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Abstract

Symbolic equations are at the core of scientific
discovery. The task of discovering the underlying
equation from a set of input-output pairs is called
symbolic regression. Traditionally, symbolic re-
gression methods use hand-designed strategies
that do not improve with experience. In this paper,
we introduce the first symbolic regression method
that leverages large scale pre-training. We proce-
durally generate an unbounded set of equations,
and simultaneously pre-train a Transformer to pre-
dict the symbolic equation from a corresponding
set of input-output-pairs. At test time, we query
the model on a new set of points and use its out-
put to guide the search for the equation. We show
empirically that this approach can re-discover a
set of well-known physical equations, and that it
improves over time with more data and compute.

1. Introduction

Since the early ages of Natural Sciences in the sixteenth
century, the process of scientific discovery has rooted in
the formalization of novel insights and intuitions about the
natural world into compact symbolic representations of such
new acquired knowledge, namely, mathematical equations.

Mathematical equations encode both objective descriptions
of experimental data and our inductive biases about the
regularity we attribute to natural phenomena. When seen
under the perspective of modern machine learning, they
present a number of appealing properties: (i) They provide
compressed and explainable representations of complex phe-
nomena. (ii) They allow to easily incorporate prior knowl-
edge. (iii) When relevant aspects about the data generating
process are captured, they often generalize well beyond
the distribution of the observations from which they were
derived.
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The process of discovering symbolic expressions from ex-
perimental data is hard and has traditionally been one of the
hallmarks of human intelligence. Symbolic regression is a
branch of regression analysis that tries to emulate such a
process. More formally, given a set of n input-output pairs
{(zi,yi) }P_q ~ X x Y, the goal is to find a symbolic equa-
tion e and corresponding function f, such that y ~ f.(x)
for all (x,y) € X x Y. In other words, the goal of sym-
bolic regression is to infer both model structure and model
parameters in a data-driven fashion. Even assuming that the
vocabulary of primitives — e.g. {sin, exp, +, ...} — is suf-
ficient to express the correct equation behind the observed
data, symbolic regression is a hard problem to tackle. The
number of functions associated with a string of symbols
grows exponentially with the string length, and the presence
of numeric constants further exacerbates its difficulty.

Due to its challenging combinatorial nature, existing ap-
proaches to symbolic regression are mainly based on search-
techniques whose goal is typically to minimize a pre-
specified fitness function measuring the distance between
the predicted expression and the available data. The two
main drawbacks of such methods are that: (i) They do not
improve with experience. As every equation is regressed
from scratch, the system does not improve if access to more
data from different equations is given. (ii) The inductive
bias is opaque. 1t is difficult for the user to steer the prior
towards a specific class of equations (e.g. polynomials, etc.).
In other words, even though most symbolic regression algo-
rithms generate their prediction starting from a fixed set of
primitives reflecting the user’s prior knowledge, such ele-
mentary building blocks can be combined in many arbitrary
ways, providing little control over the equation distribution.
To overcome both drawbacks, in this paper we take a step
back, and let the model learn the task of symbolic regression
over time, on a user-defined prior over equations.

Building on the recent successes of large models trained on
large datasets (Brown et al., 2020; Devlin et al., 2018; Chen
et al., 2020a;b), we show that a strong symbolic regressor
can be purely learned from data. The key factor behind our
approach is that computers can generate unbounded amounts
of data with perfect accuracy and at virtually no cost. The
distribution over equations used during pre-training strongly
influences the prior over equations of the final system. Such
a prior thus becomes easy to understand and control.
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The main contributions of this paper are the following:

* We introduce a simple, flexible, and powerful frame-
work for symbolic regression, the first approach (to the
best of our knowledge) to improve over time with data
and compute.

* We demonstrate that learning the task of symbolic
regression from data is sufficient to significantly out-
perform state-of-the-art approaches relying on hand-
designed strategies.

+ We release our code and largest pre-trained model !

