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Abstract

Consider N players that each uses a mixture of
K resources. Each of the players’ reward func-
tions includes a linear pricing term for each re-
source that is controlled by the game manager.
We assume that the game is strongly monotone,
so if each player runs gradient descent, the dy-
namics converge to a unique Nash equilibrium
(NE). Unfortunately, this NE can be inefficient
since the total load on a given resource can be
very high. In principle, we can control the to-
tal loads by tuning the coefficients of the pricing
terms. However, finding pricing coefficients that
balance the loads requires knowing the players’
reward functions and their action sets. Obtain-
ing this game structure information is infeasible
in a large-scale network and violates the users’
privacy. To overcome this, we propose a simple
algorithm that learns to shift the NE of the game
to meet the total load constraints by adjusting the
pricing coefficients in an online manner. Our al-
gorithm only requires the total load per resource
as feedback and does not need to know the re-
ward functions or the action sets. We prove that
our algorithm guarantees convergence in L2 to a
NE that meets target total load constraints. Sim-
ulations show the effectiveness of our approach
when applied to smart grid demand-side manage-
ment or power control in wireless networks.

1. Introduction

As networks grow larger, allocating resources to users gets
more complicated. This is mainly because different users
have different preferences and requirements. Solving a
resource allocation problem in a centralized server that
knows all the parameters is infeasible for large-scale net-
works and also violates the users’ privacy. As a result, there
has been a surge of interest in distributed algorithms for re-
source allocation (Agrawal et al., 2018; Bistritz & Leshem,
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2018; Boursier & Perchet, 2019; Mehrabian et al., 2020;
Nayyar et al., 2016; Alpcan et al., 2018; Bistritz et al.,
2020; Magesh & Veeravalli, 2019; Alatur et al., 2020).

In distributed resource allocation, each user makes local
decisions on which resources to use. Since users share the
resources, the actions of one user affect the rewards of oth-
ers. For example, many users accessing the same server
cause service delay for each other. Positive network effects
are also possible if users all want to use popular resources.
High congestion on a single resource increases the oper-
ation costs for the manager, can lead to system failures,
and incurs suboptimal performance for the users. There-
fore, load balancing is a key control objective for the man-
ager that supervises the resource allocation protocol. For
distributed resource allocation, designing an efficient load
balancing protocol becomes far more challenging.

Game theory is a natural way to tackle distributed resource
allocation (Alpcan et al., 2002; Marden & Wierman, 2013;
Marden & Roughgarden, 2014). The game structure for-
malizes the effect of the interaction between users. The
players may be cooperative, or they may be selfishly inter-
ested in maximizing their reward. In large-scale systems,
obtaining performance guarantees is challenging even with
cooperative players since they have no information regard-
ing the reward functions of their peers. A Nash equilibrium
(NE) aims to predict the outcome of such a repeated in-
teraction. In monotone games (Rosen, 1965; Tatarenko &
Kamgarpour, 2019; Mertikopoulos & Zhou, 2016), which
are our focus here, simple distributed algorithms such as
gradient descent of players on their reward functions are
guaranteed to converge to a NE.

A NE does not optimize global objectives and can lead to
poor performance. In resource allocation, this means that
there is no guarantee on the total loads on each resource
at NE. However, the manager controls the prices of the re-
sources. By changing these prices the manager changes the
game and its NE. In principle, one can design prices that
guarantee a NE that balances the loads. However, this de-
sign requires knowing the reward functions of players and
their action sets. This would require the manager to collect
this information from the players, and then solve a large-
scale optimization problem. This centralized approach vio-
lates the privacy of the users and is infeasible in large-scale
networks. Even worse, the manager would need to collect
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the parameters periodically if they are time-varying, and
then solve the large-scale optimization problem again.

To converge to a load-balanced NE in an unknown strongly
monotone game, we propose an online learning approach.
In our algorithm, the manager adjusts the pricing coeffi-
cients online and receives the total load on each resource as
feedback. Such feedback is easy to monitor in practice, and
also maintains user privacy. We prove that our algorithm
converges in L2 to a NE that satisfies the target total load
constraints. Therefore, our simple algorithm offers a theo-
retically principled load balancing protocol for distributed
resource allocation in large-scale networks.

1.1. Notation

We use capital letters to denote random variables, lower-
case letters to denote their realizations, and bold letters to
denote vectors. We use the standard game-theoretic nota-
tion where x_,, is the vector of all actions except that of
player n. We use Rff the denote the K -dimensional non-
negative orthant and use 1k to denote the K -dimensional
ones vector. We use 11 4 to denote the Euclidean projection
into the set A and define []" = max {x,0} (element-
wise). We write > 0 if all the elements of x are positive.

