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9. Proof of Lemma 1

Let (x*, a*) be a solution to the VI in (17). We want to
show that (z*, a*) € /\/'op[. First, since the VI holds for all
o, we can pick @ = a*,soforallx € X

(x — 2", F (z*,a")) <0. 21

Then by Proposition 1.4.2 in (Facchinei & Pang, 2007), «*
is a NE (note that because F' (x, a*) is strongly monotone
in x, then r,, (x,,x_,) is concave in x,, for each n and

xr_,).

For any k, we can pick * = x* and a = o such that
ol = a* forall | # k and of = o*F + ¢ for some £ > 0,
and get from the VI in (17) that

EZ

Now let k be a coordinate for which o** > 0 (if it exists)
and pick * = z* and @ = « such that oy = a*! for all
| # k and af = 0. Then the VI in (17) gives

a*k Z ~1;)>0 (23)

so from (22) and (23) we conclude that 25:1 ik = ;.
Hence for every a* € A* we have that for all &

N N
Z =15 or [Z o < IFand ap = 0] (24)
n=1 n=1

so (x*, a*) € Nopr.

Now let (z* (a*),a*) € Nop. We want to show that
(z* (a*),a*) solves the VI in (17). Since o* satisfies
(24) for all k then for every @ € Rf

O iE
g

Additionally, Since x* (a*) is a NE then by Proposition
1.4.2 in (Facchinei & Pang, 2007) we have for all x € X
(x—a*, F (" (a"),a")) <0. (26)

*(a*), a*) is a solution to the VI.

Ry <0:>Zx*k<lk (22)

n=1

- l*> <0. (25

Hence (x

10. Proof of Lemma 2

We start by showing that a large enough a leads to a NE
where the total loads are below 1*. Let

U, = {azn

l*
<2k <k vk 27
Oxn<N,V} (27)

and let X' = X \ Uy X ... x Uy, which is a closed set as
the difference of a closed and an open set. Since 7, (x) is

continuous on the compact set X’ then max, ry (x) <M
n,ecX’

for some M > 0. If we choose a(’§ > 2N% for all k, then
k
for some player n and for all z € X’

K K N
U () =1y (w)—z agzk <M (1 - 22 = xﬁ) < 0.
k=1 k=1

(28)
Hence, no x € X” is a NE since by switching to «,, = 0
player n receives u,, (x) = 0. We conclude that z* (cvg) €
Uy X ... xUp, s0 22[:1 ziF (ag) < I for all k.

Next we use this oy to argue about the set of solutions to
our VI in (17). For each o« we have

N
<£L’ —z" (ao) 7F($7a)>+<a — O, Z Ty — l*> <

(a)
(. —z" (o), F (2" (), )) +

N
<oz—a0,z:cn —l*> =
n=1

(- 2" (a0), F (" (o) , o)) +
N
< (xn, — ) (), g —a>—|—

N
<a—ao,2wn —l*> <
n=1 (b)
N
<a —ag, Yy @ () — l*> (29)
n=1

where (a) uses the monotonicity of F (x,«) in a and
(b) follows since x* () is a NE (Proposition 1.4.2 in
(Facchinei & Pang, 2007)). Hence the set

Il
-

L = {(w,a) €EXxRY | (x— 2" (), F (z, )

N
+ <a — ao,zwn —l*> > 0} (30)
n=1

is bounded, since (29) shows that
Ly C{(z,a) |z € X, € C} (1)

where C is the following bounded convex polytope

N
<aa0,2m: (o) l*> > 0} =

K
a e RY

C{aGRf

(o, v) < (oo, v) (32)
——

>0
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where v = Zf:/:l (I* — 2} (avg)) > 0. Therefore accord-

ing to Proposition 2.2.3 in (Facchinei & Pang, 2007) the set
of solutions to the VI in (17) is non-empty and compact,
which by Lemma 1 is Nop = X™* x A*.

11. Proof of Lemma 3

Note that X £ X} X ... x Xy is closed and convex since
X, is closed convex for each n. Also note that F' (x, «)
is Lipschitz continuous in & since it is continuously differ-
entiable on the closed X. Then since F' (x, o) is strongly
monotone on X’ (given ), Theorem 2.3.3 in (Facchinei &
Pang, 2007) states that for all x € &, for some Ly > 0

e — & (@)l < Lo | — Ty (& — F (z,a))]| . (33)
Hence for * (a2) , &* (1) we have

2" (a2) — 2 ()] <

Lo ||[z* (a2) — Ly (2" (q2) — F' (2" (2) , 1)) =

Lo|j®" (az) — Iy (27 (a2) — F (2" (@2) , 1)) +

[y (27 (a2) = F (2" (a2) , 2)) —

M (& () — F (2" (o) m))\

(a)

L 0

[y (27 (a2) = F (2" (a2) , a2)) =

My (" (a2) - F (o () o) | <
Lo |IF (2" (a2) ,00) = F (2" (a2) , a2) || =
VNLyas —ail| (34
where in (a) we used that
z* (az) — lx (2" (az) — F (" (02) ,2)) =0 (35)

which follows from Proposition 1.5.8 in (Facchinei &
Pang, 2007).