In Section 2, we detail related work in the literature. In
Section 3, we present our algorithm for neural symbolic
regression that scales. We evaluate the method in the ex-
periments described in Section 4 and 5 and compare it to
state-of-the-art baselines. In Section 6 we discuss results,
limitations, and potential for future work.

2. Related Work

Genetic Programming for Symbolic Regression Tradi-
tional approaches to symbolic regression are based on ge-
netic algorithms (Forrest, 1993) and, in particular, genetic
programming (GP) (Koza, 1994). GP methods used for
symbolic regression iteratively “evolve” a population of
candidate mathematical expressions via mutation and re-
combination. The most popular GP-based technique ap-
plied to symbolic regression is undoubtedly the commer-
cial software Eureqa (Dubcdkova, 2011) which is based
on the approach proposed by Schmidt & Lipson (2009).
Despite having shown for the first time the potential of data-
driven approaches to the problem of function discovery,
GP-based techniques do not scale well to high dimensional
problems and are highly sensitive to hyperparameters (Pe-
tersen, 2021).

Neural Networks for Symbolic Regression A more re-
cent line of research explores the potential of deep neural
networks to tackle the combinatorial challenge of symbolic
regression. Martius & Lampert (2016) propose a simple
fully-connected neural network where standard activation
functions are replaced with symbolic building blocks (e.g.
“sin(+)”, “cos(-)”, “4”, “Identity(-)””). Once the model is
trained, a symbolic formula can be automatically read off
from the network architecture and weights. This method
inherits the ability of neural networks to deal with high-
dimensional data and scales well with the number of input-
output pairs. However, it requires specific extensions (Sa-
hoo et al., 2018) to deal with functions involving divisions
between elementary building blocks (e.g. %&”) and the
inclusion of exponential and logarithmic activations result
in exploding gradients and numerical issues.

"https://github.com/SymposiumOrganization/
NeuralSymbolicRegressionThatScales

Another approach to circumvent the discrete combinato-
rial search inherent in the symbolic regression framework
is proposed in (Kusner et al., 2017). Here, a variational
autoencoder (Kingma & Welling, 2013) is first trained to
reconstruct symbolic expressions and the search for the best
fitting function is then performed over the latent space in a
subsequent step. While the idea of moving the search for the
best expression from a discrete space to a continuous one
is interesting and has been exploited by other approaches
(e.g. (Alaa & van der Schaar, 2019)), the method does not
prove to be effective in recovering relatively simple sym-
bolic formulas. More recently, Petersen (2021) developed
a new technique where a recurrent neural network (RNN)
is used to model a probability distribution over the space
of mathematical expressions. Output expressions contain
symbolic placeholders to indicate the presence of numerical
constants. Such constants are then fit in a second stage by an
out-of-the-box nonlinear optimizer. The RNN is trained by
minimizing a risk-seeking RL objective that assigns a larger
reward to the top-epsilon samples from the output distribu-
tion. The method represents a significant step forward in the
application of deep learning to symbolic regression. While
showing promising results, the network has to be retrained
from scratch for each new equation and the RNN is never
directly conditioned on the data it is trained to model.

Finally, neural networks can also be used in combination
with existing techniques or hand-designed rules to perform
symbolic regression. Notable examples are (Udrescu &
Tegmark, 2020; Udrescu et al., 2020), where neural net-
works are employed to identify simplifying properties in
the data such as additive separability and compositionality.
These properties are exploited to recursively simplify the
original dataset into less challenging sub-problems that can
be tackled by a symbolic regression technique of choice.
A similar rationale is followed in (Cranmer et al., 2020),
where different components of a trained Graph Neural Net-
work (GNN) are independently fit by a symbolic regression
algorithm. By joining the so-found expressions, a final al-
gebraic formula describing the network can be obtained.
The aforementioned approaches might provide very good
performances when it is known a priori whether the data are
characterized by specific structural properties, such as sym-
metries or invariances. However, when such information is
not accessible, more domain-agnostic methods are required.