2. Related Work

Distributed optimization (Nedic & Ozdaglar, 2009; Chavali
et al., 2014; Molzahn et al., 2017) is concerned with opti-
mizing a target objective distributedly over a network of
agents. However, these agents are non-interacting compu-
tational units so there is no game structure between them.
To cast the game as a distributed optimization with the ac-
tion profile as the variable, each agent would need to know
the effect of other agents on its reward function, which is
infeasible. Moreover, distributed optimization entails sig-
nificant communication overhead between agents.

Compared to mechanism design approaches (Parkes et al.,
2004; Heydaribeni & Anastasopoulos, 2018; Deng et al.,
2020), we focus on cooperative or myopic players and our
manager does not elicit private information from the play-
ers but only receives the sum of actions (loads) of all play-
ers.

Our approach resembles the idea of a Stackelberg game
(Mabharjan et al., 2013; Fiez et al., 2020; Balcan et al., 2015;
Birmpas et al., 2020), where the manager is the leader and
the players are the followers (usually a single follower is
considered). However, game-theoretic algorithms converge
to a NE that can be inefficient from an optimization point
of view. In resource allocation, this means that the equilib-
rium does not have load balancing guarantees. Our work
provides a mechanism that provably shifts the unique NE
to a point that satisfies our load balancing constraints.

Our learning framework can be viewed as a bandit learn-
ing problem where the manager is playing against a ban-
dit that is not stochastic nor fully adversarial (Lattimore &
Szepesvari, 2020). Instead, the rewards of this bandit are
generated by the game dynamics. This “game bandit” also
introduces a new type of noise. The goal of the manager
is to steer the unique NE to a point that has load balancing
guarantees. Hence, the type of feedback that the manager
needs is about the behavior at NE. However, the dynamics
are not at NE every turn. In fact, by changing the prices
the manager perturbs the system which complicates and
delays the convergence to the unique NE. Therefore, the
main noise in this “game bandit” is an equilibrium noise
that stems from the distance of the dynamics from the time-
varying NE.

The most closely related literature to our work is that on in-
tervention and control of games (Grammatico, 2017; Parise
& Ozdaglar, 2020; 2019; Galeotti et al., 2020; Alpcan &
Pavel, 2009; Mguni et al., 2019; Brown & Marden, 2017;
Ferguson et al., 2021). In (Tatarenko & Garcia-Moreno,
2014) it was assumed that the manager knows the reward
functions of the players, and can compute the desired NE.
This is also the assumption in (Alpcan et al., 2009; Alp-
can & Pavel, 2009), that considered the general approach
of game-theoretic control. In (Grammatico, 2017), an ag-
gregative game where the cost is a linear function of the
aggregated action was considered. It was assumed that
the manager can control the total loads the players ob-
serve, which can deviate from the true total loads. In (Mar-
den et al., 2009; Melo, 2011; Sandholm, 2007), a similar
approach to ours was considered for discrete congestion
games, where the reward function of all players is the same
convex function of the number of players that share the
chosen resource. The congestion game considered there is
a special case of monotone games that allow us to model far
more general interactions and action sets. For example, it
allows for models when not only the number of players that
share a resource matters but also their identity (e.g., their
geometric locations). Additionally, the pricing scheme in
(Marden et al., 2009; Melo, 2011; Sandholm, 2007) re-
quires the manager to know the reward functions. Con-
trol of dynamic Markov potential games was considered in
(Mguni et al., 2019), where it was assumed that the man-
ager knows the players’ reward functions and can simulate
the game.

One application where load balancing is crucial is demand-
side management (DSM) for the electricity grid. DSM can
be done by incentivizing players to delay the operation of
some of their appliances (Deng et al., 2015; Nekouei et al.,
2014). This is typically achieved by varying the prices of
energy throughout the day such that they reflect the cost of
producing energy. It has been shown in (Chen et al., 2014)
that if the energy costs vary with the total energy consumed
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at each hour, the peak demand decreases. However, (Chen
et al., 2014) has no peak demand guarantees.

In wireless networks, load balancing takes the form of
transmission power control. Game-theoretic design of
single-channel power control (i.e., one-dimensional) was
studied in (Alpcan et al., 2002; Zhou et al., 2020) under the
wireless interference model.