12. Proof of Lemma 4
Let a1, a0 € RE. Let 2} = * (o) and x5 = z* (a2).
Since 7 is a NE, we have for every « € X that (see Propo-
sition 1.4.2 in (Facchinei & Pang, 2007)):
( — ], F (x],01)) <0 (36)
so for x = x5
(x5 —x], F (x],a1)) <0. (37)

Since x5 is a NE, we have for ¢ € X that

(x — x5, F (x5, a2)) <0 (38)

so forx = =3
(] — x5, F (x5, a0)) < 0. 39)
By adding (37) and (39) we obtain
(x5 —x], F (x5, a0) — F (], 1)) > 0. (40)

Then

— A" (az) — 2" (@) = —Allz3 — 27| >
a

(m;—mT,F(mz,al)—F(a}T,oq» (T)

(25 — @}, F (2}, @) — F (2}, o)) +

N
< (th (a2) - er (al)) , &g — a1> Z

—1 (c)
N
<Z (27, () — @}, (1)), 02 = a1> (41)
n=1

where (a) uses that F' (x, 1) is strongly monotone in &
with parameter A > 0, (b) uses the linearity of F' (z, o) in
« and (¢) uses (40).

Now let a1, e € A* and let z* (av1) , * (ev2) be the cor-
responding NE. For every k,

o If af = ok = 0 then
N * *
(a5 — af) ooy (23 (@) — 23 (@) = 0.

k

eIf of > 0 and of > 0 then

Yo wlen) = Yol ai(es) = I oso
N * *
(a5 —af) X2y (23 (a2) — 23F (@) = 0.
eIf of > 0 and of = 0 then
N * * N *
Zn:l xnk (a2) < lk: = Zn:l xnk (al) SO

(5 = o) S0ty (a3 (az) = 27 () > 0.

o If of = 0 and of > 0 then
N * * N *
Zn:l ‘Tnk (a2j\2 = lk > anl xnk (al) SO
(a5 = af) Yooy (23 (@2) = 7 () > 0.

We conclude that if a1, cvg € A* then

N
<Z () (o) — @}, (1)) , 00 — a1> >0 42

n=1

which by (41) implies that * (a2) = * (a7) .
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13. Proof of Lemma 5

First we bound the distance between x; and the new NE
x* (aty). With probability 1, for some constant Cy > 0,

|z — 2" (e)|* =

lze — 2" (cr—1) + 2" (1) — " (eu)||” =
e — 2" (e)|* + 2" () — 2" (eu)|* +
2le; — 27 () [[&" (ar) — 2™ (@) =

2

N
E Tn,t — l*

n=1

|z — 2" (ee)|* + -, L?

N
E Tnt — l*

n=1

+ 2€t_1L

[ — 2" ()| <
(e)

@, — 2 (1) ||” + Coer  (43)

where (a) is Cauchy-Schwarz, (b) follows from Lemma 3
and (c) uses that x,, 1, x; and * (a;—1) are bounded and
that % — 1 as t — oo (condition 4 of Theorem 1).

Note that 15 ® «; concatenates a«; NN times. Next
we bound the norm of the stochastic gradient vector.
With probability 1, we have that for some constants
BO, B17 BZ > 0’

nllge = @ el < (VN lall + lgel) <

t—1 N
mBo (Ilaol +3 e 1D @ = ||+ ||gt||> <
7=0 n=1

t—1
B (Z er + ||gt|> 5 By (Vei+nellgdll) 44

7=0

where (a) iterates over

laeall =

N +
o+ gy (Z T t+1 — l*>] <
n=1
N
*
Z T41 — |

n=1

el + & (45)

and (b) uses condition 3 of Theorem 1. To see that, let
p > 0. Then pick a large enough Ty such that for all ¢t >

t—1
Ty we have Blmz*TjOE’ < p. Hence we can use By =

t—1
max 4 B max "*277:067,,0,31 .
0<t<T, VEt

Now we can analyze the gradient behavior. Recall the def-
inition of F' (x, ) in (16). Then, with probability 1, for

some constants C, Cy, C3 > 0,

nE {(z: — " (ar) .9, — I @ o) | Fi} =
nE{{z: — " (a-1),9; — In @ o) | Fi}
+mE{{z" (1) — 2" () , g9, — In ® ) | Fi} <
ne (e — @ (ae-1) , E{g, — 1n ® a|Fi} — F (@4, 1))
+ 0 (e — " (1), F (T4, 1))
+E {[lz* () — 2" (1) [|lg; — In @ || [ Fi} (%)

