample complexity and standard sample complexity can be expressed as

Lrob)

gapZQ(Ltd .

Together, these three statements comprise Theorem 16.

A.1. The limiting case
While a core difference between our works is that we consider separated distributions whereas Gaussians are non-separated,
we now consider the limiting case in which a pair of Gaussians appear separated. To do this, we will consider a case

in which L, is small, and n ~ O(ﬁ) In this case, with high probability, a sample of size n will appear linearly

r-separated. Examining the bound in f)?irt 1 of Theorem 16, we see that their lower bound on the expected robust loss

reduces to O(%%) = O(%), which is significantly weaker than ours (Theorem 14). Thus, considering Gaussians that

appear linearly r-separated does not generalize to the general, linearly r-separated case.

B. Proof of Theorem 14

We begin by broadly outlining our proof of Theorem 14. Let II be a probability distribution over 7. ,, and let A be a
learning algorithm that returns a linear classifier.

1. Sample D ~ II.

2. Sample S ~ D".

3. Learn the classifier Ag using algorithm A and training sample .S.

4. Evaluate Ag on D. That is, compute £,.(Ag, D).
The basic idea of our proof is to show that for an appropriate choice of II, the overall expected loss of this procedure,
L,.(Ag, D), satisfies

Ep-nlEsor (£, (45, D)) > %),
Our primary method for doing this is switching expectations. In particular, observe that
Ep~n[Es~pn[L;(As, D)]] = Es~s[Epams[Lr(As, D],

where ¥ denotes the distribution over all S obtained from first sampling D ~ II and then sampling S ~ D", and I1|S
denotes the posterior distribution of D after observing .S. It then suffices to bound the quantity Ep .1 s[£,(As, D)], which
is a significantly more tractable problem since we no longer need to deal with any specifics of the Algorithm A. In particular,
S is fixed in this expectation and consequently Ag is just a fixed linear classifier. This bound subsequently follows from the
distribution IT|.S having enough “variation” for this expectation to be sufficient large.

Our proof will have the following main steps, each of which is given its own subsection.

1. In section B.1, we construct the distribution I, and prove several important properties about it.

2. In section B.2, we show that the desired property of IT holds, by bounding Ep i s[£r(As, D)].

B.1. Constructing 1T

We let 7 be a fixed robustness radius, and ¢, be our norm with which we measure robustness. Our construction of II is a
somewhat technical and lengthy process. We will organize this construction into 4 subsections, outlined here:
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e In section B.1.1, we define the distribution D,, characterized by parameter a € [0,1]%. This forms the basis for
constructing II, which will comprise of distributions D, for certain choices of a. We also show that D, is linearly
r-separated.

e In section B.1.2, we define the constant A, which will be essential for specifying which values of parameter a are
permissible.

e In section B.1.3, we define functions g1, g» : [0, %] — [0, %] that will be used to construct IT.
e In section B.1.4, we finally put together the previous 3 sections and construct II. We also show that any D, ~ II
satisfies p(D,) < C.
B.1.1. DEFINING D,

. v .
Let eq, e, . . ., eq denote the standard normal basis in R%. Define v; = Re; and u = % Zf e;, where R = %. It will

also be convenient to define the following function, which we will frequently use throughout the entirety of the appendix.
Definition 22. For 1 <1< o, let f; : [0,1]¢ — RT be the function defined as

d
1
fila) = |—= +a— a4,
: 21: v

_ d . oo [xd
where @ = % 37 a;. For | = oo, we take the convention that X/ > { |#;|* = maxi<i<q | ;.

To define D,,, we first define the concept of a line segment in RY.

Definition 23. Let x1, x5 € R? be two points. A line segment joining 1, x5 is defined as one of the following four sets.

o (r1,29) ={te1 +(1—t)z;: 0 <t <1}
o [r1,20) = {ta1 + (1

—t)x: 0 <t <1}
—t)xy 1 0 <t <1}

(
o (z1,z2] ={tz1 + (1
(

o [z, mo] ={tx1 + (1 —t)ay : 0 <t < 1}.

We will always distinguish which set we mean by using the notation above. In all cases, x1,xo are said to be the endpoints
of the line segment.

‘We now define D,,.

Definition 24. Let a € [0,1]" be a vector, and leta = % Z‘li a;. Set g = % fq(a), where q is the dual norm of p. Assume
that for all 1 < i < d, a; > A, (i.e. we only D, for a for which this holds). Let S~ and S™ be two sets of d disjoint line
segments (as defined in Definition 23) defined as

ST = {[vi,vi + (a; — No)u) : 1 < i < d},

S+ = {(’UZ + (al- +)\a)u,vi +u] 01 S ) § d}

Then D, is defined as the probability distribution of random variables (X,Y") where
o X is chosen by the following random procedure. First, sample an arbitrary segment from ST U S~ with each segment
chosen with probability proportional to its U length. Next, X is selected from the uniform distribution over the chosen

line segment. In particular, the probability that X lies on any interval on any line segment contained within ST U S~
is directly proportional to the length of the interval.

e Vis—1ifX eUS and+1if X € UST.



Sample Complexity of Robust Linear Classification on Separated Data

. Vg + U

A
*
A
.
*
Al
*
*

b (a2 — AJun, V2t (@2 AdJu

“ v+ u

Figure 4. An illustration of D, in two dimensions. S~ is shown in red, and S* is shown in blue. The decision boundary, H,, of the
optimal linear classifier, fa 1, is shown in purple.

We include an example of such a distribution in Figure 4. Next, we explicitly compute a linear classifier that linearly
r-separates D,.

Definition 25. Let a € [0,1]%, and leta = E?:l a;. Then let w® be defined as

wa_l_ dai
‘ R RVd+dRa

Lemma 26. w® satisfies (w®, u) = \/Eida and (W, v; +a;u) =1, forall 1 <i <d.
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Proof. By the definitions of v;, u, we have that
d
>
1
— 1 R a
- R
1

S&‘

N

izl_i
Vd Vid +da
Vd + da — da;
\fz Vd + da
1 a/d d
T VdVd+da Vd+da

Which proves the first claim. Next, we also have that (w®, v;) = Rw{. Summing these, we get

Rwa—i-&:l— dai + dai -1
" Vd+da Vd+da Vd+da

as desired. O

We now prove that D, is linearly r-separated.

Lemma 27. D, is linearly r-separated by the classifier f,,, 1.

Proof. Let H, denote the hyperplane passing through {v; + a,u : 1 <1 < d}. By Lemma 26, H, is the decision boundary
of fu, 1. Referring to Figure 4, we see that US™ lies entirely above H, while the set US™ lies entirely below the hyperplane
H,, which the classifier f,,. ; has accuracy 1 with respect to D,. It suffices to show that f,,« ; is robust everywhere. In
order to do this, we must show that all points in the support of D, have ¢,, distance at least r from H,,.