3. Problem Formulation

Consider a set of players N = {1,..., N}, where player
n chooses an action @, = (zp.,...,25) € X, that repre-
sents how much to use from each of the K resources, where
X, C Rf is a convex and compact set such that 0 € &,.
Let ¥ = A& X... x Xn. Each player n has a utility function
Uy (; ) : X — R of the form

K
k, k
U (z; ) =1y () — Z a“xy (D
k=1
where o = (a?,...,a) are pricing coefficients con-

trolled by the manager of the game, as explained below.
We refer to 7, (x) as the reward function of player n. In
many applications, 7, () encodes the value player n has
for usage vector x,,, minus the cost of using these resources
given the loads as determined by the actions of other play-
ers, x_,. However, our model allows for more general
reward functions. We assume that r,, () is twice continu-
ously differentiable for each n. Without loss of generality,
we assume that r, (0, x_,,) = 0 forall _,, and n, so play-
ers receive no reward if they do not use any resources. Our
main assumption on the game structure is that it is strongly
monotone, defined next:

Definition 1. Define the gradient operator of the game
F(x): RNE 5 RNK g5

F(x) = (Vg (x1,2-1), ..., Vayrn (N, T_N)) .
(2)
We assume that there exists A > 0 such that for all x,y €
X we have

(y—a,F(y)—F(x) <-A|ly—=* 3

which means that the game G = (N, {X,,},,, {un},) is a
strongly monotone game with parameter A > 0.

Definition 1 implies that for each n and & _,,, 7, (€, 1)
is concave in @,. The linear term in (1) does not af-
fect the strong monotonicity of G which depends only on
{r»}. Monotone games are a well-studied class of games
(Facchinei & Pang, 2007) that includes strictly concave po-
tential games as a special case (Mertikopoulos & Zhou,
2016). A strongly monotone game has a unique (pure) NE
(Rosen, 1965), defined as:
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Figure 1: Control of a resource allocation game

Definition 2. A strategy profile (:c;,a:*_n) € X is called
a pure Nash equilibrium (NE) if u, (a::‘”a:’in;a) >

Up, (:cn,a;*_n; a) forall x,, € X,, andalln € N.

Our game evolves in discrete time. At turn ¢, given pric-
ing coefficients cv;_1, players pick their actions {x,, ; }, the
manager observes the total loads ZQ’ZI Tp+ as feedback
and sets the new pricing coefficients o, according to (6),
as discussed below. The system is illustrated in Fig. 1.

Since the game is strongly monotone, the uncontrolled
players, gradually improving their rewards using gradient
descent, will converge to the unique NE x* (), which is a
function of . In resource allocation, a NE is typically inef-
ficient, possibly even for all players, since the loads are not
balanced. In a NE, players can keep using an overloaded re-
source since it is optimal given that all other players would
not change their choices. An overloaded resource leads to
slow service, system failures, and high operation costs, all
while other resources are underutilized.

Our objective in this work is to meet the target loads I*, if
feasible (as discussed below). The manager can set [ to
optimize for application-specific objectives such as system
efficiency, regulations, and operation costs. In the electric-
ity grid, the manager can be the utility company running
DSM to cut the production costs of energy at peak hours
(see Subsection 5.1). In wireless networks, the manager
can be an access point coordinating a protocol that mini-
mizes the power consumption of the devices and the inter-
ference in the network (see Subsection 5.2). Other exam-
ples are load balancing in data-centers (Bourke, 2001) and
control of parking resources (Dowling et al., 2017).

Therefore, the manager’s goal is to guarantee that the game
converges to a NE that satisfies the given total loads con-
straints I* by controlling the non-negative pricing coeffi-
cients . Formally, the manager wants to steer the dynam-
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ics {x,, +} into the following set of load-balanced NE:

N
Nopt = {a: (@), o | e RE D ik (o) =1
n=1

N
or [Z ¥ (a*) <1} and oy, = O] ,Vk} “4)
n=1

where * (a*) is the NE of the game given a*. We also
use the notation Nop = X' x A* such that a* € A* if and
only if (x* (a*) , a*) € Nop.

4. Online Load Balancing Algorithm

Intuitively, if the elements of ¢ are extremely large, the
total loads at NE will drop below *, resulting in an under-
utilized system. Hence we also want to guarantee that the
resources are utilized, such that their load is exactly the tar-
get load if it is feasible. In (4), we only allow resource k
to be under-utilized when the players do not demand more
than [} even when a* = 0. In particular, the manager will
do nothing if the uncontrolled system with acg = 0 main-
tains 25:1 x (0) < I*. The requirement in (4) can be in-
ter%reted as complementary slackness of the K constraints
Yooy Th (o) < 1" with ¢ as the dual variables.

In this paper, we avoid negative o since it may involve
potentially unbounded payments from the manager to the
players. However, if EnN:1 z} (a*) = 1" for some a* €
R our algorithm can be shown to converge to a NE with
total loads of exactly [* by allowing negative c, with only
minor modifications to our analysis.

The main challenge in guaranteeing that the dynamics con-
verge to Nopt is that the manager does not know the game,
consisting of {r,} and {X,,}. To overcome this, we pro-
pose an online learning approach where the manager learns
how to adjust o; to balance the loads by using the itera-
tion in (6) with the control step-size sequence {e;}. We
only assume that the manager can observe the total instan-
taneous loads Zﬁlzl T, at the end of turn ¢t. Measuring
the total loads is done in practice in applications such as
DSM, power control, and load balancing in data-centers.
This also maintains basic privacy for the players since the
manager does not know their reward functions and does not
even observe their individual actions.

