
Neural Symbolic Regression that Scales

A. Model details
A.1. NeSymReS Transformer Details

The model consists of an encoder and a decoder. The encoder takes as input numerical data, X ∈ R(dx+dy)×n, where dx is
the number of independent variables, dy the number of dependent variables and n the number of support points. In order
to prevent exploding gradient and numerical instabilities, we convert each entry of X into a multi-hot bit representation
according to the half precision IEEE-754 standard. This operation yields a new input tensor, X̃ ∈ R(dx+dy)×b×n where
b = 16 is the dimension of the bit representation. The output of the encoder is a latent vector z ∈ Rdz , providing a
compressed representation of the equation to be modelled. Such latent vector is then used to condition the decoder via a
standard Transformer multi-head attention mechanism. During the pre-training phase, the input of the decoder is given by
the sequence of tokens representing the ground truth-equation expressed in prefix notation. Such sequence is opportunely
masked in order to prevent information leakage in the decoder forward step. The output is then given by a string of
symbols, representing the predicted equation, again in prefix notation. During inference, the decoder is only provided
with the information from the latent vector z and generates a prediction autoregressively. We use beam search to obtain
candidate solutions. After removing potentially invalid equations, the remaining equations are modified to include constant
placeholders with the procedure described in Appendix B. Using BFGS, we fit these constants. We select the best equation
among the so-found candidates, based on the validation loss, with an added regularization penalty of 10−14 for each token
in the skeleton. Note that BFGS is currently the most time-consuming step of our pipeline. While in all our experiments we
run the optimization procedure serially (i.e., one candidate equation at the time), the procedure can be easily parallelized
across equations.

Encoder and decoder use the same hidden dimension H and number of heads, h for their multi-head attention modules. In
the following, we provide further details about the architectural design choices, hyper-parameters and library of functions
used by our model. We trained our model on a single GeForce RTX 2080 GPU for 3 days.

Encoder For the encoder, we opted for the Set Transformer architecture from Lee et al. (2019). Our choice is motivated in
light of the better scaling properties of this method when it comes to input lenght n, i.e. O(nm) compared to the standard
transformer encoder,O(n2), where m is a set of trainable inducing points. Referring to the notation of the original paper, our
encoder is formed by ne Induced Set Attention Blocks (ISABs) and one final component performing Pooling by Multihead
Attention (PMA). ISABs differ from the multi-head self attention blocks present in the original Transformer architecture,
since they introduce m < n learnable inducing points that reduce the computation burden associated with the self-attention
operation. PMA allows us to aggregate the output of the encoder into dz trainable abstract features representing a compressed
representation of the input equation. Overall, the encoder consists of 11M trainable parameters. All the hyper-parameters of
the encoder are listed in Table 2.

Decoder The decoder is a standard Transformer decoder. It has nd layers, hidden dimension H , h attention heads. Input
symbols are encoded into the corresponding token embeddings and information about relative and absolute positions of
the tokens in the sequence is injected by adding learnable positional encodings to the input embeddings. Two different
masks are used to avoid information leakage during the forward step and to make the padding token hidden to the attention
modules. In total, our dictionary is formed by s different tokens, including binary and unary operators and independent
variables. A list of all the elements of our dictionary is provided in Table 4. Overall, the decoder consists of 15M trainable
parameters. All the hyper-parameters of the decoder are listed in Table 3.

Table 2. Encoder hyper-parameters.
Parameter name Symbol Value

Number of ISABs ne 5
Hidden dimension H 512
Number of heads h 8
Number of PMA features dz 10
Number of inducing points m 50

Table 3. Decoder hyper-parameters.
Parameter name Symbol Value

Number of layers nd 5
Hidden dimension H 512
Number of heads h 8
Embedding dimension s 32
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Symbol Integer Id
sos 1
eos 2
x 3
y 4
z 5
c 6

arccos 7
+ 8

Symbol Integer Id
arcsin 9
arctan 10

cos 11
cosh 12
coth 13
÷ 14

exp 15
ln 16

Symbol Integer Id
× 17

Pow 18
sin 19
sinh 20
√ 21

tan 22
tanh 23
−3 24

Symbol Integer Id
−2 25
−1 26
0 27
1 28
2 29
3 30
4 31
5 32

Table 4. Symbols available for expression generation and their corresponding integer tokens. The symbols “sos” and “eos” stand for “start
of sequence” and “end of sequence” respectively. The padding symbol is not reported in the table and is associated with the token 0. Note
that not all of these symbols appear in our pre-training dataset, as detailed in Table 6 we only used a small subset for our experiments.