Fix any 1 < ¢ < d. Since the ¢, distance metric is invariant under translation and scales linearly with dilations, it follows
that the point z; = v; + (a; — Ag)u is the closest point on the segment [v;, v; + (a; — A\, )u) to H,. Suppose x; has distance
D under the ¢, norm to H,. Then the key observation is that the ¢, ball, By,(xz;, D), must be tangent to H,,. Expressing this
as an equation, we have max.ep, (2, D) (z,w*) = 1, which can be re-written as

a —z;,w*) =1— (z;,w?).
o e~ @) o w)

By Lemma 26 , (w®, u) = \/Eida and (w?, v; + a;u) = 1. Substituting this, we see that

1— (z;,w*) =1— (v; + a;u — Agu,w?)
=1— (v; + qu, w*) + (Au, w*)
= (Agu, w")
_d)
C Vd+da
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However, by using the dual norm, we see that max;|._,,||,<p{(z — i, w?*) = D||w*||,. Thus it follows that

d)\,
(Vd + da)|[we]],
d% fo(a)
(Vd + da)|[w]],
ARyl a-ail
C (Vd+da)ljwe]

d |1 Vd+da—da;
a — Yoo (g
{20 m Vi |

We can use an analogous argument holds for v; + (a; + r4)u, the closest point to H, in S*. Thus each point in the support
of D® has distance strictly larger than r (as the endpoints were not included) to H,. Consequently f,. 1 linearly r-separates
D%, as desired. O

B.1.2. DEFINING A

Now that we have defined D,, we turn our attention to defining II, which requires us to specify a distribution over valid
choices of a. In particular, although D, is defined for a € [0, 1}d, we will require a more stringent condition on a for our
construction to work. To this end, we begin by defining A, a key parameter that characterizes the domain of a. To define A,
we use the following lemma.

Lemma 28. There exists a real number A > 0 such that for all l € {2, q}, and for all a € [% — A, % + A4,

1
IV fi(a)ll2 < N

where f is as defined in Definition 22.

Proof. Since 1 < ¢ < oo, we see that for both choices of /, the function h;(z) = (% — 2)! is a convex function for

x € [—ﬁ7 2—\1/3] Thus, if Z‘f x; = 0, then by Je;sen’s inequality, Z‘f hi(zi) > Z‘f hi(0). Applying this, we see that for
]

allle{lg}andforallae[%—4%/8,%—1— ,

1
4vd

1

fi(a) 12\74-5—%\[
d
2

1
l
( Jraai)

d

hy (ai — a)

QU

=

Sl-

W
-]=
S
=
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with the first equality holding since @ — a; < % and the first inequality holding since Zf a; —a = 0. Thus f;(a) must be

Lo %) and it follows that

locally minimized when a = (3, 3, -

11 1
— =, = =0, forl =2,q.
val(272a 72)”2 , Ior » q

Now observe that the map H (a) = max;c(2 43 ||V fi(a)||2 is a continuous map as long as |a; — a| < % forall 1 <4 <d.

Thus there exists an open neighborhood U about (3, 1,. .., 3) such that H(a) < dzl\/g for all a € U. Taking A so that

[1 — A, 1+ A]? C U suffices. O

Definition 29. Let A be any constant for which Lemma 28 holds. In particular, /A only depends on £y, the robustness norm,
and d, the dimension.

B.1.3. DEFINING g; AND go

In this section, we define functions g1, gs : [0, %} — [0, %] which we will use to specify I1. Before defining ¢g; and go, we
will first prove several technical lemmas.

Lemma 30. Let I C R be an interval, and ® : I — R be a strictly convex function. For any s € Rand t > 0, let
D (t) = P(s —t) + P(s+t). Then Dy is a strictly increasing function.

Proof. Fix s, and let 0 < ¢; < to. Then we see that by Jensen’s inequality (for strictly convex functions),

(tg 7t1)¢(5+t2) 2151(1)(57151)

P(s+1t1) <
(s+t) t + b t + b

and

to —1t1)P(s—t 2t ® t
<I>(s—t1)<(2 Ve(s—1t2)  21P(s+t1)
1+t 1+t
Summing these inequalities, we see that

q)s(tl) = cI)(S — tl) + (I)(S + tl)
< (tg —tl)q)(S-i-tz) 2t1‘b(8—t1) (tg —t1)<1>(s—t2) 2t1¢)(5+t1)
t1 + 1o t1 + 1o t1 + 1o t1 +to

ta —t1 2ty
= O(s+t2) + P(s —t2)) + P(s—t1) +P(s+1
g, Dt t) + B(s — o)) + 7 (B(s — 1) + B(s + 1))
to —t1 2t
= P, (t2) + Dy (t1).
g, )t 0s(h)
Rearranging this yields ®,(t1) < ®(t2), as desired. O

Lemma 31. Let I C R be an interval, ® : I — R be a strictly convex continuous function, and x,y, z € I be real numbers
withx <y < z. Let € > 0 be such that x — € € I and y + € < z — €. Then there exist unique 6,7y > 0 such that the
following hold:

d+v=c¢,

Pz —0)+Ply+e)+P(z—7) =2(x)+ P(y) + (2)

Proof. Fix any e satisfying the desired conditions, and define © : [0,¢] = Ras O(t) = ®(x — )+ P(y +¢€) + P(z +t —¢).
Then, utilizing the definition of ®, from Lemma 30, we see that

Z—X —€

> +1t)+O(y +e).

@(t) = @%(
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By Lemma 30, it follows that © is strictly increasing in ¢, and since ® is continuous, so is ©. Next, we bound ©(0) and
O (e) to put us in the configuration to apply the intermediate value theorem. To bound ©(0), we have

00)=2(z)+P(y+e€)+P(z—¢)
_ <I>(x)+<1>%('z;y s
(=9

< ®(x) Oy
=®(z) + (y) + (2),
and to bound ©(¢), we have
Oe) =P(x —€) + O(y +€) + P(2)
- ¢$(% +6)+ B(2)
y—x

> Cb%( )+ ®(2)
=d(x) + P(y) + O(2).

Together, these equations imply ©(0) < ®(x) + ®(y) + ®(z) < O(e). Since O is strictly increasing and continuous, there
exists a unique § € [0, €] such that ©(6) = ®(x) + P(y) + P(z). Setting v = € — J, we see that

O)=0(z—0)+P(y+e)+P(z—7)=2(z)+P(y) + D(2),

as desired.

Next, we define a function that will be useful for simplifying notation, both in this section and subsequent ones.
Definition 32. Let A be as in definition 29. For z,y, z € [0, %}, let

P = () + (-2 ) + (2

Corollary 33. Let A be as in definition 29. There exist 1-Lipshitz, monotonically non-decreasing functions g1, g : [0, %] —
[0, %] such that for all t € [0, %] q1(t) + g2(t) = tand F(t,g1(t), g2(t)) = F(0,0,0).

We now define g1, go.

Proof. We have two cases.

Casel: 1 < g<oo: Let®:[-A,A] — R be defined as ®(z) = (% —x)?. Since ¢ > 1, and A < %’ ® is strictly
convex. Observe that A A
Fla,y,2)1 = B(2) + D@5 —y) + 8(-25 — 2).

Next, fix any ¢ € [0, %] Then observe that —% > —A and that % —t > 0+ t. This puts us in the configuration to apply
Lemma 31. In particular, there exist unique reals d;,y; > 0 such that

o+ =t,
(22 5+ o) + o2~ = o= 22) e + o 2),

We now define g1, g2 : [0, %] — [0, 5] as
91(t) = 7 and ga(t) = 6.
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Then it is clear that F'(0,0,0) = F'(t, g1(t), g2(t)) and g1 (¢) + g=(¢) (by directly substituting into the equations above). All
that remains is to show that g; and g are 1-Lipschitz.