We assume that each player runs stochastic gradient de-
scent (SGD) to optimize its reward function, also known
as gradient play. Therefore the players are myopic and do
not look to manipulate the manager using dynamic strate-
gies. This assumption is suitable for selfish players in a
large-scale network or cooperative players.

In a selfish setting, players are likely to maximize their re-
wards using a widespread online learning algorithm such

Algorithm 1 Online Load Balancing with Bandit Feedback

Initialization: Let o € X and g € RE. Let {n;}, {&;}
satisfy the conditions of Theorem 1.

Input: Target total load vector I*.

For each turn¢ > 1 do

1. Each player n updates its action using g,, ,_; and
o1 to approximate Vg, u, (x; 0):

Tt =y, (Tpi—1 + -1 (gps1 — @-1)) )
where Il v is the Euclidean projection into X,,.
2. The manager observes 25:1 mfw for each k.
3. The manager updates the pricing coefficients using
N +
ap = [atl +Et-1 (Z Tnt — l*>‘| (6)
n=1
where [2] T = max {x, 0} (element-wise).

End

as gradient descent (Zinkevich, 2003; Lu et al., 2020; Mer-
tikopoulos & Zhou, 2016). In particular, when the play-
ers do not know their reward functions, the small steps
taken by SGD allow for gradual learning, as opposed to
best-response dynamics that can have large jumps. Never-
theless, our techniques can be applied to other distributed
algorithms that are guaranteed to converge to NE.

The manager’s algorithm in (6) is robust against strategic
manipulations of a small groll\lfp of players since each player
has a negligible effecton ) ., @,, +, which is its only way
to impact (6). It is not clear if even a large group of play-
ers can manipulate (6) to increase their accumulated re-
ward over time since any manipulated change to o;; would
be temporary and incurs losses to the players. Moreover,
truthful reporting is not an issue in our algorithm since the
players do not report anything, and the manager cannot ob-
serve their actions. Instead, the manager only needs to mea-
sure the total loads on the resources it operates.

In a cooperative setting, the behavior of the players is
not something to model but to design (Bistritz & Bam-
bos, 2020). The algorithm is used as a distributed protocol
programmed into the devices in the network (e.g., WiFi).
The challenge is then not to control the selfish behavior of
the players, but to guide them towards the load balancing
objective they do not have enough information to achieve
(i.e., players do not know which o would balance the to-
tal loads). For this purpose, gradient play is an efficient
distributed algorithm, that has load balancing guarantees
when combined with the manager’s algorithm in (6).
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In many scenarios, the players do not fully know their
reward functions but instead learn them on the fly based
on the reward values they receive (i.e., bandit feedback)
or other data they collect. The gradient can then be ap-
proximated from this data using regression or other su-
pervised machine learning techniques (Leng et al., 2020).
These learning schemes make the players’ actions stochas-
tic which adds another type of noise to our analysis.

To keep our analysis general, we only require that the SGD
of each player is “proper”, as defined next. As a special
case, our algorithm can deal with deterministic actions in
the form of the standard gradient descent.

Definition 3. Define the filtration that summarizes the past

Fi=0{xn, |VT <t,¥n e N}). )

Let gl , be the approximation of % at time ¢ and

let g, = (Gnt>-- -+ Gns) a0 gy = (145 Gn,). We
define a proper SGD scheme, over all players, as a scheme
that outputs g, such that for some bias sequence {4;} and
M > 0, with probability 1:

1. 6 £ ||E{g, | F:} — F (x4)|| = Oast — oo.

2. E{llgl | Fi} <M.

Note that g, , approximates Vg, 7, () and not
Va, tn (€; a), which is approximated by g,, ; — .

Algorithm 1 details the combined scheme of the manager’s
iteration and the players’ behavior (modeled or designed).

Intuitively, the iteration in (6) works since increasing a*
will decrease the total load on resource k. However, this
simplistic intuition is missing two key aspects we discuss in
the next remarks, which make it surprising that (6) works.
Remark 1 (Equilibrium Noise). We increase o to decrease
the total load on resource k at NE 25:1 z* (o). How-
ever, ZnN:1 2k (o) is not available for the manager since
converging to the NE x* (o) typically takes (far) more
than one turn. A naive algorithm would wait till the dynam-
ics converges to NE and then run (6) on a coarse time scale
that is slower than ¢t. We prove that the manger can use
25:1 T, 41 instead if the step-sizes are carefully tuned,
which results in a much faster and simpler algorithm.
Remark 2 (Resource Coupling). The iteration in (6) is K-
dimensional, and the dimensions are coupled through the
reward functions {r,,} and the action sets {X,,}. As a re-
sult, -0 ¥ (o) does not always decrease when o
increases. Increasing o will make any other resource
more attractive and may increase its total load at equilib-
rium, even if o is unchanged. Hence, the behavior of
ery:l x* (o) as a function of a; depends on the whole
o vector and the structure of the game.