Large Scale Pre-training Our approach builds upon a
large body of work emphasizing the benefits of pre-training
large models on large datasets (Kaplan et al., 2020; Devlin
et al., 2018; Brown et al., 2020; Chen et al., 2020a;b; Belkin
et al., 2019). Examples of such models can be found in
Computer Vision (Radford et al., 2021; Chen et al., 2020a;b;
Kolesnikov et al., 2020; Oord et al., 2018) and Natural Lan-
guage Processing (Devlin et al., 2018; Brown et al., 2020).
There have also been recent applications of Transformers
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(Vaswani et al., 2017) to tasks involving symbolic mathemat-
ics manipulations (Lample & Charton, 2019; Saxton et al.,
2019) and automated theorem proving (Polu & Sutskever,
2020). Our work builds on the results from Lample & Char-
ton (2019), where Transformers are trained to successfully
perform challenging mathematical tasks such as symbolic
integration and solving differential equations. However, our
setting presents the additional challenge of mapping numer-
ical values to the corresponding symbolic formula, instead
of working exclusively within the symbolic domain.

3. Neural Symbolic Regression that Scales

A symbolic regressor S is an algorithm which takes a set of
n input-output pairs {(z;,y;)}7,; ~ X x ) as input and
returns a symbolic equation e representing a function f,.
such that: y = fe(x), ¥(z,y) € X x Y. In this section, we
describe our framework to learn a parametrized symbolic
regressor Sy from a large number of training data.

3.1. Pre-training

We pre-train a Transformer on hundreds of millions of equa-
tions which are procedurally generated for every minibatch.
As equations and datapoints can be generated quickly and
in any amount using a computer and standard math libraries,
we can train the network end-to-end to predict the equations
on a dataset that is potentially unbounded. We describe the
exact process we use to generate the dataset in Section 4.
An illustration of the main steps involved in the pre-training
phase is shown in Fig. 1.

Data During the pre-training phase, each training example
consists of a symbolic equation e which represents a func-
tion f. : R% — R a set of n input points X = {x;}"_;
and corresponding outputs Y = {f.(z;)}";. The distri-
bution, P, x, from which e and the inputs X are sampled
will determine the inductive bias of the trained symbolic
regressor and should be chosen to resemble the application
domain. In particular, X can vary in size (i.e. n is not fixed),
and the individual inputs x; do not have to to be i.i.d — nei-
ther within X nor across examples or batches. For example,
Pe,x could be polynomials of degree up to 6, and input
sets of up to 100 points sampled uniformly from the range
[0, 1]. In our experiments, an equation e is represented by
a sequence of symbols in prefix notation. An equation e
can contain numerical constants that are re-sampled at each
batch to increase the diversity of the data seen by the model.
In Section 4, we describe the details of the data generation
process we used in our experiments.

Pre-training We train a parametric set-to-sequence model
Sp to predict the equation e from the set of input-output
points X, Y. In our implementation, Sy consists of an en-
coder and a decoder. The encoder maps the (x, y) sequence

pairs for each equation into a latent space, resulting in a
fixed-size latent representation z. A decoder generates a
sequence € given z: it produces a probability distribution
P(&x+1|€1.%, 2) over each symbol, given the previous sym-
bols and z. The alphabet of € is identical to the one used for
the original equations e, with one exception: unlike e, e does
not contain any numerical constants. Instead, it contains a
special placeholder symbol ‘¢’ which denotes the presence
of a constant which will be fit at a later stage. For example,
if e = 4.2sin(0.321) + o, then € = osin(oxy) + z2. We
refer to the equation where numerical constants are replaced
by placeholders as the “skeleton” of the equation, and use
the notation € to refer to the symbolic equation that replaces
numerical constants with ‘¢’. The model is trained to reduce
the average loss between the predicted é and skeleton(e),
i.e. the skeleton of the original equation. Training is per-
formed with mini-batches of B equations each. The overall
pre-training algorithm is reported in Algorithm 1.