Fixany 0 <t <ty < %, and let {9 — t; = €. The key idea is to apply Lemma 31 to —% —ga(th) <t1 < % —aq1(t1)
and e. To do so, we first check the conditions of the lemma.

We have that
2A (1) S 2A ; 2A > A
- = —€e>—— -t —€e=—— — —
3 g2(l1 =z 3 1 3 2 Z )

and

IN
I
Q
—
—
~
-
~
|
(@)

Thus e satisfies the necessary conditions for Lemma 31. Since @ is strictly convex, by Lemma 31, there exist unique 9,y > 0
with § 4+ v = € such that

2A 2A 2A 2A
‘1’(—? —g2(t1) = 6) + @(t1 +¢) + ‘I’(? —gi1(t) =) = ‘I’(—? —go(t1)) + @(t1) + ‘D(? —g1(t1))-
However, by the definition of g1, go, we see that both of these quantities are equal to F'(0, 0,0)9. Moreover, again by the
definition of g1, g2, we also have that g; (o) and g2 (t2) are the unique real numbers in [0, % that satisfy

2A 2A
‘I)(—? — 92(t2)) + ®(t2) + ‘b(? + 91(t2)) = F'(0,0,0)%.
Thus, it follows that go(t2) = g2(t1) + ¢ and g1 (t2) = g1(t1) + . However, to — t; = ¢, and 0,7 < € (since they sum
to €). Thus, we see that |g1(t2) — g1(t1)| < |[t2 — t1] and |g2(t2) — g2(t1)| < |t2 — t1|. Since t; and to were arbitrary, it
follows that g; and g» are both 1-Lipschitz, as desired.

Finally, since 0,7 > 0, it follows that go(t2) > g2(t1) and g1 (t2) > g1(¢1). Since t1, t2 were arbitrary, it follows that g1, g2

are monotonically non-decreasing.

Case2: g =1 Inthiscase, since A < ﬁ (Lemma 28), we see that F'(x,y, z) = %—#y—#z—x. Setting g1 (t) = go2(t) =
suffices, and clearly satisfies the desired properties.

[ i

Definition 34. Ler A be as defined in Definition 29. We let g1, g2 : [0, %} — [0, %} be defined as any function satisfying
the conditions of Corollary 33.

B.1.4. PUTTING IT ALL TOGETHER: DEFINING II

We are now ready to define II. For convenience, we assume d is a multiple of 3.

Definition 35. Let A, g1, and g be as defined in Definitions 29 and 34. Then 11 is defined as the distribution of distributions
D, where a is a random vector constructed as follows. Let t1,ta, .. .15/3 be drawn i.i.d from the uniform distribution over
[0, 2. Then for 1 < i < d/3, we let

® a; = +tz

INIE

© Giriz=3+25 —qits)

© iioqz =3 —25 — ga(ts).
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Together the variables a1, as, . .. ,aq compose a. Thus a random distribution D ~ 11 can be constructed by sampling a as
above and setting D = D,

We now show that for all D, ~ II, A\, (Definition 24) is constant.
Lemma 36. There exists a constant A\ such that for all D, ~ 11, \, = A.

Proof. Let D, ~ Il be arbitrary. By Lemma 33, forall 1 < i < d, ¢1(¢;) + g2(t;) = t;. Substituting this, we see that

1
/3
1 1 1 2A 1 2A
=3 21:(5 +t;) + (5 + ENE g1(ti)) (5 3 g2(ti))
/3

Recall that A\, = % f,(a) = & {’/Zil |% +@ — a;]%. By substituting that @ =  and expressing each a; in terms of ¢;, we
see that

d
r 1
)\a:—q _ a — ’iq
R Zl |\/E+a ail
_iqd/s i+1_(1+t.)q+ i_kl_ 1_’_%_ (t) q_|_ L_Ar_l_ 1_%_ (t) !
B d d d
R\ &|va 2 27" T[ate 2" 3 T Ja 2 \2 3 Tl
d/3 q q q
r 1 1 2A 1 2A
:—"§ — =ty = git) = = +|—=+go(t;) + =
R\ 4| Vi ’m 92t =3 ‘\/892() 3
., d/3
=—y Fti7 tia t’L 4,
R 21 (91()92( ))

where F is defined as in Definition 32. Next, by Corollary 33, F'(t;, g1(t;), 92(t:)) = F(0,0,0) forall 1 <4 < %. Thus, if
we set A = % (4)/9F(0,0,0), we have

/3

g ZF(ti,m(ti)agz(ti))q

==

I
=l =
o
=
=
e

d
{3 F(0.0,00

(

proving the claim. O

)Y1F(0,0,0) = A,

|
= ol
wla

Definition 37. We define A = %(4)1/9F(0,0,0), where F is defined as in Definition 32.
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Next, we compute upper and lower bounds on A, both of which will be useful for subsequent lemmas.

Lemma38. § <A < 1.

Proof. By definition, A = dl/q F(0,0,0).  Substituting the definition of f, we see that F(0,0,0) =
\/'f' + |— — 280 4 |f + QA\‘I and consequently,

2A 1 2A

319 — — =—=| < F(0,0,0) < 39— + =—|.

By definition, 28 < 7 It follows that

r d/4 r 3d1/4

——= <A< s ——.

R2yd R 2Vd
Finally, since + = 92;1@ , substituting this ylelds s <A< %, as desired. O

Next, we show that for all D,, € I, the aspect ratio (Definition 9), p(D,,), is bounded by a constant.
Lemma 39. For all D, € T, we have p(D,) < 18v/3.

Proof. We first bound the /5 margin, (D, ) (Definition 8). Recall that the margin, v(D,,) is described as the largest possible
¢4 distance from the support of D, to the decision boundary of a linear classifier. Thus, we can lower bound v(D,) by
computing the distance from the support of D, to H,, the decision boundary of f,,« ; (Definition 25).

By referring to Figure 4 (in Section B.1.1), it becomes clear that the closest point (under the ¢ margin) from S~ to H, is
the point v; + (a; — A, )u, for some value of i. Thus it suffices to compute the ¢5 distance from this point to the plane H,,.

Recall that by Lemma 26, the point v; 4 a;u satisfies (w®, v; + a;u) = 1, and consequently must lie on the hyperplane H,,.
Let D denote the ¢5 distance from v; 4+ (a; — Ay)u to H,. Since w® is the normal vector to H,, it follows that

w(l

D = <’U1‘ —+ a;u — (Ui + (ai - )\a)u)a >

[[we|[2
~ (Aqu,w®)
[[w®||2
o (Au,w®)
— lwrl

d
@ A\/E+da
IIw“||2

® f d+da

2
Vd+da— Vd+da—da;
\/Zl R(f+da )

¢2 a;)?

Here, (1) holds by Lemma 36, (2) holds by Lemma 26, (3) holds by Definition 25, and (4) holds by Definition 22.