Our main result proves the convergence of Algorithm 1.
Theorem 1. Let I > 0. Assume that the players in our
strongly monotone game (Definition 1) use a proper SGD
scheme (Definition 3) with a bias sequence {6:}. If the step-
size sequences of the players and the manager, {n;} , {e:+},
are non-increasing and satisfy:

1. {n:},{e+} are square summable but not summable.

2. lim %5’ < o0.

t—oo 1
3 -t
3.3 EH < oo and lim TEr=0tt < oo,
Zt:O 774;% t—o00 \/a
_ St
4. lim *t = (0 and lim & < oco.
t—o0 Nt t—o0 't

Then, by running Algorithm I,

lim E {||:ct - w*||2} =0
t—o00

for a NE x* where for each k, either 25:1 zik = 1% or
25:1 zF < It and oy, = 0.

Condition 1 is standard for stochastic gradient descent.
Condition 2 quantifies how fast players need to learn their
reward functions (i.e., how fast §; has to vanish). Con-
dition 3 states that the control update needs to be signifi-
cantly slower than the action update. This way, players do
not “lose track” of the rapidly changing NE. Condition 4 is
merely technical and is typically implied by condition 3, as
we demonstrate next.

Conditions 1-4 hold for the sequences 1, = (tfi‘i)p, g =
e 0 = (tji(i)d such that £ < p,q < 1 (condition 1),
p+d > g (condition2) and 2¢ — ip > landp+ £ > 1
(condition 3), since by bounding the sum with an integral

-1
it Zi:o Er
VEL

Condition 4 follows since ¢ > p implies lim £t = 0, and
t—o0 Mt

< nov/Es (t+ 1)1 P73, ®)

p < 1 implies

1_M 1 1 q
1im6t:lim(t+1)p(1—<t+>)
t—oo 1 7o t—00 t+42

1 t+1)"
<Ly EED 0
Mo t—o0 t+2

Possible values are then ¢ = 0.9,p = 0.6, d = 0.4.

5. Applications

In this section, we show how our framework can be applied
in two different applications.
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5.1. Demand-Side Management in Electricity Grids

An immediate application of our results is demand-side
management (DSM) for the electricity grid. Reducing the
peak demand is the main purpose of DSM, which reduces
production costs and improves the stability of the grid.
DSM can also incentivize using electricity when renewable
energy sources are available (e.g., during daylight).

In DSM, the resources are the K different hours of the day,
and z¥ is the amount of energy consumed by player n dur-
ing hour k. The action set of player n is then

X, = {mn

where 7* and +,, are the maximal amount of energy player
n may need at hour k and throughout the day, respectively.
A common design for the reward function of player n is
(Chen et al., 2014; Deng et al., 2015; Ma et al., 2014):

K N
™ (x) = Z <UfL (zF) — Py <x§, Z xﬁ)) (1D
m=1

k=1
) represents the value player n gives to

K
0<ah <yh Y ah < %,Vk} (10)

k=1

k

n

units of energy at hour k and P* ( Zﬁf | zk ) is the

baseline price for z¥ units of energy at hour k. We assume
that there exist vy > 0 and xg > 0 such that for all n, k:

&vy, (x)
0x2

where v} (z

0%vy; (x)

92 < —wvp,Vr < xg and

<0,Vz > xg
(12)
which models the diminishing returns of the value of en-
ergy since near zero it increases faster. Every strongly
concave function satisfies this assumption, as do v¥ (z) =
log (1 + z) with vo = %,mo = 1or vk (2) = /x with
vo = x0 = 3. Let s, = Zivn , z¥ . The common design
in the literature (Chen et al., 2014 Deng et al., 2015; Ma
et al., 2014) uses the following pricing function for some

a, >0andb, >0
P (xfl,sk) = akx sk + bka: Sk (13)

It was shown in (Chen et al., 2014) that the above DSM
game is strictly monotone with Py as the cost functions of
the game, so v¥ (2%) = 0 for all n and k. Our assump-
tions on {v% } make the game strongly monotone with pa-
rameter A > 0 (see Definition 1). Our algorithm can be
programmed into the energy consumption scheduler (ECS)
of each consumer which chooses x,, ;1 a day ahead in
response to the announced oy for that day. The ECS
learns on the fly the preferences of its user, as encoded in
{vk (zF) };(:1, based on the feedback that the user occa-
sionally provides.