Algorithm 1 Neural Symbolic Regression pre-training

Require: Sy, batch size B, training distribution P, x
while not timeout do
L+0
foriin {1..B} do
e, X <« sample an equation and input set from P, _x
Y« {fe(z)] z € X}
€ + skeleton(e)
L+ L- Zk log PSQ (ék+1|élzka Xa Y)
end for
Compute the gradient V¢ L and use it to update 6.
end while

3.2. Test time

At test time, given a set of input-output pairs {(z;, y;) }; we
encode them using the encoder into a latent vector z. From
z we iteratively sample candidates skeletons of symbolic
equations ¢ from the decoder. Finally, for each candidate,
we fit the numerical constants ¢ by treating each occurrence
as an independent parameter. This can be achieved using a
non-linear optimizer, either gradient-based or black-box, by
minimizing a loss between the resulting equation applied to
the inputs and the targets Y. In our experiments, we used
beam-search to sample high-likelihood equation candidates
from the decoder, and, like Petersen (2021), BFGS (Fletcher,
1987) on the mean squared error to fit the constants.

4. Experimental Set-up

Here, we present the instantiation of the framework de-
scribed in Section 3 that we evaluate empirically, and detail
the baselines and datasets used to test it. For the rest of the
paper, we will refer to our implementation as NeSymReS?.

2For Neural Symbolic Regression that Scales
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Figure 1. (Left) The data generator produces the input for the Transformer and its target expression. It does so by randomly sampling (i)
an equation skeleton (including placeholders for the constants), (ii) numerical constants used to replace the placeholders and (iii) a set of
support points {x; }; to evaluate the previously generated equation and get the corresponding {y; }:. The {(z:, y;) }: pairs are fed into the
Transformer, which is trained to minimize the cross-entropy loss with the ground-truth skeleton without numerical constants. Both the
model output and the targets are expressed in prefix notation. (Right) At test time, given new input data, we sample candidate symbolic
skeletons from the model using beam-search. The final candidate equations are obtained by fitting the constants with BFGS.

4.1. The Model Sy

For the encoder we opted for the Set Transformer archi-
tecture from Lee et al. (2019), using the original publicly
available implementation.> We preferred this to the standard
Transformer encoder, as the number n of input-output pairs
can grow to large values, and the computation in Set Trans-
formers scales as O(nm) instead of O(n?), where m < n
is a set of learnable inducing points (Snelson & Ghahramani;
Titsias, 2009) we keep constant at m = 50. For the decoder
we opted for a regular Transformer decoder (Vaswani et al.,
2017), using the default PyTorch implementation. Encoder
and decoder have 11 and 13 million parameters respectively.
The hyperparameters chosen for both networks — detailed
in Section A — were not fine-tuned for maximum perfor-
mance.

4.2. Pre-training Data Generator

We sample expressions following the framework introduced
in (Lample & Charton, 2019). A mathematical expression
is regarded as a unary-binary tree where nodes are operators
and leaves are independent variables or constants. Once
an expression is sampled, it is simplified using the rules
built in the symbolic manipulation library SymPy (Meurer
et al., 2017). This sampling method allows us to precisely
constrain the search space by controlling the depth of the
trees and the set of admissible operators, along with their
prior probability of occurring in the generated expression.
We opted for scalar functions of up to three independent
input variables (i.e. d, = 3 and d,, = 1). For convenience,
we pre-sampled 10 million skeletons of equations with up to

3https://github.com/juho-lee/set_transformer

three numerical constants each. At training time, we sample
mini-batches of size B = 150 of the following elements:

Equation skeletons with constant placeholders placed ran-
domly inside the expressions.

Constants values C7,C5, Cs3, each independently sampled
from a uniform distribution ¢(1, 5).

Support extrema 5,52, with S1; < Sz ; uniformly
sampled from U/ (—10, 10) independently for each di-
mension j = 1,...,d,.

Input points for each input dimension j = 1,...,d,. A
set of n input points, X; = {z; ;}I~ 4, is uniformly
sampled from U(S1 j, 52 ;,1) .