Next, observe that since D, ~ II, we must have a € [1 — A 3 + A]?. Thus it follows that Ha - (4.3, <AV
However, by applying Lemma 28, we also see that f5 is f L1psch1tz over [ —AL 5+ A]?. Thus, it follows that

fa(a) < fz(% ; )—&-A\fT <
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with the latter inequality holding from the definition of A.

Substituting this and applying Lemma 38, we see that

RA R
Do) > — > —.
V(Pa) 2 5= = 335
Next, to bound the aspect ratio, p(D,, ), we must also bound the ¢, diameter of D,. However, the ¢; diameter of D, is RV3,
since it is the distance from v; + u to v; for ¢ # j. Thus, it follows that

_ diama(Dy) RV3 B
PP == < Ryis ~ Y3

as desired. O

Note that a tighter analysis (and selection of A) can give a smaller bound for p(D,,), but the most important fact is that
p(Da) = O(1).
B.2. Bounding the expected robust loss

In this section, we finally prove our lower bound, Theorem 14. This will require a few important steps, which we have
separated into the following subsections.

e In section B.2.1, we give a useful lower bound for the loss £,.(f, D,) where f is an arbitrary linear classifier.

e In section B.2.2, we give an explicit computation for the posterior distribution II|.S where S ~ D! is the observed
training sample.

e Finally, in section B.2.3, we present the proof of Theorem 14.

B.2.1. BOUNDING THE LOSS L, (f,D,)

In this section, we find a lower bound on the loss L,.(f, D,) where f is a linear classifier. We begin by first restricting f to
be in the set of classifiers

f€{fura 1 be[0,1)%),

where w” is as defined in Definition 25. These are precisely the classifiers that have a decision boundary that passes through
some point on every line segment in {[v;, v; + u] : 1 <14 < d}. We are able to only consider these classifiers since all other
linear classifiers clearly have a very high loss with respect to D, as they necessarily misclassify at least half the points on
the line segment [v;, v; + u| for some value of i.

b

We now find an initial lower bound on L, ( f, 1, Da)-

Lemma 40. Fix any D, € 11, and let b € [0,1]? be arbitrary. Let w® be the vector defined as in Definition 25, and
Ao = & fq(b) where f is as defined in Definition 22. Then

AN — Aa) + 2% ai — bi

b ) =
£'r‘(fw ,13D)— d — 2dA

Proof. By Lemma 27, f, 1 precisely r-separates Dy,. This implies that for all 1 <i <d,

1 x € (v; + (b + \p)u, v; + u}
fwb_yl(fﬂ) =< —1 T € [Ui,’Ui + (bi - )\b)u)
notrobust x € [v; + (b; — Ap)u, v; + (b; + Ap)u]

Without loss of generality, suppose that b; > a;. The key observation is that forall 1 < i < d, if x € [v; + (a; + \o)u, v; +
(bs + Ap)ul, then f,1 1 () = —1 for f,u ; is not robust at . In both cases, we see that f, ; is either inaccurate or not
robust for all points in [v; + (a; + Ag)u, v; + (b; + Ap)ul.
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This interval has /5 length at least (Ja; — b;| + (As — Aa))||u||2. Note that in the case that a; < b; we can get an
identical expression. Thus, combining this for all i, we see that f,,» ; is either inaccurate or not robust for a total length of

[d(X\s — Aa) + 327 |a; — bs]]||u]]2. Dividing by the total length of the support of D,, we find that
d
S [ = Aa) + 375 |ai = ball[[ul]2
~ S i v 4 (a5 = Aa)u) + (vi + (i + Aa)u, vi + 1|2
d
_ [dOw = Aa) £ 575 lai — bill[[ull2
= d
221 [[uzl[(1=2X4)
A = Xa) + 3 las — bil

Er(fw”,la Da)

d(1—2X,)
_d( = Aa) + i Jas — bl
d — 2dA ’
with the last equality holding since by Lemma 36, A\, = A. O

Lemma 41. Forall D, € Wand b € [0,1]% d(A, — Ny) < 2 327 |a; — bi.
Proof. We have two cases.
Casel: be[;—A 5 +A%

Observe that \, = 5 f,(b) and Ay = % fy(a). By Lemma 28, we see that f, is d%\/a-Lipschitz over the domain
[1 — A, 1+ A) It follows that

No =X = 5 (fala) = f4(0))

< Zla - blly—

[

>~ R 2d2\/a
2v/d 1

= lla — b||2
9d1/a d2v/d
lla — b||;

ST g

with the last inequality following since the /5 norm is smaller than the #; norm. Rearranging this gives the statement of the
Lemma as desired.
Case2: b¢[;—A L+AL

The main idea in this case will be to find ' € [§ — A, 3 + A]? such that A\, > Ay and such that ||b' — a||; < ||b— a|1. We
will then apply Case 1 to get the desired result.

Without loss of generality, assume that by > by > - -+ > by, and that by, by, ... bg > % + A, bgy1,...,0 € [% — A, % + A],
and by41,...bq < % — A for some values of k£ and [.

We will construct & in four steps. In each of these steps, we will change the values of b; such that neither ||a — b||; nor A,
are increased. At each step, we let b; refer to its value at the end of the previous step.

Finally, for reference, recall that

d
r r I -
= — = — 17 —— +b—bla.
N = g fab) = le|m+ bil
Step 1:  We set
FXjab 1<i<k
by  q b; E+1<i<l.

b l+1<i<d
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Since a € [ — A, + A]?, we see that these operations do not change ||a — b|;, as Zlf |b; — a;] = Zlf b — a;

and Zfﬂ |b; — a;| = Z’f a; — b;. Also, observe that this operation preserves b, and consequently since the function
flx) = |% + b — x| is convex, we see that by Jensen’s inequality that \; is not increased by this operation.

Step2: Letfs = Z]I(bZ —1-A)- 221“(% — A —b;). Then we set

I+A+8 1<i<k
b; k+1<i<l B>0
1-A I+1<i<d

b; 1 .
b; k+1<i<l B<0
1-A+E 1+1<i<d

Observe that this operation cannot increase ||a — b||1, since it doesn’t increase |a; — b;| for any value of i. Furthermore, this
operation also does not change b, and a similar convexity argument on the function f(x) = |ﬁ + b — x| can show that this
does not increase \y.

Finally, if 3 = 0, we set b’ = b, since we have reached a state such that b € [1 — A, 1 + A]%

d 1 b,
Step 3a:  We run this step if 3 > 0. Let « = M. We then set

B
1 .
- (F+A) (=) +% k+1<i<d
' T+A+81-a) 1<i<k
1 . a<l1

In this step, we can similarly verify that ||a — b||; does not increase (as |a; — b;] is strictly reduced for 1 < i < k by an
exact amount to offset the possible increases in |a; — b;| for k + 1 < i < d). We also see by the same convexity argument as
usual that this operation reduces \y.

Ez+1(bi_%+A)

Step 3b:  We run this step if 5 < 0. Let « = . We then set

B
G-+ 1<i<i -
(0%
1-A k+1<i<d —~
bi(— 1 .
1 3 a<l

The justification for this step is analogous to 3a.

Step4: We only run this step if & < 1. Observe that if « > 1, then both Step 3a and Step 3b result with b € [% —A, %—l—A]d,
which we set as b’. Observe that in this case, either b; > a; for all ¢, or b; < a; for all 7. Thus we simply set

This operation does not change ||a — bl|1, and it also reduces ), (by a convexity argument).

