
Low-Precision Reinforcement Learning

A. Ethics Statement
Deep learning models have grown extremely large over
the last few years, and their computational demands keep
on increasing. This translates into substantial energy con-
sumption which can have environmental consequences. By
performing model training and inference in low precision,
it becomes possible to reduce energy expenditure. Deep
reinforcement learning methods have many practical appli-
cations and can quickly transform into products such as
domestic robots and self-driving cars. Upon commercial-
ization, low-precision RL could enable substantial energy
savings. RL has the potential for military and malicious
applications, but also positive societal outcomes such as
scientific discovery and autonomous vehicles. We do not
perceive that our work differs significantly from other RL
work in this regard.

B. Experimental details
The hyper-parameters for SAC, following (Yarats &
Kostrikov, 2020), are given in Table 4. We also use the
network architecture of (Yarats & Kostrikov, 2020): both
the actor and critic networks have hidden depth 2 and hidden
dimensions 1024. The actor outputs log σ for the actions,
which is coerced to lie in [−5, 2] via a tanh non-linearity.
The hyperparameters of our methods are listed in table 5.
For dynamic loss scaling, we follow the strategy of Py-
Torch amp (Carilli, 2020). The scale is initialized at some
large value init grad scale. After each backward pass, we
inspect the gradients. If there are non-finite values, we de-
crease the loss scale by a factor of 2. If we observe no such
issues for inc grad scale freq consecutive epochs, we in-
crease the scale by a factor of 2 and reset this counter. To
choose a proper K in eq. (2), one needs to consider Mmax,
the largest number that can be represented in the numerical
format. To avoid overflow of log(1 + exp(x)) in the back-
wards pass in a naive implementation, one should exchange
it for a linear function for x ≈ logMmax. Larger limits are
possible depending on how the soft-plus function is imple-
mented, we take 10 as it is a round number and works well
in practice. The Kahan-momentum updates are made to a
scaled buffer to avoid underflow as τ can be small, we use a
scale of 1e4.

C. Proof of Statement 1
hAdam. We prove this by induction on the statement wt =√
vt. It holds at t = 0 as both buffers are initialized to zero,

thus we only need to prove the induction step. Assuming
wt =

√
vt we have

wt+1 = hypot(
√
βwt,

√
(1− β)gt+1)

Table 4. Hyper-parameters used for SAC, following (Yarats &
Kostrikov, 2020).

Parameter Value
γ 0.99
T0 0.1
τ 0.005
αadam 1e-4
εadam 1e-8
β1adam 0.9
β2adam 0.999
batch size 1024
target update freq 2
seed steps 5000
log σ bounds [-5, 2]
actor update frequency 1

Table 5. Hyper-parameters for our methods.
Parameter Value
init grad scale 1e4
inc grad scale freq 1e4
K 1e1
Kahan-momentum scale 1e4

= hypot(
√
β
√
vt,
√

(1− β)gt+1)

=
√
βvt + (1− β)g2t+1 =

√
vt+1

For the Adam/hAdam updates we then have m√
v+ε

= m
w+ε ,

and thus the updates are identical.

Compound loss-scaling. For any γ > 0 we have γm
γ(w+ε) =

m
w+ε . Thus, as long as ε is scaled by γ, this modification
changes nothing in infinite precision.

Normal-fix. In infinite precision we have (x−µ)2
σ2 =(

x−µ
σ

)2
. Thus, the normal fix will not change anything.

Kahan-momentum. In infinite precision where arithmetic
is commutative and associative, Kahan summation reduces
to normal summation.

Kahan-gradients. In infinite precision where arithmetic is
commutative and associative, Kahan summation reduces to
normal summation. �

D. Infrastructure
Experiments were conducted with PyTorch 1.7.0 on Nvidia
Tesla V100 GPUs using CUDA 10.2 and CUDNN 7.6.0.5,
except for the performance measurements where we also



Low-Precision Reinforcement Learning

consider CUDA 11.0 and CUDNN 8.0.0.5. See Appendix H
for details on the performance measurements.