We then evaluate the equations on the input points X =
{z;}, to obtain the corresponding outputs Y.

As Y can take very large or very small values, this can
result in numerical instabilities and exploding or vanishing
gradients during training. Therefore, we convert every x;
and y; from float to a multi-hot bit representation according
to the half-precision IEEE-754 standard. Furthermore, in
order to avoid invalid operations (i.e dividing by zero, or
taking the logarithm of negative values), we drop out input-
output pairs containing NaNs.

We train the encoder and decoder jointly to minimize the
cross-entropy loss between the ground truth skeleton and
the skeleton predicted by the decoder as a regular language
model. We use Adam with a learning rate of 1074, no
schedules, and train for 1.5M steps. Overall, this results in
about 225M distinct equations seen during pre-training. See
Appendix B for more details about training and resulting
training curves.
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4.3. Symbolic Regression at Test Time

Given a set of input-output pairs from an unknown equation
e, we feed the points into the encoder and use beam-search
to sample candidate skeletons from the decoder. We then
use BFGS to recover the values of the constants, by mini-
mizing the squared loss between the original outputs and the
output from the predicted equations. Our default parameters
at test time are beam-size 32, with 4 restarts of BFGS per
equation. We select the best equation from the set of re-
sulting candidates based on the in-sample loss with a small
penalty of le-14 per token of the skeleton.*

4.4. Evaluation

We evaluate our trained model on five datasets. Unless
otherwise specified, for all equations we sample 128 points
at test time.

Al-Feynman (AIF) First, we consider all the equations
with up to 3 independent variables from the AI-Feynman
(AIF) database (Udrescu & Tegmark, 2020) 3. The resulting
dataset consists of 52 equations extracted from the popu-
lar Feynman Lectures on Physics series. We checked our
pre-training dataset, and amongst the 10 million equation
skeletons, all equations from AIF appear. However, as men-
tioned in the previous subsection, the support on which they
are evaluated, along with the constants and number of points
per equation, is continuously sampled at every training it-
eration, making it impossible to exactly see any of the test
data at training time.

Unseen Skeletons (SOOSE) This dataset of 200 equa-
tions is specifically constructed to have zero overlap with
the pre-training set, meaning that its equations are all sym-
bolically and numerically different from those included in
the pre-training set. We call it SOOSE, for strictly out-of-
sample equations. Compared to AIF, these equations are
on average significantly longer and more complex (see Ta-
ble 9). The sampling distribution for the skeletons is the
same as the pre-training distribution, but we instantiate three
different versions: with up to three constants (same as pre-
training distribution, SOOSE-WC); no constants (SOOSE-
NC); constants everywhere (SOOSE-FC, for full constants),
i.e. one constant term for each term in the equation. The
latter is extremely challenging, and since NeSymReS was
only pre-trained with up to three constants, it is far from its
pre-training distribution.

Nguyen Dataset This dataset consists of 12 simple equa-
tions without constants beyond the scalars 1 and 2, each

“While we found this strategy to work well in practice, a vali-
dation set for model selection might offer better performances with
noisy data.

>https://space.mit.edu/home/tegmark/aifeynman.html

with up to 2 independent variables. Nguyen was the main
benchmark used in (Petersen, 2021). There are terms that
appear in three ground truth equations that are not included
in the set of equations that our model can fit, specifically 25,
and z¥, which therefore caps the maximum accuracy that
can be reached by our model on this dataset.

4.5. Baselines

We compare the performance of our method with the fol-
lowing baselines:

Deep Symbolic Regression (DSR) (Petersen, 2021) Re-
cently proposed RNN-based reinforcement learning
search strategy for symbolic regression. We use the
open-source implementation provided by the authors®,
with the setting that includes the estimation of numeri-
cal constants in the final predicted equation.

Genetic Programming (Koza, 1994) Standard GP-based
symbolic regression based on the open-source Python

library gplearn .