5.2. Power Control in Wireless Networks

Another key domain our results can be applied to is that
of power control in wireless networks (Alpcan et al., 2002;
Candogan et al., 2010; Zhou et al., 2020; Bambos, 1998).
In this application, the players are N communication links
and the manager is a close-by base station or access point.
The resources are K non-overlapping frequency channels
and x* is the transmission power of link n on channel k.
The action set of link n is then

X, = {wn

where P, is total transmission power of link n. The in-
terference link n experiences on channel k is given by
I3(®) = 3,020 G n T, Where gF,  is the channel gain
between the transmitter of link m and the receiver of link
n, for channel k. The channel gains are usually modeled as
random variables with expectations that are inversely pro-
portional to the squared distance between the devices. A
common reward function for each link n is its achievable
throughput, treating interference as noise:

k
gnn n
T ( Zlog2 <1+N T @ )> (15)

where N is the variance of the Gaussian noise.

K
xk >0, ak < meg} (14)

k=1

It has been shown that in the low-interference regime (i.e.,
Dom “n gﬁ%n is small compared to gfm for all k£ and n), the
power control game is strongly monotone (Scutari et al.,
2014; Alpcan et al., 2009). In this game, if other play-
ers use higher transmission powers, player n would also be
compelled to do so. Consequently, the NE of the power
control game is typically not energy-efficient.

The manager can obtain ) z¥ as feedback if each link

transmits a pilot sequence with power &% = po “m where

gn o 1s the channel gain between transmitter n and the man-
ager for channel &, and pg is a normalization factor. Then
>on xk is simply the interference the manager measures.
Alternatively, the manager can define the interference at its
location, ) . gk Ox as the total load on channel k. Mathe-
matically, this amounts to rescaling A&, such that the action
of player n is 7% = gn 2 which is one-to-one with z¥.

Our algorithm can steer the dynamics to a NE that achieves
better throughput than that of the uncontrolled system
while using much less power. Such a NE will save battery
for the devices while maintaining low total interference to
external communication systems, which is especially im-
portant for cognitive radios (Scutari et al., 2014). To im-
plement our algorithm, the manager simply broadcasts o
to the players over the wireless channel. Broadcasting o
does not harm energy efficiency since the manager is con-
nected to the electricity grid so it is not battery-limited.



Online Learning for Load Balancing of Unknown Monotone Resource Allocation Games

6. Convergence Analysis

In this section, we explain our proof strategy by breaking
it into lemmas. The proofs are postponed to the appendix.
In a strongly monotone game, the (stochastic) gradient play
converges to a unique NE for constant pricing coefficients
a. However, in our algorithm, the pricing coefficients o
are varying in response to the actions of the players. There-
fore, the game changes, and its unique NE * (e, ) changes
as well as a function of ;. As intuition suggests, changing
a by a little bit does not change «* (a;) by much (Lemma
3). Hence, the rate of change of z* () is controlled by the
step-size sequence {e;}. However, if the NE changes too
fast, the players cannot trace it closely enough and would
never converge to the desired NE (or to any point). The
idea behind Theorem 1 is that the search for « in (6) is a
stochastic approximation iteration, where the main noise is
the distance of ;11 from the NE x* (o), which we call
the “equilibrium noise” (see Remark 1). In Lemma 5 we
show how to tune {e;} and {n;} such that this “equilib-
rium noise” can be averaged over time, leading to a load-
balanced NE, i.e., a point in the set J\fopt from (4).

6.1. Structural Properties of the Equilibria

In this subsection, we prove static properties of the desired
NE, to which our algorithm will be shown to converge.

While the NE of the game is unique, /\fopt does not have to
be a singleton since multiple a* can lead to the same x*
vector. Additionally, the existence of the NE by itself does
not guarantee that Ny is not empty since it imposes a con-
straint on the NE. To prove results about the set ./\/Opt (e.g.,
non-emptiness), it is useful to think of (4) in the language
of variational inequalities (Facchinei & Pang, 2007).

Definition 4. Define F' (z, o) : RV x RE — RVK a5
F(:E,Oé) = (vm1r1 (:I}) — Q... 7varN (:13) - Ol) .
(16)

Define the variational inequality (VI) such that for all €
Xandalla € Rf

N
(x —x* F(z*, ™)) + <a—a*,2w2 —1")<0
n=1

(17)
and let S be the set of its solutions, such that (x*, a*) € S
if and only if (17) holds for all z € X and all & € Rf.

The next lemma shows that S is precisely the set Nop of
load-balanced NE, hence motivating the VI in (17).

Lemma 1. N,, = S.

The next lemma shows that there exist such load-balanced
NE and that the set of solutions is compact.

Lemma 2. N, is non-empty and compact.

The next lemma shows that the NE changes by a small
amount if a changes by a small amount. This is impor-
tant for our main result since the manager changes a; ev-
ery iteration, so the changes in x* (a;) need to be well-
behaved to allow for the players to stay on the path to a
load-balanced equilibrium.