E. Additional Experiments
We here present some additional supporting experiments.
In Figure 9 we show the original ablation experiments with
results broken down by task. We see that all tasks require
several of the proposed methods to work well, but also vari-
ation between tasks. Specifically, it seems like some tasks
require fewer methods to work well – suggesting that these
are more robust to numerical issues. To further verify that
our proposed methods contribute individually to the per-
formance, we perform an ablation experiment where we
remove one component from the final agent which uses
all other techniques. The results, averaged over seeds and
environments, are shown in Figure 7. We see that all pro-
posed methods are needed to reach satisfactory performance
across all games.

We also compare our proposed method against the baselines
from the main text with some hyperparameter modifications.
Specifically, we consider 1) using the default amp settings
for the loss scaler schedule – an initial scale of 216 and a
growth interval of 2000. We refer to this modification as
amp in the figures. We also consider 2) to increase ε in
Adam by a factor of 10 to stabilize training. We refer to
this modification as eps in the figures. Results are shown
in Figure 8. None of these methods improve the training
substantially.

In the main text, we compare against training RL from
pixels with weight standardization applied to the linear layer.
In Figure 10 we compare our method (which uses weight
standardization) against an fp32 baseline which does not.
Again, the results are close.

F. Random Parameters
Most RL algorithms requires hyperparameter tuning to suc-
cessfully adapt to new environments. In the main text,
we simply use the default hyperparameters from (Yarats
& Kostrikov, 2020). To demonstrate the parameter stability
of our method, we now consider random hyperparameters.
We generate five sets of random hyperparameters, randomiz-
ing learning rate α, discount γ, initial temperature T0, batch
size, critic update speed τ , action bound as per Table 6,
keeping other parameters from (Yarats & Kostrikov, 2020)
(see Table 4). The average scores are given in Table 7, and
our method performs close to fp32 across the different hy-
perparameter groups, thus showing that our method is stable
across hyper parameters.

crash

Figure 7. We remove one of our proposed method from the com-
plete agent (which uses the other 5 methods) and then train the
agent in fp16. Results are averaged over seeds and environments.
Removing any single method decreases the performance, sug-
gesting that all proposed methods are needed to reach the final
performance.

G. Details on RL from Pixels
The hyper-parameters we use for SAC from pixels fol-
low (Kostrikov et al., 2020). They are largely the same
as for SAC from states, the differences are listed in Ta-
ble 9. We use 100 as the scale of the Kahan momentum
and add a ε (1e−4) to the outputted σ of the actor. This pre-
vents underflow which now can happen as (Kostrikov et al.,
2020) uses a larger range for the stds. Otherwise, we use
hyper-parameters from Table 5 for our methods. Following
(Hafner et al., 2019; Kostrikov et al., 2020) we use action
repeat for the tasks as per Table 8. Images are resized to
84-by-84 RGB images, we then use frame stacking of three
to get input shapes of (9, 84, 84). We follow (Kostrikov
et al., 2020) and apply image augmentations to the input.
Specifically, we use random cropping with padding by 4 and
input both an augmented batch of size 512 and an original
batch of 512 to the critic network, resulting in a total batch
size of 1024. The actor and α uses a batch size of 512 for
their updates.

For the CNN encoder, we use four convolutional layers with
ReLu non-linearity between them. All convolutional layers
have spatial extent 3-by-3, the first layer uses a stride of 2,
the others use stride 1. By default, all convolutional layers
have 32 filters. The feature map from the convolutions is fed
into a linear layer which outputs a 50-dimensional vector
which is fed into a layer-normalization layer (Ba et al., 2016).
We occasionally observed the internal variance calculations
of the layer normalization overflowing. To remedy this, we
apply weight standardization (Qiao et al., 2019) to the linear
layer and further down-scale output larger than 10 to 10,



Low-Precision Reinforcement Learning

Table 6. Random hyperparameters obtained. Learning rate is obtained from a log uniform distribution over [1e−5, 1e−3], min log σ
over a uniform distrubution over [−7,−3], τ over a uniform distribution over [0.0025, 1e−2], T0 over a log uniform distribution over
[1e−2, 1e−1] and batch size from the discrete distribution {512, 2024, 2048}.