Gaussian Processes (Rasmussen, 2003) Standard Gaus-
sian Process regression with RBF and constant kernel.
We use the open source sk1learn implementation®.

All details about baselines are reported in Appendix A.

Two notable exclusions are AIF (Udrescu & Tegmark, 2020)
and EQL (Martius & Lampert, 2016). As also noted by Pe-
tersen (2021), in cases where real numerical constants are
present or the equations are not separable, the former still
requires a complementary symbolic regression method to
cope with the discrete search. The latter lacks too many
basis functions that appear in the datasets we consider, pre-
venting it from recovering most of the equations. Moreover,
its average runtime and number of points required to solve
the equations indicated in (Martius & Lampert, 2016; Sahoo
et al., 2018) are three orders of magnitudes higher than the
standards reported by the aforementioned baselines.

4.6. Metrics

Evaluating whether two equations are equivalent is a chal-
lenging task in the presence of real valued constants.

We distinguish between accuracy within the training support
(A1), and outside of the training support (A°°9). Al is
computed with 10k points sampled uniformly in the training
support. A% is computed with 10k points in an extended
support as detailed in Appendix B, and it will be the main
metric of interest.

Shttps://github.com/brendenpetersen/deep-symbolic-
regression

"https://gplearn.readthedocs.io/en/stable/

8https://scikit-learn.org/stable/modules/gaussian_process.html


https://space.mit.edu/home/tegmark/aifeynman.html
https://github.com/brendenpetersen/deep-symbolic-regression
https://github.com/brendenpetersen/deep-symbolic-regression
https://gplearn.readthedocs.io/en/stable/
https://scikit-learn.org/stable/modules/gaussian_process.html

Neural Symbolic Regression that Scales

Al Feynman SOOSE-WC

0.0 0.0 F=mmmm—mm———— . 0.0

SOOSE-FC

SOOSE-NC

Nguyen

0.0

10K 100K 1M 10M 10K 100K 1M 10M
Dataset size Dataset size

—e— NeSymReS (ours) DSR

10K 100K 1M 10M
Dataset size

--- Gaussian Proc.

10K 100K 1M 10M 10K 100K 1M 10M
Dataset size Dataset size

---' Genetic Prog.

Figure 2. Accuracy as a function of the size of the pre-training dataset, for a fixed computational budget (~100 s) at test time. We report
reference values for the baselines to emphasize that these approaches do not improve with experience over time.

We further distinguish between two metrics, accuracy A;
and accuracy As, each of which can be either computed
iid or ood. Accuracy A; is computed as follows: for ev-
ery point (z,y) and prediction fz(z) = g, the point is
correctly classified if numpy.isclose (y, ¢) returns
True.” Then, an equation is correctly predicted if > 95%
of points are correctly classified. For this metric we can
keep all outputs, including NaNs and +oo, which are still
representative of whether the symbolic equation was identi-
fied correctly. Accuracy As is computed by measuring the
coefficient of determination R? between y and 7, excluding
NaNs and +oc0. An equation is correctly identified accord-
ing to Ay if the R? > 0.95. We found the two metrics to
correlate significantly, and in the interest of clarity we will
use only A; in the main text, and show results with A5 in
the Appendix C.

5. Results

We test three different aspects of the proposed approach: (i)
To what extent does performance improve as we increase
the size of the pre-training data? (ii) How does our approach
compare to state-of-the-art methods in symbolic regression?
(ii1) What is the impact of the number of input-output pairs
available at rest time?

(i) Accuracy as a Function of Pre-training Data

In order to test the effect of pre-training data on test perfor-
mance, we trained our NeSymReS model on increasingly
larger datasets. More specifically, we consider datasets
consisting of 10K, 100K, 1M and 10M equation skeletons.
Every aspect of training is the same as described in Section
4. We train all models for the same number of iterations, but
use early stopping on a held-out validation set to prevent
overfitting.