Lemma 3. Ler x* (o) be the unique NE given o € Rf.
Then, there exists a constant L > 0 such that for all
1,0 € Rf

" (a2) — 2™ ()| < Llag —er||  (18)

i.e., x* () is L-Lipschitz continuous.

The next lemma shows that the total loads vector at equilib-
rium is monotone in c. This monotone behavior could have
been sufficient to show that (6) converges if the game would
have always been at equilibrium, i.e., x;1; = ** (o) for
all ¢ so there is no equilibrium noise. Furthermore, this
lemma shows that while ./\fom may include more than one
point, all of them share the same strategy profile *.

Lemma 4. Let x* () be the unique NE given o € R.
Let A > 0 be the parameter from Definition 1. Then, for
any a1, g € Rf,

K N
(0f — o) > (27F (a2) — 23 (an)) <
k=1 n=1
—Mz* (ag) —z* (a))]*. (19

Furthermore, * (1) = x* (o) for every oy, g € A*
(e, (x* (1), 1), (z* (a2) , 2) € Nopy).

6.2. Stochastic Approximation with Equilibrium Noise

In this subsection, we analyze the convergence of our algo-
rithm to the equilibria discussed in Subsection 6.1. While
the VI approach is useful to prove structural results for the
equilibria, it does not provide any algorithmic insight and
cannot be used to analyze the stochastic dynamics. Instead,
our algorithm is based on stochastic approximation. The
main source of noise in our stochastic approximation is the
equilibrium noise (see Remark 1) that emerges since the
manager changes «* () before the players can converge
to this NE. This type of noise is unique to our scenario and
requires proving convergence from scratch using martin-
gale techniques (Robbins & Siegmund, 1971).

The following lemma bounds the mean squared error of the
equilibrium noise and is the main tool to prove Theorem 1.

Lemma 5. Assume that the players use a proper SGD
scheme (Definition 3) with a bias sequence {6:}. Let
{n:},{et} be such that conditions 1-4 of Theorem 1 hold.
Then, there exists A > 0 such that for all t

Ed |zt — 2" (a)?} < AZL 20
{lzes = (@)} < a7 20)
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7. Simulation Results

In this section, we provide numerical simulations that in-
clude the two applications discussed in Section 5. In the
first two experiments, to simulate a vanishing estimation er-
ror (Definition 3), at iteration ¢, Gaussian noise with mean
o = % and variance 02 = i was added to the gra-
dients of each player. To quantify the effectiveness of our
algorithm, we compare it to the uncontrolled system where
a® = 0 for all k. For all experiments, we used the step-size
sequence 17; = (tﬁﬁ and the control step-size sequence
€y = (t:% with different values of 7y, 9. We ran 100
realizations for each experiment and plotted the average re-
sult along with the standard deviation region, which was
always small. In each realization, {af } and {z} ,} were
chosen uniformly and independently at random on [0, 2]
and [0,0.1], respectively. In all experiments, >, =¥ , was
rarely above the uncontrolled load, and our algorithm even

improved the overshoot significantly.

In Fig. 2a, we simulated the power control game from Sub-
section 5.2 with N = 300 links and K = 3 channels. We
used 179 = 0.03 and e = 0.8. The location y. of trans-
mitter n was chosen uniformly at random on a 2D square
of area 2N. The location y2 of receiver n was chosen uni-
formly at random on a 2D disk with radius one around y..
The channel gains were then given by gfwn =

n,m,k
vt —y2.17
where {ay, m, i} were chosen uniformly and independently
at random on [0.5, 1.5]. The target total transmission pow-
ers were [* = {60, 75,90}, representing constraints on the
interference caused to different external systems operating
in these frequencies. We used Ny = 0.001 in (15) and the

total transmission power was P,, = 1 for each n.

Both «; and 25:1 T, converged in less than 750 iter-
ations in all realizations. The NE of the uncontrolled sys-
tem uses total transmission powers that are higher by 9.4%,
31.3%, and 64.0% for k = 1,2, 3, respectively. The total
throughput ery:l Ty (@) at t = 750 using our algorithm
was 1184.9 £ 74.6, while that of the uncontrolled system
was 1027.8 + 71.5. We conclude that using our algorithm,
one can increase the total throughput in the network while
saving energy by reducing the average transmission power
and by extension the interference.