A.2. Baselines

Deep Symbolic Regression (DSR) For DSR, we use the standard hyper-parameters provided in the open-source imple-
mentation of the method, with the setting that includes the estimation of numerical constants in the final predicted equation.
DSR depends on two main hyper-parameters, namely the entropy coefficient λH and the risk factor ε. The first is used to
weight a bonus proportional to the entropy of the sampled expression which is added to the main objective. The second
intervenes in the definition of the final objective with depends on the (1− ε) quantile of the distribution of rewards under the
current policy. According with the open-source implementation and the results reported in (Petersen, 2021), we choose
ε = 0.05 and λH = 0.005. The set of symbols available to the algorithm to form mathematical expressions is given by
L = {+,−,×,÷, sin, cos, exp, ln, c}, where c stands for the constant placeholder.

Genetic Programming For Genetic Programming, we opt for the open-source Python library gplearn. Our choices
for the hyper-parameters are listed in Table 5 and mostly reflect the default values indicated in the library documentation.
The set of symbols available to the algorithm to form mathematical expressions is the default one and is given by L =
{+,−,×,÷,√, ln, exp, neg, inv, sin, cos}, where neg and inv stand for “negation” (x 7→ −x), and inversion (x 7→ x−1),
respectively.

Table 5. Genetic Programming hyper-parameters. The parameter Population size is varied within the range indicated during the experiments
reported in Section 5.

Parameter name Value

Population size {210, ..., 215}
Selection type Tournament
Tournament size (k) 20
Mutation probability 0.01
Crossover probability 0.9
Constants range (−4π, 4π)

Gaussian Processes This is the only baseline that is not a symbolic regression method per se, as it learns a mapping from
x to y directly. The appealing property of Gaussian Processes is that they are very accurate in distribution, and are very fast
to fit in the regime we considered. We opted for the open-source sklearn implementation of Gaussian Process regression
with default hyper-parameters. The covariance is given by the product of a constant kernel and an RBF kernel. Diagonal
Gaussian noise of variance 10−10 is added to ensure positive-definitness of the covariance matrix. L-BGFS-B is used for the
optimization of the marginal likelihood with the number of restarts varied as indicated in Table 1.

A note about function sets Unfortunately, not all methods support all primitive functions that appear in a given dataset.
For example, NeSymReS could support x6, and xy — that appear in the Nguyen dataset described in Appendix C — but
as we did not include these primitives in the pre-training phase, the version we use in our experiments will not be able to
correctly recover these equations. DSR and the implementation of Genetic Programming that we adopted are both lacking
arcsin in their function set.
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While missing primitives lowers the upper bound in performance that a method can reach for a given dataset, it also makes it
easier to fit the other equations that do not contain those primitives, as the function set to search is effectively smaller.

B. Experimental details
B.1. Training

Operator + × − ÷ √ Pow ln exp sin cos tan arcsin

Unormalized Prob 10 10 5 5 4 4 4 4 4 4 4 1

Table 6. Operators and their corresponding un-normalized probabilities of being sampled as parent node.

Training Dataset Generation For generating skeletons, we built on top of the method and code proposed in (Lample &
Charton, 2019), which samples expression trees. For our experiments, each randomly-generated expression tree has 5 or
fewer non-leaf nodes. We sample each non-leaf node following the unnormalized weighted distribution shown in Table 6.
Each leaf node has a probability of 0.8 of being an independent variable and 0.2 of being an integer. Trees that contain the
independent variable x2 must also have the independent variable x1. Those containing the independent variable x3 must
also include the independent variables x1 and x2. We then traverse the tree in pre-order and obtain a semantically equivalent
string of the expression tree in a prefix notation. We convert the string from prefix to infix notation and simplify the
mathematical expression using the Sympy library. The resulting expression is then modified to include constant placeholders
as explained in the following paragraph. This expression is what we refer to as a skeleton, as the value of constants has not
been determined yet.

For our experiments, we repeat the procedure described above to obtain a pre-compiled dataset of 10M equations. To
compile the symbolic equation into a function that can be evaluated by the computer on a given set of input points, we
relied on the function lambidfy from the library Sympy. We store the equations as functions, in order to allow for the
support points and values of the constants to be resampled at mini-batch time during pre-training. We opted for a partially
pre-generated dataset instead of sampling new equations for every batch in order to speed up the generation of training data
for the mini-batches.

Training Details As described in Section, 4.2, during training we sampled mini-batches of size B = 150 from the
generated dataset. For each equation, we first choose the number of constants, nc, that differ from one. nc is randomly
sampled within the interval ranging from 0 to min(3, Nc) where Nc is the maximum number of constants than can be placed
in the expression. Then, we sample the constants’ values from the uniform distribution U(1, 5). We randomly select nc
among the available placeholders and replace them with the previously obtained numerical values. The remaining constants
are set to one. We then generate up to 500 support points by sampling- independently for each dimension - from uniform
distributions with varying extrema as described in Section 4. If the equation does not contain a given independent variable,
such variable is set to 0 for all the support points. For convenience, we drop input-output pairs containing NaNs and entries
with an absolute value of y above 1000. Finally we take the equation in the mini-batch with the minimum number of points,
and drop valid points from the other equations so that the batch tensor has a consistent length across equations. Figure 6
shows the training and validation curves of the main model used for all our experiments.