In Figure 7 we report the accuracy on the 5 test sets us-
ing a beam size of 32 for NeSymReS, and for all baselines
whatever hyperparameter configuration that used compara-

“With parameters atol le-3 and rtol 0.05.

ble (but strictly no less) amount of computing time. In all
datasets, increasing the size of the pre-training data results
in higher accuracy for NeSymReS. Note that the baselines
do not make use of the available pre-training data, and as
such it does not have any effect on the performance at test
time. From here onwards, we will always use the model
pre-trained on 10M equation skeletons.

Conclusion: The performance of NeSymReS steadily im-
proves as the size of the pre-training dataset increases, ex-
ploiting the feature that symbolic equations can be gen-
erated and evaluated extremely quickly and reliably with
computers. The trend observed appears to continue for even
larger datasets, in accordance to (Kaplan et al., 2020), which
leaves open interesting avenues for extremely large scale
experiments.

(ii) Accuracy as a Function of Test-time Compute.

For every method (including baselines), we vary the cor-
responding hyper-parameter that increases how much time
and compute is invested at test time to recover an equation
from observing a fixed set of input-output pairs. We report
the hyper-parameters and ranges in Table 1.

Making a fair comparison of run-times between different
methods is another challenging task. To make the compar-
ison as fair as possible, we decided to run every method
on a single CPU at the time. Note that this is clearly a
sub-optimal hardware setting for our 26-million parameters
Transformer, which would be highly parallelizable on GPU.

The results on all five datasets are shown in Figure 3 and Fig-
ure 4. On all datasets, our method outperforms all baselines
both in time and accuracy by a large margin on most bud-
gets of compute. On AIF our NeSymRes is more than three
orders of magnitudes faster at reaching the same maximum
accuracy as the second-best method, i.e. Genetic Program-
ming, despite running on CPU only. We attribute the low
accuracy achieved by (Petersen, 2021) to the presence of
constants, to the fact that their model does not directly ob-
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Figure 3. Accuracy in distribution as a function of time for all methods ran on a single CPU per equation.
Al Feynman SOOSE-WC SOOSE-FC SOOSE-NC Nguyen
0.4 0.3
0.75 W_,/ 0.4 0.6
0.2 y
o
8. 02 0.2 0.4
<T 05 0.1 /\/.r"‘/. 02 .,
./.4’0/'/. .
000~ : : 0.01ese . 001 < . . 0.01se—e k./ 0.0 : T ;
101 102 103 101 102 10° 10! 10?2 103 10* 102 10° 10! 102 103

CPU seconds CPU seconds

—e— DSR —e— Gaussian Proc.

CPU seconds

—e— Genetic Prog.

CPU seconds CPU seconds

—e— NeSymReS (ours)

Figure 4. Accuracy out of distribution as a function of time for all methods ran on a single CPU per equation.

serve the input-output pairs, and the use of REINFORCE
(Williams, 2004). The Gaussian Process baseline performs
extremely well in distribution, reaching high accuracy in a
very short amount of time, but poorly out of distribution.
This is expected as it does not try to regress the symbolic
equation. On Nguyen, NeSymReS achieves relatively high
scores more rapidly than the other baselines. For large
computation times (=~ 103 seconds) NeSymReS performs
comparably with DSR despite the latter being fine-tuned on
two equations of the benchmark (Nguyen-7 and Nguyen-10).
The relatively lower performance of NeSymReS on SOOSE-
NC can be explained by the fact that both datasets do not
have any constants in the equations, while NeSymReS is
trained with a large prior on the presence of constants.

Conclusion: By amortizing the computation performed at
pre-training time, NeSymReS is extremely accurate and
efficient at test time, even running on CPU.

Table 1. Hyper-parameters that vary to increase the amount of
compute invested by every method.