Step 5: Finally, forall 1 < i < dA, we setb; = % —Aifb< % — A and otherwise set b; = % —Aifb> % + A. In both
cases, A, is not changed, and ||a — b||; is strictly reduced. In this step, we finally set b’ = b. Note that we do not always
reach this step, as it was possible in any of the previous steps to reach some b € [% — A, % + AJ4, at which point we would
have simply terminated.
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Conclusion: Through steps 1 through 5, we have found &’ € [ — A, 2+ A} such that \yy < Ay and |la—b'[[1 < |[a—b]|1.
1

By applying Case 1 to I', we see that d(\, — Ayr) < 3[|a — b'||1. Thus, we have that

1 1
§|\a— bl1 > §||a— Vi = dXa — M) = d(Xa — X)),

which implies the result by the transitive property.

O
From the previous two lemmas, we immediately have the following:
Corollary 42. Forall D, € Il and b € [0, 1],
1
Ly (fur1,Da) > 2 21: lai — bil.
Proof. We have that
@ d(Ap — Ag) + Z‘f la; — by
ET' w ) D(l Z
(ur,1Da) d — 2dA
o 2t lai = bil = d(Aa = o)+
- d
d d
© Xy lai —bil — 3 2.1 lai = bil
- d
1
=54 > lai = b,
1
where (a) holds by Lemma 40 and (b) holds by Lemma 41. O]

B.2.2. COMPUTING THE POSTERIOR DISTRIBUTION, II|S

Recall that our ultimate goal is to show that

d
EpnlEs~pr£,(4s, D)]] 2 (%),
where A denotes any learning algorithm returning a linear classifier. The main idea for showing this is to “switch expectations”
and realize that

Ep~nt[Es~pn[L,(As, D)]] = Es~s[Ep~mns[Lr(As, D)]],

where II|.S' denotes the posterior distribution over II after observing S. In this section, we fully characterize the distribution
I1]S, and prove several important properties about it.

Recall (Definition 35) that D, ~ II is generated by first choosing ¢1,%2,...,%3/3 ~ uUJo, %] i.i.d, and then letting
a = (a1, az,...,aq) be a function of ¢ = (¢1,...,%4/3). Thus, to compute the posterior I1|S, it suffices to focus on the
posterior distribution of ¢S for any 1 < i < g. We begin by first defining the likelihood of observing .S given that it is

generated from parameter ¢.
Definition 43. Let S = {(x1,v1), (22, Y2), - - -, (Tn,Yn)} be any set of n points in R% x {£1}, and let t € |0, %]d/S be a
vector. Let a € [% — A % + A]? be defined as in Definition 35. That is, let

.a/i:

+ t;.

=

© airq3 =3+ %5 —qi(t).

® Q;y2d/3 = % - % - 92(ti)-
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Then we define L(S|t) as the likelihood of observing the set S from D?. In particular, for any measurable region of points
R C (R? x {£1})", we have that
PSND[; [S € R] :/ L(x\t)dx.
T€ER
Lemma d44. Let S C R? x {£1} be a set with n points. Then for all t € [0, %]d/g,

s o ()

where A is as defined in Definition 37 and L(S|t) is as defined in Definition 43.

Proof. Let D, be an arbitrary distribution in II. Observe that D,, is uniform over the set of all points in its support. Thus for
every point in its support, we have that the likelihood L(x|t) satisfies L(x|t) = m.

Taking the product of this over all points in .S, we get the desired result. Note that if S contains some point not in the support
of D, then the likelihood becomes 0, since the likelihood of observing some point not in the support of D, is 0. O

Definition 45. For any dataset S, let Ps denote the set of all “permissible” t, that is t € [0, %}d such that L(S|t) # 0.

Formally,
Pg = {t: L(S|t) > 0}.

We now fully characterize Pg when .S is drawn from some D ~ II.

Lemma 46. Fix n > 0. Forall D ~ Il and S ~ D", there exist intervals (possibly open, closed, half open)
Ils,IQS,...,Ig?/3 C [0, £] such that Ps = H‘f/3]is.

Y2),--., (Zn,yn)}. Since S ~ D", we see that for 1 < j < n, z; must satisfy z; €

Proof. Let S = {(z1,11), (w2,
J < d. Using this, for 1 <7 < d let

[v;, v; + u] for some 1 <

s; = arg max Hl‘g - UiHQa
{zj:2j€vsvituly;=—1}

and
sf = arg max llz; — (vi + u)||2.
{zj:x;€[vs,vitul,y;=+1
s; and s:r can be thought of as the points from .S on segment [v;, v; + u] that are closest to each other and labeled as — and
+ respectively. As a default, if no such points exist, we set s; = v; and s;” = v; + u.

Next, consider any ¢ € [0, £]%/3, leta € [ — A, 2 + A]? be defined as in Definition 35. That is, let

+ ;.

.a/i:

N[ =
S

® Qi1q/3 = % + % - g1(t:).
® Qijoaz =13 — 2 — ga(ty).
The key idea of this lemma is that ¢ € Pgs (i.e. L(S|t) > 0) if and only if for all 1 < i < d,

[v; + (a; — N)u,v; + (a; + A)u] C (57, s7).
To see this, observe that if the claim above holds, then we must have that s;” € [v;, v; + (a; — A)u) and s7” € (v; + (a; +
A)u,v; + u), and it consequently follows that all points in .S are elements of the support of D, (Definition 24), as all other
points in S are “further” from the interval [v; + (a; — A)u,v; + (a; + A)u] than the points s; and s; . Conversely, if
L(S|t) > 0, we must have that S C supp(D,), which immediately translates to the statement above. Thus, it suffices to
find all ¢ such that this condition holds.

To do this, observe that the interval [v; + (a; — A)u, v; + (a; + A)u] is a line segment of length 2A||u|- that is centered
at the point v; + a;u. Thus, in order for this to be a sub-segment of (s s+), we only need that a; satisfy v; + a;u €

i 091
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(s; + Au,s; — Au). This condition is equivalent to the condition that a; € J for some open interval J;° C [0, 1], where
J¢ is only dependent on s; , s; and A (which is a constant). In summary, there exist interval J;, J3, ..., J5 such that
t € Pgifandonlyifa; € J2 for1 <i <d.

Finally, note that for 1 <14 < d/3, a;,a;14 /3> @i 424/3 are all functions of ¢;, and moreover these functions are 1-lipschitz,
and monotonic. As a consequence, by taking the intersections of the pre-images of these functions, we find that this condition
holds if and only if t; € I where I? is some interval that is a subset of [0, %]d/ 3. This proves the claim. O

Corollary 47. For any S ~ D where D ~ 11, let IZS be defined as in Lemma 46 for 1 < i < d/3. Then the posterior
distribution t|S is equal to the uniform distribution over the set [ [, <i<d/3 I?, where t; is sampled from I?.