γ learning rate min log σ τ T0 batch size

params 1 0.921 0.000669 -5.37 0.00331 0.0797 512
params 2 0.983 0.0000751 -5.64 0.00289 0.0137 2048
params 3 0.979 0.0000751 -6.99 0.00577 0.0122 2048
params 4 0.982 0.00097 -4.07 0.00327 0.0111 2048
params 5 0.948 0.0000263 -6.92 0.00933 0.14 1024

Table 7. Average scores for random hyperparameters. Scores are averaged across 3 seeds and 6 environments. Parameters are generated
per Table 6. The scores are similar for fp32 and our fp16 agent, demonstrating that our methods can match fp32 results robustly across
parameters.

avg. reward params 1 params 2 params 3 params 4 params 5

fp32 767 ± 11 877 ± 14 872 ± 12 887 ± 60 732 ± 50
fp16 (ours) 778 ± 27 869 ± 33 862 ± 29 880 ± 54 709 ± 36

Figure 8. The performance of our methods compared to a few
additional baselines. We specifically consider 1) standard loss
scaling, but using the amp default settings for the dynamic loss
scaling, referred to as amp; and 2) increasing the value of ε in
Adam by a factor of 10 to increase the numerical stability, referred
to as eps. None of these methods work well.

this avoids overflow in the layer-norm calculations. Since
layer-norm is invariant under rescaling the input and adding
a constant term, these modifications will not change layer-
norm in infinite precision. This strategy could likely be
implemented in the layer-norm CUDA kernel, but since it is
not open-source we defer such investigations to future work.
Please consult our code for the PyTorch implementation
which is based upon the codebase of (Kostrikov et al., 2020).

task action repeat

Cartpole Swingup 8
Reacher Easy 4
Cheetah Run 4
Finger Spin 2
Ball In Cup Catch 4
Walker Walk 2

Table 8. The action repeat hyper-parameter for each task, values
come from (Hafner et al., 2019).

Table 9. Hyper-parameters used for SAC from pixels, following
(Kostrikov et al., 2020). We only list hyperparameters that differ
from those given in table 4.

Parameter Value
τ 0.01
αadam 1e-3
seed steps 1000
actor update frequency 2
log σ bounds [-10, 2]

H. Details on Performance Measurements
Memory consumption and throughput are measured and
averaged over 500 iterations, with 500 iterations as a warm
start. We include momentum updates for the target net-
work in these measurements. Time is measured with CUDA
events, which are provided natively in PyTorch. Memory is
simply measured as the maximum CUDA memory allocated
during training, which again is provided natively in PyTorch.



Low-Precision Reinforcement Learning

reacher-reach cart pole swing walker-walk

finger-spin cheetah-run ball-in-cup

crash

crash
crash

crash
crash

crash

Figure 9. Performance of fp16 training as we add our proposed methods one by one. Scores are broken down by individual tasks. For
all tasks, many proposed methods are needed to reach satisfactory performances. However, the games differ in how many are needed,
suggesting that some tasks might be more numerically robust. This figure follows Figure 3, but for individual tasks.

We observed non-deterministic CUDNN sometimes settling
for sub-optimal GPU kernels. To provide the memory and
compute measurements closest to optimal performance, we
report the best numbers obtained when setting CUDNN to
deterministic or non-deterministic and when using 1) CUDA
11.0 and CUDNN 8.0.0.5 or 2) CUDA 10.2 and CUDNN
7.6.0.5.