Method Hyper-param  Range

G. Proc. (Rasmussen, 2003) ~ Opt. restarts {8, 16, 32}
Genetic Prog. (Koza, 1994)  Pop. size {210, ..., 217}
DSR (Petersen, 2021) Epochs {22,...,27}
NeSymReS (ours) Beam size {2°)...,2%}

(iii) Performance Improves with more Points p

In practice, depending on the context, a variable number of
input-output pairs might be available at test time. In Figure
5, we report the accuracy achieved for a number of input-
output points that varies in the range from 1 to 1024. Even
though NeSymReS was pre-trained with no more than 500
points, it still performs reliably with fewer points.

Conclusion: NeSymReS is a flexible method and its perfor-
mance is robust to different numbers of test data, even when
such numbers differ significantly from those usually seen
during pre-training. Furthermore, its accuracy levels grow
with the number of points observed at test time.

1.004
g-u-u-u-m 0.8 CEE
m-n u-m
0.75 J/ 064 =
b} ,’. 3 /'.
o509 % 0. : e
.'I o-0-%® .,' y
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/ ¥ J | &
0.00 {8-e-0* 0.0 JH-g ~®- AlFeynm.
L B R
4 16 64 2561024 4 16 64 2561024

Number of test points Number of test points

Figure 5. Accuracy as a function of number of input-output pairs
observed at test time.
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6. Discussion

Building on the recent successes of large scale pre-training,
we have proposed the first method that learns the task of
symbolic regression. This approach deviates from the ma-
jority of existing techniques in the literature which need to
be retrained from scratch on each new equation and does
not improve over time with access to data and compute
(Sutton, 2019). We showed empirically that by pre-training
on a large distribution of millions of equations, this simple
approach outperforms several strong baselines, and that its
performance can be improved by merely increasing the size
of the dataset. The key feature that enables this approach is
that — unlike for computer vision and natural language —
high-quality training data can be generated efficiently and
indefinitely using any standard math library and a computer.

In pre-training, the data generation plays a crucial role
within our framework. By changing this distribution over
equations (including support, constants, number of terms
and their interactions), it is possible for the user to finely
tune the inductive bias of the model, adapting it to specific
applications. In light of its favourable scaling properties and
its powerful prior over symbolic expression, we believe that
our model could find applications in several domains in the
Natural Sciences and engineering, control, and model-based
Reinforcement Learning. The scale of our experiments is
still relatively small compared to the largest large-scale ex-
periments run to date (Brown et al., 2020; Devlin et al., 2018;
Chen et al., 2020b), both in terms of dataset and model sizes.
Nonetheless, the results we showed already seem to indicate
that NeSymReS could improve significantly with access to
extremely large scale compute.

Time and Space Complexities The approach we pre-
sented scales favorably over several dimensions: computa-
tion scales linearly in the number of input-output points due
to the Set Transformer (Lee et al., 2019), and linearly in
the number of input dimensions. For future work, it would
be interesting to train even larger models on larger datasets
with more than three independent variables.

Limitations Even though our approach can scale to an
arbitrary number of input and output dimensions, there are
limitations that should be considered. Fitting the constants
using a non-linear optimizers like BEGS can prove to be
hard if the function to be optimized has several local minima.
In this case, other optimization strategies that can deal with
non-convex loss surfaces might be beneficial, such as CMA-
ES (Hansen, 2016). One more limitation of our approach
is that the pre-trained model as presented cannot be used
at test time if the number of input variables is larger than
the maximum number of variables seen during pre-training.
Finally, one more limitation of the neural network we adopt
is that it does not directly interact with the function evaluator

available in the math libraries of most computers. If, for
example, the first candidate sampled from the network is
completely wrong, our current approach cannot adjust its
posterior over equations based on this new evidence, but
simply sample again.

Conclusions What are the desirable properties of a strong
symbolic regressor? It should:

* scale favourably with the number of datapoints ob-
served at test time and with the number of input vari-
ables;

* improve over time with experience;

* be targetable to specific distributions of symbolic equa-
tions;

* be flexible to accommodate very large or very small
values.

In this paper, we showed that all of these properties can
be obtained, and provided a simple algorithm to achieve
them in the context of symbolic regression. Our largest
pre-trained model can be accessed on our repository.
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