Proof. First, recall that our prior on ¢ is U([0, %]d), where U denotes the uniform distribution. By Lemma 44, we see

that for all ¢ € Pg, L(S|t) = ( m) , and for all other ¢, L(S|t) = 0. Furthermore, by Lemma 46, we see that

Ps = Higigd/ 3 I, Thus, applying Bayes rules gives the desired result. O

‘We conclude this section by lower bounding the expected length of the interval I 23 , denoted ¢(I ZS ).

Lemma 48. For an interval (c,d) C R, we let its length, denoted {((c,d)) be defined as ¢((c,d)) = d — ¢. Then for
1 < k < d/3, the expected length (taken over D, ~ 11 and S ~ D) of the interval I} is at least Q(%) That is,

Ep,~nBsop (D)) 2 (%),

Proof. Fix any D,« ~ 1II, and let ¢t* denote the value of ¢ used to generate a (as in Definition 35). We will show that
Es~pn, [((IF)] > Q(£), forall 1 < k < d/3. We begin by explicitly computing the interval I;.

Fix 1 < k < d/3. Then t* € [0, %] Assume that t; > 0; we will handle the case t; = 0 separately. Recall from the proof
of Lemma 46 that for 1 < 3 < d, we defined

s; = arg max HJUJ - Ui”2’
{zj:2j€vsvituly;=—1}

and
S;F = arg max llz; — (vi +u)||2-
{zj:w; €lvi,vitul,y;=+1}

forl <i<d.
Nextlet t € [0, 5]%° be a vector, and let a € [ — A, 2 + A]? be defined as ar = % + ty, agra/3 = 5 + 28 — g1(t) and
At2d/3 = % — % — go(tg), for 1 < k < d/3. Note that g1, go are the functions defined in Definition 34.

As we argued in the proof of Lemma 46, it then follows that ¢, € I ,f if and only if

[vi + (a; — Nu,v; + (a; + MNu] C (s, 5]),

i 971

fori = k,k+d/3,k+2d/3. Finally, as we did in Lemma 46, for each 1 < i < d, we define intervals J7 C [3 — A, 1+ A]
such that a; € J¢ if and only if [v; + (a; — A)u,v; + (a; + A)u] C (s; ,s7).

i 091

We now have the following three claims.

Claim 1:  Let o = min (=m0l ) 1 e (47— a,t7], then

[lull2

[vg + (ar, — N)u, v + (ag + A)u) C (s, 87).

Proof: First, observe that since sz and s, were sampled from D,~, it follows that

(o + (af — Mu, vk + (aj, + M)u] € (577, 57).
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Consider any ¢ € [t} — «, t}]. Then substituting the definitions of ay, a}, imply that aj, € [a} — a, aj]. Because of this, it
follows that

[[(vk + (ar — M)u) = (vg + (a, — M)u)ll2 = |[(ax — aj)ull2
< aflull2

<|lsp = (or + (ag, = Au)ll2,

which implies that vy, + (ax, — A)u € (s; , v + (a}, — A)u]. Furthermore, the fact that a;, < aj implies that vy, + (ar +A)u €
(v + (ar — Ny, vg + (af + A)ul.

Together, these observations imply the desired result, as it follows that
[V + (ar, — N)u, v + (ag + A)u] C (sg, v + (af + A)u] C (s;,87)-

[[ull2

st = (Vpa aj ANu _
Claim 2: Let 8 = min (H bepass " Okra/ot @y ajat D) )||2,g1(t,§)). If tx € (97 '(91(t;) — B),t}], then

[Vk+ass + (arrass — A)u, vi + (@kgass + A)ul C (g /3 Sipass)-

Proof: First, we observe that (3 is well defined since g; is a monotonic 1-Lipschitz function, and consequently has an inverse.
Next, we also see that 0 < g1 (t}) — g1(tx) < B. Substituting the definitions of a}, ay, it follows that 0 < ay, — a} < S
(notice the order switch). At this point, we can apply the same argument as in Claim 1 to get the desired result. l.

[lull2

+ _ * A
Claim 3: Let7 = min ('SWW Wrradss 0k ipasat )“)2,92(152;)). If t), € (95 ' (g2(¢) — 7)., t5], then

[Vkt2d/3 + (@ht2a/3 — M), Vpgoa/3 + (apy2d/3 + A)u] C (Sk+2d/3, Sz+2d/3)

Proof: Completely analogous to Claim 2. H.

Combining these claims, we see that if t;, € (tf — a,t5] N (g7 (91(t5) — B), 5] N (g5 *(ga(ts) — 7),t5], then ty, € I7.
Since these three intervals all have an endpoint in ¢, it follows that there is an interval with length 7 that is a subset of I, ,f ,
where

n = min(¢((t; — o, i), (g7 (91 (t) = B), D). (g2 (92(th) — 7). 85])).

However, by substituting that gy, go are 1-Lipschitz, we see that £((g; *(g1(ty) — B),t;]) > B and £((g5 *(ga(t}) —
7),t;])) > 7. Thus, it follows that
e(I;

0) >
Thus it suffices to show that Eg..p,. [min(e, 8, 7)] > (i)

n

min(a, 8, 7).

To do this, observe that

e «|ul|2 is the distance from the closest point labeled — on the segment [vy,, vy, + ] to the point vy, + (aj — A)u

e [3||ul|2 is the distance from the closest point labeled +- on the segment [vj,{4/3, Ug+4/3 + u] to the point vy 43 + (A +
az*c+d/3)“

e 7||u||2is the distance from the closest point labeled + on the segment [v}, 1 24/3, V2473 + 1] to the point vy, 1 54/3 +
(A+ az+2d/3)u.

Finally, it is not difficult to see that for sufficiently large n, with high probability each of these distances will be (£ d ). This is
because with high probability there will be ©(%) points on each of the respective line segments, and we are con51der1ng the
closest point among them to some reference point. Thus, it follows that with high probability Eg.p, . [min(c, 5, tau)] >
Q(4), as desired. O
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B.2.3. PUTTING IT ALL TOGETHER, THE PROOF

We prove the following key lemma, which directly implies Theorem 14.

Lemma 49. Let M be any learning algorithm that outputs a linear classifier. For any training sample of points S =
{(z1,91), (x2,Y2),-- ., (Tn,yn)}, we let Mg denote the classifier learned by M from S ~ D. Then it follows that

d

Ep~tiEs~pn[L,(Ms,D)]] > Q(E)

Proof. Let F,, denote the distribution over (R? x {41})™ defined as the composition D ~ ITand S ~ D". Thatis, S ~ F,
follows the same distribution as D ~ II, S ~ D™, Then we can write the expectation above as

EpnEs~pn[L(As, D)]] = Es~z, Ep~(s)[Lr(Ms, D)]],

where II|S denotes the posterior distribution of D conditioned on observing S. First, fix any such S. We will bound
Ep~(m1s)[£r(Ms, D)]. First, by reparametrizing in terms of ¢ € [0, %]d/ 3 and applying Corollary 47, we have that

Ep~s)[Lr(Ms, D)] = By, cys)l- - [Et,~v(1,)) [Lr(Ms, D)) .. ],
where I7,I3,... Ij)5 C [0, £] are the intervals defined in Lemma 46, and a is defined as in Definition 35.