In Table 10 we show the performance of SAC from states
and observe that the gains become very large as the com-
putational demands grow. Performance differences for the
largest models might be related to cache issues rather than
the absolute improvement in speed for individual floating-
point operations. For the smallest models, where updates
take less than 20 milliseconds, the overhead of our methods
is larger than the gains from using half-precision numbers.
Again, the reason for this is likely that such small workloads
do not saturate available parallel resources on the V100, for
less performant hardware we would expect a larger differ-
ence for small configurations. In Table 11 we instead show
the memory footprint for SAC from states. The improve-
ment is relatively constant but scales somewhat differently
with the batch size of model capacity. This is natural as the
memory footprint of Kahan summation scales with model
size. We have observed that moving the entire network to

Table 10. Time (milliseconds) for processing one minibatch for
SAC from states as a function of network width and batch size
(bsize), measured for the Cheetah task. For the smallest model,
where a update takes less than 20 milliseconds, the overhead of
our fp16 method is larger than the gains. However, as the compu-
tational demands increase the benefits grow very large.

width 1024 1024 4096 4096
bsize 1024 4096 1024 4096

fp32 16.63 17.94 58.22 202.38
fp16 (ours) 17.38 16.99 20.58 45.64

improvement 0.96 1.06 2.83 4.43

half-precision, without any further modifications, can result
in memory savings slightly under 50%. Thus, it seems like
the CUDA kernels or the tensor caching policy is not iden-
tical for fp32 and fp16. If they were, we would likely see
slightly larger memory improvements.

I. Comparison of Learned Models with
Different Numerical Precision

We now investigate how differences in precision influence
the learned neural network models. In Figure 11, we show



Low-Precision Reinforcement Learning

reacher-reach cart pole swing walker-walk

finger-spin cheetah-run ball-in-cup

Figure 10. Learning curves for SAC trained from pixels comparing standard fp32 training and training in fp16 with our modifications.
The fp32 baseline here does not use weight standardization. Average performance is again close.

Table 11. Memory (MB) consumed for SAC from states as a func-
tion of network width and batch size (bsize), measured for the
Cheetah task. The memory benefits are relatively constant across
computational demands, but scale slightly differently with batch
size and model capacity. This is natural as Kahan summation
requires storing tensors the size of the model weights.

width 1024 1024 4096 4096
bsize 1024 4096 1024 4096

fp32 128 320 1265 1973
fp16 (ours) 77 185 826 1163

improvement 1.67 1.73 1.53 1.7

the L1 distance between the model weights learned with
different precision – full fp32 precision and half fp16 pre-
cision. In Figure 12, we show their difference in terms of
the predicted Q value on the same state. Models trained
with different precision differ in weights, and the difference
grows with training. The Q value difference increases in
the beginning but will eventually converge, although not
to 0. The convolutional model (trained on images) has a
larger difference as well as variance compared with the lin-
ear model (trained on states) in terms of both model weight
and predicted Q values.



Low-Precision Reinforcement Learning

0 100 200 300 400 500
Train Episodes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

L1
 D

ist
an

ce

Learning from States
Actor
Critic

(a)

0 100 200 300 400 500
Train Episodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

L1
 D

ist
an

ce

Learning from Images
Actor
Critic

(b)

Figure 11. Average L1 distance between the actor/critic weights
during training. We compare in 2 settings: (a) learning from states
and (b) learning from images. We trained 3 pairs of SAC agents,
each pair with the same random seed, and report the L1 distance
between learned weights averaged over 3 pairs.

0 100 200 300 400 500
Train Episodes

0

10

20

30

40

50

L1
 D

ist
an

ce

Q

Learning from States
Learning from Images

Figure 12. Difference between the Q value prediction from learned
models. We trained 3 pairs of SAC agents, each pair with a same
random seed, and report absolute value of difference between each
pair’s predicted Q values averaged on 2, 000 states encountered
during training.