In Fig. 2b, we simulated the DSM game from Subsection
5.1, with ¢* = 0.001 and b* = 0 for all k. The number of
players was N = 1000 and the resources were the K = 24

hours of the day. We used 19 = 0.05, g = 0.2. The value

. . 2
functions were given by v¥ (mﬁ) = wkzk g (xﬁ) , the

maximum required energy per hour for player n at hour k
k

was vE = ‘%” for § = 0.3 and the maximal total energy

required over the day was 7y, = 2.4 for all n. Hence, w*

encodes the value of energy of user n at hour k. The ex-
pected values of w® were chosen to match the demand for

electricity throughout the day:

B 1.1,1,1,1,1,1.2,1.3,1.5,1.5,1.5,1.6, 1.6
“=15,15,15,1.5,1.6,1.8,1.7,1.6,1.6,1.5,1.3,1

and the values of w® were generated i.i.d. between players
and hours using a Gaussian distribution with mean w* and
variance 0.5 for all k. The target loads I* were chosen to be
a factor of their corresponding total load in the uncontrolled
system, with the factors given by

1.2,1.2,1.2,1.2,1.2,1.2,1.2,0.85,0.7,0.7,0.7, 0.7
0.7,0.7,0.7,0.7,0.5,0.5,0.5,0.7,0.85, 1, 1, 1

In the uncontrolled system, players are subjected to the
pricing scheme of (Deng et al., 2014), given in (13).

Both a; and Zivzl T, converged in less than 100 itera-
tions in all 100 realizations. The total loads for £ > 6 con-
verged to [} with o > 0and k = 1,...,6 converged to
slightly below [} with o* = 0, in all 100 realizations. The
social welfare Zf:/:l Ty () at ¢ = 100 using our algo-
rithm was 744.7 £ 5.3, compared to 208.9 £ 4.1 for the un-
controlled system, which uses the pricing scheme of (Deng
et al., 2014). In (Deng et al., 2014), the peak demand at
NE is reduced since prices are proportional to 25:1 Tt
However, there is no guarantee on the total energy con-
sumption which leads to an inefficient NE with high prices
due to the high demand. Using our algorithm, the prices of
producing and consuming electricity at NE drop dramati-
cally, increasing the social welfare significantly.

In Fig. 2c, we compare our algorithm to that of (Gram-
matico, 2017), which assumes utility functions of the form

T
Unp, (IB) = fn (wn) - (C 27]:]:1 wn) Ln — (KgA)T x,, for
a strongly concave f,, control vector A\, a designed ma-
trix K, and a matrix C' which is assumed to be known
to the manager. We simulated N = 1000 players with
K =2and f, (z,) = Zle q¢*/1+ 2k and C = ﬁ,
where {g¥} were chosen independently and uniformly at
random on [1,5] and K, = . The action set was
X, = {wn ’0 <k < I,Zle zk < I,Vk} for each n.
The target loads were I* = {50,100}. We used 79 = 0.2
and €9 = 0.01. The convergence time and the resulting
social welfare of both algorithms are comparable, where
(Grammatico, 2017) converges slightly faster but signifi-
cantly overshoots the total loads. The algorithm in (Gram-
matico, 2017) assumes that the manager can replace the
25:1 @+ that affects the players through u,, (z) with an
arbitrary control signal vector o. This assumption is im-
possible in scenarios where ET]LI Tyt is indirectly mea-
sured by the players, as is often the case in DSM or power
control. Hence, our algorithm is competitive with (Gram-
matico, 2017) while lifting this limiting assumption, requir-
ing no knowledge of reward parameters, and applying to a
more general class of games.
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Figure 2: Numerical performance. In (a) and (b), line formats indicate the method (left legend) and colors indicate different

resources (right legend).

8. Conclusion

We studied how to balance loads in strongly monotone re-
source allocation games where the game structure is un-
known to the manager. Our algorithm only requires the
manager to observe the total load on each resource. We
prove that our simple online algorithm guarantees the total
load constraints I* by adjusting the prices per unit of each
resource « in real-time. Specifically, the algorithm con-
verges to a NE such that o* = 0 if the total load is less
than [} at equilibrium, and otherwise, the load is exactly
I%.. The algorithm does not wait for the players to converge
to a NE but uses the feedback from every turn, overcoming
the associated “equilibrium noise”. This is an encouraging
result since our algorithm is easy to implement and main-
tains the users’ privacy since the manager does not observe
their individual actions, and they do not need to reveal their
reward functions, which might even be unknown to them.

From a technical point of view, we analyze how the NE of
the game changes when the manager changes a;. Our algo-
rithm essentially controls the unknown game such that its
NE becomes desirable from an optimization point of view.
The tools developed here to analyze the equilibrium noise
can be useful to control unknown games beyond the case of
resource allocation. Since convergence to NE is relatively
fast, this has the potential to accelerate general cooperative
multi-agent optimization (Bistritz & Bambos, 2020).

Controlling unknown games with bandit feedback is a new
online learning paradigm. The game to be controlled can
be thought of as a non-stationary but highly structured ban-
dit. Our numerical simulations show fast convergence to
the load-balanced NE, so it is interesting to analyze the
convergence time, for which Lemma 5 gives the first clue.
More generally, proving regret bounds on the manager’s
learning is an exciting new research avenue that can shed
light on the convergence time of game control schemes.
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