Next, let b € [0, 1]¢ be such that Mg = f,,» 1, where w" is defined as in Definition 25. Then it follows from Corollary 42
that

d
1
> b,
L-(Mg,D,)] > 50d El la; — b

1 Y5
> — —+t;—b;
_20d¥|2+ ‘

with the last inequality coming from substituting the definition of a; and (and ignoring a; for ¢ > d/3). We now take the

expectation of this inequality over ¢4, ¢, ..., tq/3. To do so, observe that by simple algebra, E, _y(;s) |% +t; —b;| > Z(ZJ
Substituting this, we see that
) d/3
s
By cuasl- - [Et,L~U(1d5/3)[£T(M37Da)] = 80d Z;Eui )-
Finally, by taking expectations over S ~ F,,, we see that
Ep~nEs~pn[L:(As, D)]] = Es~x,Ep~s)[Lr(Ms, D)]]
L
> Esur,—— » (I}
= LS~F, 30d ; ( i )
L
=— Eg.r[l(I?
S0d ; S f[ ( i )]
L
= — Y Ep.nEspn[((I°
80d§1: ponEsopn[((17)]
d/3
1 d d
> — Q=) =Q(—
> 500 2 205) = 20)
where the last step follows from Lemma 48. O

Finally, we can prove Theorem 14.
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Proof. (Theorem 14). First, by Lemmas 27 and 39, we see that II C F,. , (provided p > 10). Next, by Lemma 49, for any
n there must exists some D ~ II such that Eg..p» [£,(Mg, D)] > Q(2). Thus selecting this distribution suffices. This
concludes the proof. O

C. Proofs for Algorithm 1

This section is divided into 2 parts. In section C.1, we show that for the case in which our data distribution D is linearly
r-separated by some hyperplane through the origin, the desired error bound holds. That is, we prove Theorem 19 under this
assumption.

Next, in section C.2, we show how to generalize Algorithm 1 to arbitrary linearly r-separated distributions, and subsequently
prove Theorem 19 in the general case.

C.1. Origin Case
‘We begin by precisely stating the conditions required in the “origin” case. We assume the following properties hold for our
data distribution D. We let S;F and S, be defined as in section 4.

1. There exists R > 0 such that for all z € S;" U S, ||z||2 < R.

2. There exists a unit vector u € R% and 7,. > 0 such that

o L.(fu,0,D) =0, where f, o denotes the linear classifier with decision boundary (u,z) = 0.
e S;F U S, has distance at least ~, from the decision boundary of f,,. Thatis, [|S;" U S — Hyoll2 > 7.

3. By the previous conditions, it follows that (u, yz') > -, for all (z,y) ~ D, and &’ € By(z,r). This is because v is a
unit vector.

Next, before analyzing Algorithm 1, we will first give a slight modification of the algorithm that lends itself to better analysis.
The only difference is that in this new algorithm, we first randomly sample & ~ {1,2,...,n}, and then only train on the
first r data-points of our training sample.

Algorithm 3 Modified-Adversarial-Perceptron
: Input: S = {(z1,11),..., (Tn,yn)} ~ D",
w <+ 0
k~TU({0,1,2,...,n})
fori=1...kdo

z = argmin,_, | <, ¥i{w, 2)

if (w, y;z) <0 then

W W+ Y; 2

end if
end for
return fy, o

—_

A A A S i

—

We will show that Algorithm 3 satisfies the guarantees of Theorem 51. We begin with the following, key lemma.

2
Lemma 50. Under the assumptions above about D, Algorithm 3 makes at most {:‘—2 updates to w.

Proof. Let w; denote our weight vector after we make ¢ updates. Observe that w; = w;_1 + 2+ + 2’ where (24, y¢) denotes
the point we made a mistake on, and 2z’ = argmin,| <, (w, z). Letting z; = x; + y;2’, we see that wy = wi—1 + ys ;.
Now the key observation is that (x},y:) € S;" U S,, and as a result, it follows that (u, y;x}) > ~,.. Using this, we see that

(u, we) = (U, wi—q + ypy)

= <u7wt—1> + <U,yf$;>
> (u,we—1) + Yr.
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Thus, by a simple proof by induction, we see that (wy, u) > ;.

Next, observe that we must have (w;_1, y2;) < 0. This is because w;_; must missclassify (z}, y;) (thus failing to be astute
at (2, y¢)) in order for it to be updated. Substituting this, we see that

l[we|l2 = v/ {we, wy)

= \/<wt,1 + 2y, w1 + x2y>
= \/<wt_1, ’LUt_1> + 2<wt—17 xw/tyt> + <$;a m%)
< \llweal3+0+ B2,

with the last inequality holding since |2}|2 < R. Thus, by a simple proof by induction, we see that ||w;||2 < Rv/t.

Finally, since  is a unit vector, it follows that ||w;||s > (wy, u. Substituting our inequalities, we find that R/t > ~,.t which
2
implies that ¢ < %. Since t is the number of mistakes we make, the result follows. O

r

Lemma 51. Let D be a distribution with the assumptions above. For any S ~ D™, let fs denote the classifier learned by
Algorithm 3. Then

R2

EgpnLp(f5, D) < b
o bl P) = 265

This Theorem directly follows from the classic online to offline result (Theorem 3 of (Freund & Schapire, 1999)). For
completeness, we include a proof in our context.

Proof. Fix any n and consider running Algorithm 3 on S ~ D". Let L; denote the expected robust loss of our classifier
conditioning on k = ¢, and let L* denote the expected overall loss of our classifier. It follows that

1
n+1

]ESN’DW I/),<

ZESNDH [L*|k=t] = Z]ESNDW Ly).

Next, let T ~ D"*! be a separate i.i.d drawn sample, and suppose we run the adversarial perceptron algorithm on the
entirety of 7" (i.e. rung Algorithm 3 on T by setting k = n + 1). For 1 <t < n + 1, let X; be the indicator variable for
whether the ¢th point in 7" requires an update on w (i.e. the classifier is not astute at w). There are two important observations
to make.

First, we have that Erpn+1[X¢] = Egopn[L;—1]. This is because X is an indicator variable for a classifier trained
on precisely ¢ — 1 i.i.d training examples lacking astuteness for a randomly drawn point from D. Second, we have that

”+1 1 X < 72 This is because each ) X, is precisely the number of updates that perceptron makes on 7', which is
bounded by Lemma 50. By combining these two observations, we see that

1

n
Es~pr[L7] = ——— > Es.p-[Li]
t=0

1

= Y Erpn X
n+1 =

n+1

= Eropnti[) Xi
e X

RZ
YE(n+1)°

IN

as desired. O
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C.2. General Case

In general case, we no longer assume that the optimal classifier f,, ;, passes through the origin. To account for this, we will
need to first adapt our algorithm. The basic idea is to simply append a 1 to the vectors x and increase the dimension d by
1. We are then left with solving a d + 1 dimensional problem in which the data is once-again separated by a hyperplane
passing through the origin.

We begin with two useful sets of notation.
Definition 52. We use the following notation:
e Foranyx € R and R € R, we let z| R € R denote the d + 1 dimensional vector obtained by appending the value
Rto x.

e Forw € R, et ||wl|} denote the {4 norm of the first d coordinates of w.

o Forx € R, let B} (x,r) denote all z € R such that ||z — x||, < r and such that z and x both share the same
last coordinate.

o For S = {(z1,y1),. -, (Tn,yn)} C RITL x {&1}, let Rg denote max;j ||z; — |2

We now propose the following modified version of Algorithm 1, that is capable of handling any dataset, including ones that
aren’t separated by a hyperplane through the origin.