\/Nm [zr — 2 (1)l [l — 1|
ol — 2 ()| [[E{g, [ Fo} — F (21)|]
— A ||z — & ()|
+ CreemEA{llg, — 1y ® ou | 72} (%)

10t [|2e — 2" ()| — Mg |2 — &* (1))
+ 0o} + Coympe, (46)
< Chg

(Lemma 3 and % — 1), and also that since F' (x, a;—1)
is strongly monotone in  with parameter A > 0, then

where (a) uses that ||z* () — * (ay—1)|| <

(et — " (0p—1), F (2, 0t 1)) (S)

(er — 2" (a4—1), F (2, 000-1) — F (x

*

(eti-1), 1))

< A& — 2 (e )|? @)
where (a) follows since (x — z* (o), F (x* (), &)) <0
forall @ € RYX and € X, since z* () is a NE (see
Proposition 1.4.2 in (Facchinei & Pang, 2007)). Inequality

(b) in (46) follows from (44) and the assumption in Defini-
tion 3.

Now we can bound how the distance from NE evolves.
Then, with probability 1, for some constants Cy, Cs, Cg >
0,

E{l@i -2 (@)l |7} <
(a)
* 2
E{ @ +m (g~ 1v © ) = " (@)l | 7} =
E{llz: — 2" (@) + ¢ g, — v @ aul* | 72 |
+ 20 E {(z — " (1) , 9, — In ® ) | Fi} (Sb)

e — 2" (o) |*+Coe+Ci (0 + ?E{lg I | 72 }) +
2001 ||z — @ ()| — 20 |2y — @ (cvry) |

+ QCgsf/Q + 2Csme4 (g)
(1= 2n (A = &) l&e — 2" (1) |*+2m6,+Cse1+Con;
(48)
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where (a) uses ||Ilyy — x| < ||y — | for any x € X
since X is convex. Inequality (b) uses (43), (44), and (46)
and inequality (c) uses Definition 3 and z < 2 + 1.

The last step of the proof is to use (48) to show by induction
that for every ¢t > 1

]E{Hmt—oc* (at_l)HQ} gA% (49)

for some A > 0. First we define 7} to be large enough
such that 6, < %, max {n?,m6;} < Cre; for some
C7 > 0 and also that £ ns”’l < Mdg forall t > Ty
(using conditions 1,2,4 of Theorem 1). Then we pick
A= max{lgntfgfr ZE {Hwt —* (at71)||2} ,AO} for
some A that is specified below, which is a constant with
respect to t. Hence for all 1 < ¢t < Tj (49) holds. For
t > Ty we take the expectation on both sides of (48) to
obtain

E{||mt+1 —z" }

(=20 (A= 6)E {|mff:c (cua)}

e
+ 277t5t + C5€t + ant <1 — *nt ) Anft + D()Et =
t

At (Do - 3/\A> g < A ( - /\at) < ATt
Nt 2 (®) Nt () M+1
(50)

where (a) follows for some constant Dg > 0 since §; < %

and max {nf,ntét} < Crey for t > Ty. In (b) we used
A > % so we set Ag = % and in (c¢) we used that

ng\ftsoﬁz Et+1 254_)\515
Mt Nt+1 iz Mt

14. Proof of Theorem 1
We have that with probability 1

min sy — o] =
areA*

2

N +
o + &y (Z T 141 — l*>1 —a* (g)

min
a*eA*
n=1
N 2
min ||oy + & E Toap1 — U | —a®|| =
a*eA*
n=1
N
. 2
min ||a; — a®||” + 2 E Tpir1 — U o —a®
a*eA*
n=1
N 2
2 *
+ & Z Tppe1 — || <
el (b)
mm

—a” +25t<z (T t41 — (at))vat_a*>
N
+ 24 <Z
n=1
N
+ 2¢4 <Z ) (o) = 1" oy — a*>
n=1

, (o) — @, (@), o — a*>

+ €tD1 =
(c)

N
Jnin | [lery — | +2¢; Z Tpip1— (Oét))|
N
+ 2¢4 <Z (z) (ar) — ) (")), o — a*>
+25t<2w )1 oy — *> +efD1 <
(d)

> (@nip — (at))H> Jnin [ler — oI

<1+25t
n=1

N
+ 2Etamea;4(* l<z (x

ACORES <a*>>,at—a*>
(e

A T a*>]
N

Z (Tn,t+1 — 2y, (1))

+ 2¢, +e2D; (51)

where (a) follows since [#] " can only decrease the distance
of x to the set A* since a* > 0 for all a* € A*. Inequal-