Training Dataset Distribution The dataset does not consist of unique mathematical expressions. Indeed, some skeletons
are repeated, and some skeletons are mathematically equivalent. Overall, within the 10M dataset, we have ∼ 1.2M unique
skeletons. Since longer expressions tend to be simplified into shorter expressions during the dataset generation, shorter
expressions are the most frequent ones. We report in Table 7 the ten most recurrent expressions. Of these 1.2M unique
skeletons, at least 96.3% represents unique (numerically distinct) mathematical expressions. The counting procedure is
described in the next paragraph. The average length of an expression in infix notation is 8.2 tokens. The minimum and the
maximum are 1 and 23 respectively, which corresponds in infix notation to the expressions x and x2 asin2 (x)

−x2
1 asin2 (x)+1

.

Addition of Numerical Constants During dataset generation and inference, we introduce constant placeholders by
attaching them to the generated or predicted skeletons. This step is carried out by multiplying all unary operators in the
expressions by constant placeholders (except for the “pow” operator). The same procedure is repeated with independent
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Figure 6. Loss as a function of pre-training for NeSymReS

Expression x1 x1 + x2 x22 x1x2 x1 + x2 + x3 x1 + 1 −x1 x1 − 1 ex1 cos (x1)
Frequency 18649 6716 4789 4707 3781 3727 3698 2917 2594 2157

Table 7. 10 most frequent expressions in the dataset

variables for which also additive constants are introduced. Longer expressions tend to have more placeholders in comparison
to shorter ones.

B.2. Evaluation details

All results reported, i.e. for all methods and datasets, are accuracies over all equations in the dataset. Error bars in all plots
denote the standard error of the mean estimate.

Metrics Details As detailed in 4.6 we evaluate performances both within the training support (Aiid) and outside of the
training support (Aood). More specifically, for the latter the support is created as follows: given an equation with in-sample
support of (lo, hi), we extend the support of each side by (hi− lo) for every variable present in the equation.

Creating the SOOBE Dataset The SOOBE (stricly out-of-sample equations) dataset contains entirely different skeletons
from the pre-training dataset, which do not overlap numerically nor symbolically. To create it, we list all the different
expressions in the training dataset and then randomly sample from this set, excluding the sampled expressions from the
training set. We first sample a random support of 500 points from the uniform distribution U(−10, 10), for each independent
variable. Two expressions are different if their images, given the support points, are different. Note that this is a conservative
criterion, as two expressions may have the same image in the sampled support (relatively to a fixed tolerance), yet being
distinct.

Benchmarks As explained in 4.4 we evalutate our trained model on five datasets: AI-Feynman, SOOBE-WC, SOOBE-NC,
SOOBE-FC, Nguyen. All the equations of AI-Feynman used in our evaluation are listed in table 8. 50 randomly sampled
equations out of 200 from the SOOBE dataset, are listed in table 9.
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Expression Support x1 Support x2 Support x3 Expression Support x1 Support x2 Support x3
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Table 8. AI-Feynman equation with less than 4 independent variables and the supports as indicated in (Udrescu & Tegmark, 2020)
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Expression Expression
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Table 9. 50 random equations extracted from the SOOBE dataset (version with constants).
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C. Additional Results
C.1. Additional Metrics on all Benchmarks

In this section, we show that the conclusions drawn in Section 5 with the A2 metric are consistent when the A1 metric is
considered instead.
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Figure 7. Accuracy as a function of the size of the pre-training dataset, for a fixed computational budget (∼100 s) at test time.
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Figure 8. Accuracy in distribution as a function of time for all methods ran on a single CPU per equation.
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Figure 9. Accuracy out of distribution as a function of time for all methods ran on a single CPU per equation.
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C.2. OOD Extrapolation Examples

Examples of 2D Functions Fig. 11 provides 4 examples of functions learned by our model. All the considered functions
depend only on two independent variables, x1 and x2. The visualizations show that our method, given a relatively small set
of support points (black dots in the figure) is able to extrapolate out of distribution by retrieving the underlying symbolic
expression. The last row of Fig. 11 shows that NeSymReS at times finds valid alternative expressions based on trigonometric
identities, i.e. sin(x) = cos(x− π/2) = − cos(x+ π/2).

Figure 11. Four examples of functions learned by our model. The first column shows the ground truth equation, whereas the remaining
three represent the top predictions of our model sorted by likelihood (from left to right).