Algorithm 4 General-Adversarial-Perceptron
1: Input: S = {(z1,11),.-., (Tn,yn)} ~ D",
T} @ — 1.
Rs = diamy(S)
w + 0 € Rét!
Randomly permute .S
Randomly choose k € {1,2,3,...,n}.
fort=1...kdo
if (w, ys (21| Rs)) < rljw]]; then
9: Z' =argmin, ., (w,z|0)
10: w < w + y(z|Rs) + 2|0
11:  endif
12: end for
13: w* < first d coordinates of w
14: b < the last element of w

15: Return fy« (w* a1)—bRs

AN A S

The basic idea of the algorithm is to first translate .S so that one point is the origin, and then append Rg to every vector
in .S so that each vector is now d + 1 dimensional. After doing this, we apply Algorithm 1 as before with one important
difference: for our adversarial attacks, we make sure to not change the last coordinate.

We now show that this algorithm has a similar performance to our old algorithm. We first prove a helpful lemma.

Lemma 53. Let D be any linearly r-separated distribution, and let S ~ D" such that S has positively and negatively
labeled examples. Let ©!; = x; — x1 for 1 <1 < n. Then the following hold.

e There exists a unit vector u € R such that for all (z;,y;) € S, min.e g () (u, ¥i (2| Rs)) = %(\@D).

e Forall (z;,y;) € S, ||7}|Rs||2 < V2diamy (D).

Proof. Without loss of generality, we will assume x; = 0 so that we can safely ignore the differences between z, and ;.
Since D is r-separated, there exist w, b (with w a unit vector) such that

(w, zy) > by + (D),
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for all (z,y) ~ D and z € By(x,r). Furthermore, since z1 = 0, it follows that ||z||2 < diamy (D) for all (x,y) ~ D. This
immediately implies that ||2;|Rs||2 < /diamy (D)2 + R% < v/2diamy(D), yielding the second part of the lemma.

For the first part, observe that we can rearrange the equation above, we see that
b
<w‘ - R772y|RS> > 'VT(D)'
s

The key observation is that the first equation implies that b < Rg. This is because S contains positively and negatively
labeled examples, and consequently (w, z;) > b+ v, (D) > b for some z; such that |z;| = Rg. Thus, it follows that the

w|=t
leyiis/m has the desired property, by observing that /1 + b2/R% < /2. O
S

Lemma 53 allows us to analyze the performance of Algorithm 4. The basic idea is that our performance on the transformed
data in R4t is isomorphic to its performance on the data in R%. As a consequence, we can apply the same argument as in
Theorem 51 to get a bound on the error estimate. However, this bound must be given in terms of the diameter and robust
margin of the transformed data: quantities that have been bounded in Lemma 53. Thus, putting this all together, Theorem
19 follows.

unit vector u =

D. Details for Kernel Algorithm
Next, we find analogs of linear r-separability and the robust margin when considering kernels. First, we define an embedding
function.

Definition 54. Let K : R? x R? — RT be a kernel similarity function. Then there exists a Hilbert space H and map
¢ : RY — H such that for all x1, x5 € R%, we have

K(21,22) = (¢(21), d(z2)).
We call ¢ the embedding function and H the embedding space.

The key idea of this section is that Kenrel classifiers correspond to linear classifiers in embedded space. This is the essence
of the “kernel trick.” Formally, we have the following, well-known theorem.

Theorem 55. Let K : R x R? — R* be a kernel similarity function. Let T = {(21,v1); - -, (Tm,Ym)}+ C R x {£1}
be a set of labeled points, and o € R™ be a vector of m real numbers. Then for all x € R%, we have that

Z oy K (i, 2) = ( Z ayid(z:), o).
i=1 i=1
Because of this, if we let w = ;" | o,;y;¢(x;), then the kernel classifier f%a satisfies féﬂa(m) = fwo(¢(x)), where the

latter classifier is the linear classifier in H with weight vector w.

The main idea behind Algorithm 2, is that it corresponds to running Algorithm 1 inside the embedded space of the kernel K.
In particular, the kernel-perceptron update step precisely corresponds to the dual-form of the perceptron-update step inside
embedded space. It follows from Theorem 55 that the following algorithm is identical to Algorithm 2.

Algorithm 5 Adversarial-Kernel-Perceptron

—_

: Input: S = {(z1,v1),--., (Tn,yn)} ~ D", Similarity function, K,
w0
:fori=1...ndo

z=argmin ., <, Yi(w, (2))

if (y;w, ¢(z)) < 0 then

w=w+y;p(2)

end if

end for

return fy, 00 @

R A A R o
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In particular, by comparing Algorithms 2 and 5, we have by Theorem 55 that for all time steps ¢,

w= > y(2).

(z,y)€T

Therefore, to analyze the performance of Algorithm 2, it suffices to analyze Algorithm 5. However, we already have built to
the tools for doing this: all of the results from Section C.1 apply to Algorithm 5 since the only difference is replacing R?
with H, the embedding space of K.

We now proceed by giving the corresponding assumptions on D needed for Theorem 21. We begin by first defining
(K, r)-separability and K -robust margin, 7, x, the Kernel analogs of linear r-separability (Definition 12) and the robust
margin (Definition 17).

Definition 56. For any r > 0, a distribution D over R? x {41} is (K, r)-separable if there exists a kernel classifier féfoé
such that Er(féfa, D) =0.

To define the K-robust margin, we will once again need the sets S;” and S;- defined in equation 1 (top right of page
7). Recall that these sets denote the positively and negatively labeled elements from supp(D) including all adversarial
perturbations of those points.

Definition 57. Let D be a (K, r)-separable distribution over R x {£1}. Then D has K-robust margin ~, if 7, is the
largest real number such that there exists a kernel classifier f{«fa, such that the following conditions hold.

1. L,(f5,,D)=0.

2. Let ¢, H be the embedding function/space of K, let w = Z(%y)eT yo(z), and let H,, = {z € H, (z,w) = 0} be the

decision boundary in H off%fa. Then for all x € S;f U S, ¢(x) has {3 distance at least v from H,, inside H. That
is,

inf  inf /(6(z) -z 6() — 2) = 7K.

zeSFusy 2€Hu

We now state the main theorem giving the performance of Algorithm 2.

Theorem 58. Let D be a distribution over R% x {41} such that the following conditions hold.

1. There exists R > 0 such that for all x € S;” U S, (¢(x), p(x)) < R2

2. Dis K,r-separable, and has K -robust margin v > 0.

Then for any S ~ D™, if fjli)a denotes the classifier learned by Algorithmn 2, then

K\2
ESND" [‘Cr(flk“,aa’D)] =0 <R2(2;:/_)~_1)) '

Proof. The key idea is to observe that Lemmas 50 and 51 both directly translate from Algorithm 4 to Algorithm 5. In
particular, neither proof used the dimension, d, of R, and consequently would equally apply to even an infinite dimensional
Hilbet Space, H. Thus, the proof is completely analogous to the proof of Theorem 51. O