2
ity (b) uses that Hzgzl T t41 — l*H < D; for some

Dy > 0 since X is bounded, (c) is Cauchy-Schwarz and
(d) uses that min (f (x) + g (z)) < minf () + maxg ()
for any functions f (x), g (x) and then uses ||a; — a*|| <

e — a7



Online Learning for Load Balancing of Unknown Monotone Resource Allocation Games

ey — a*||* + 1. Define

N
f(a) =~ max KZ (z, (o) — 7, (7)), — a*>

n=1

HEGmeree)]

Then (3200, (@} () — =
Lemma 4 and <Zn Lz (af) =17 afa*> < 0 by
Lemma 1, for any a* € A*, s0 f (o) > 0 forall o € R%.

(a*)),afa*> < 0 by

Define the filtration G; = F; ;. By taking the conditional
expectation on both sides of (51):

E . _ %112 <
{ iy o - oI 1.} <

B{ (14 28% Ja” (a0) — @) iy s~ o[ |G}

— 2. f (o) + 2N E{||o* (ou) — @epa|| | Ge} +e7 Dy =

(1+2Ney |2 (@) — zosa ) min_flow — o[
a*eA*

—2e,f (ou) +2Ney ||l2* () — @eqa || + €7Dy (53)
Next we want to apply Robbins-Siegmund “almost”
super-martingale Theorem (Robbins & Siegmund, 1971)
based on (53). Using their notation, we have z; =

. * 2 *
— = 2N
min oy — o , Bt et ||le* ()

2Ne, ||z* (@) — @yi1]| + €7Dy and § = 2¢,f (at) > 0.

From Lemma 5 we obtain for some A > 0 that
E th 2" (ar) — @eiall p <
t=0 (a)
oo X 0o 5
ZEtE{”w () =i} < AZEM/l < 00
t=0 t=0 Tt (b)

(54)
where (a) is Fatou’s Lemma (Billingsley, 2008)
and (b) is condition 3 of the Theorem. Hence,

Yoepet |l (o) —xiq1]] < oo with probability 1
S0 Yoo Bt < ocand Y o0& < oo, also using that
Zfi 0 €2 < oo. Then (Robbins & Siegmund, 1971) states
that with probability 1

lim min [o, —o*|> = A
t—ooa* e A*

(55)
for some random variable A, and that with probability 1

iftf () < o0
t=0

(56)

Now we show that for every a ¢ A* we have f (a) > 0.
If f (&) = 0 then both the non-negative terms in (52) are
zero, so Lemma 4 implies that if f (&) = 0 then there must
exists an a* € A* such that * (&) = * (a*) and

N
0= <Zw2(a*)—l*,d—a*> =

<Zw ) =17, ~>:<im:§(&)—l*,d>

(57)

—
=

where (a) uses <ZHN:1 zl (a*) — l*,a*> =
1). Hence, by invoking Lemma 1 again, (57) and

Y@ (&) = . @ (a) < 1" imply that
(z* (&), &) solves the VIin (17), so & € A*.

Let w €  such that A (w) > 0, if exists. Then there exist
Ty (w) and a (w) , b (w) > 0 such that for all t > T (w)

a, €R(w) = {a

0 (Lemma

a—af|? <bw)

(58)
Since A* is compact (Lemma 2 shows that X* x A* is

compact) then g (o) = mif}t o — o || is continuous,
areAr
which makes R (w) compact as well.

< .
¢ (W) - aI*nEl.zI‘l\*

Since * () is continuous (Lemma 3), then f () is con-
tinuous as a maximum of continuous functions over the
compact A* (Lemma 2). Hence, éﬂé{l : f(a) = ¢ for
w
some ¢ > 0. But then oy € R (w) for all ¢ > T (w) im-
plies that },° &, f (c;) = oo, which by (56) cannot occur
for more than a measure zero set of w € Q. We conclude
that min_ lev, - a*||* = 0 as t — oo with probability 1.
areAr

Let ¢ > 0. The above implies that for almost all w €
there exists 7' (w) such that for all ¢ > T (w) there is a
sequence o (w) € A* such that

" (er) — 2 (af (@) (%) Loy —af (W) < e

TR

(59
where (a) follows from the Lipschitz continuity of * (c
(Lemma 3). However, by Lemma 4 we know that z* ()
x* for all o € A* for some NE a* such that for all &

Z xR =¥ or [Z R < I¥ and oy, = o] (60)
n=1

Finally, we conclude that

im B { [z, - 2|*} <2 im E { o, - 2" (c-1)|}

t—

. * * 2 _
+2t1$1E{\|w —z* (ey)|| }(;)0 61)

where (a) uses Lemma 5 for the first term (conditions 1, 3
and 4 imply that ;—i — 0) and (59) for the second term.



