
Multiplying Matrices Without Multiplying

A. Quantizing Lookup Tables
Since the lookup table entries naturally occupy more than
8 bits even for 8-bit data (since products of 8-bit values
require 16 bits), some means of quantizing these entries
is necessary to enable vectorization. Unfortunately, exist-
ing quantization methods are not applicable to our prob-
lem setting. The scheme of Blalock & Guttag (2017) re-
quires knowledge of B at training time, while the scheme
of André et al. (2017) and André et al. (2019) is only ap-
plicable for nearest-neighbor search. We instead use the
following approach, where T ∈ RM×C×K is the tensor of
lookup tables for all M columns ofB, T q is the quantized
version of T , δ ∈ RC is a vector of table-specific offsets,
and α−1 is an overall scale factor:

δc , min
m,k

Tm,c,k (12)

α−1 , 2l, l = max
c

⌊
log2

(
255

maxm,k(Tm,c,k − δc)

)⌋
(13)

T qm,c,k , α−1(Tm,c,k − δc). (14)

This is similar to equations 15 and 16, but with the scale
factor pooled across all codebooks instead of unique to
each input column. The α used here is the same as that in
equation 2, and the matrix β in equation 2 has entries equal
to
∑
c δc (plus the debiasing constant from our averaging-

based aggregation).

B. Quantization and MADDNESSHASH

The use of at most 16 leaves is so that the resulting codes
use 4 bits. This allows the use of these same shuffle instruc-
tions to accelerate the table lookups as in Blalock & Guttag
(2017).

The only subtlety in vectorizing our hash function is that
one must execute line 4 using shuffle instructions such as
vpshufb on x86, vtbl on ARM, or vtbl on PowerPC.
In order to do this, the split values and scalars xjt must be
8-bit integers. We quantize them by learning for each split
index j a pair of scalars (γj , δj), where

δj , min
i
vji (15)

γj , 2l, l =

⌊
log2

(
255

maxi v
j
i − δj

)⌋
(16)

This restriction of γj to powers of two allows one to quan-
tize xjt values with only shifts instead of multiplies. The
v values can be quantized at the end of the training phase,
while the xjt values must be quantized within Algorithm 1
before line 5.

C. Subroutines for Training
MADDNESSHASH

The optimal split threshold algorithm (Algo-
rithm 3) finds the best threshold at which to split a
bucket within a given dimension. To do this, it uses the
cumulative sse function (Algorithm 4) to help evalu-
ate the loss associated with the resulting child buckets.

These algorithms exploit the fact that the sum of squared
errors can be computed using only the sum of values and
sum of squared values, both of which can be updated in
O(1) time when a vector is moved from one side of the
split to the other.

Algorithm 3 Optimal Split Threshold Within a Bucket

1: Input: bucket B, index j
2: X ← as 2d array(B)
3: Xsort = sort rows based on col(X , j)
4: sses head← cumulative sse(Xsort,false)
5: sses tail← cumulative sse(Xsort,true)
6: losses← sses head
7: losses1:N−1 ← losses1:N−1 + sses tail2:N

8: n∗ ← argminn lossesn
9: return (Xsort

n∗, j +Xsort
n∗+1, j)/2, lossesn∗

Algorithm 4 Cumulative SSE

1: Input: 2D arrayX , boolean reverse
2: N,D ← shape(X)
3: if reverse then
4: ∀i swap(Xi,d,XN−i+1,d)
5: end if
6: out← empty(N)
7: cumX← empty(D)
8: cumX2← empty(D)

// Initialize first row of output and cumulative values
9: out1 ← 0

10: for d← 1 to D do
11: cumXd ← X1,d

12: cumX2d ← (X1,d)
2

13: end for
// Compute remaining output rows

14: for n← 2 to N do
15: outn ← 0
16: for d← 1 to D do
17: cumXd ← cumXd +X1,d

18: cumX2d ← cumX2d + (X1,d)
2

19: outn ← outn+cumX2d−(cumXd×cumXd/n)
20: end for
21: end for
22: return out

Multiplying Matrices Without Multiplying

D. Aggregation Using Pairwise Averages
Recall that we estimate sums of low-bitwidth integers by
averaging pairs of values, then pairs of pairs, and so on.
One could reduce all C values this way, but we find that
one obtains a better speed-accuracy tradeoff by computing
the average of blocks of U values and then upcasting to
obtain exact sums of these averages. Multiplying this sum
of averages by U and adding in a bias correction term gives
one the overall estimate of the sum. One could tune U for
a particular problem and hardware, but we simply set U =
16 in all our experiments. Having a larger U imposes less
overhead because upcasting happens less often, but there
are sharp diminishing returns to this; once upcasting is rare,
doing it even less often is of little help thanks to Amdahl’s
law.

Because of our assumption that we are operating on ma-
trices, rather than a matrix and a vector, we can also im-
prove on the aggregation of existing methods (Blalock &
Guttag, 2017; André et al., 2017; 2019) by fusing the ag-
gregation of two or more output columns to hide read la-
tency. Conceptually, this amounts to tiling the loop over
output columns and alternating reads between the two cor-
responding tables within the innermost loop. This fusion
does not change the output of the computation—only how
efficiently it runs.

Having addressed these practical details, we may now pro-
ceed to the analysis of our estimator’s bias.
Definition D.1 (Averaging Integer Sum Estimator). Let
x ∈ {0, 1}C , C % U = 0, U = 2p, p ≥ 0. The Averag-
ing Integer Sum Estimator (AISE) ŝ(x) is defined as:

ŝ(x) ,
C/U∑
k=1

ŝU (xik:jk) (17)

ŝU (x) ,

{
x1 x ∈ R1

b 12 (ŝU (xleft) + ŝU (xright) + 1)c otherwise
(18)

where ik = (k − 1) · U + 1, jk = iU + U and xleft and
xright denote vectors formed by taking the initial and final
D/2 indices of a given x ∈ RD.
Definition D.2 (Pairwise Integer Sum and Sum Estimator).
For integers a and b, define

s(a, b) , a+ b (19)

ŝ(a, b) , 2µ(a, b) (20)

where µ(a, b) , b 12 (a+ b+ 1)c.
Lemma D.1 (Bias when averaging one pair). Consider two
scalars a and b, with a, b iid∼ Bernoulli(.5). Define ε(a, b) ,
ŝ(a, b)− s(a, b). Then

E[ε(a, b)] =
1

2

Proof. The proof follows immediately from considering
the four equiprobable realizations of the pair a, b. In the
cases (0, 0) and (1, 1), 2µ(a, b) = s(a, b). In the cases
(0, 1) and (1, 0), 2µ(a, b) = 2, while s(a, b) = 1.

Lemma D.2 (Variance of error when averaging one pair).
Consider two scalars a and b, a, b iid∼ Bernoulli(.5). Then

E[ε(a, b)2]− E[ε(x, y)]2 =
1

4

Proof. Using Lemma D.1, the above can be rewritten as:

E[ε(a, b)2] =
1

2

The proof then follows by again considering the four
equiprobable cases as in Lemma D.1. In the cases (0, 0)
and (1, 1), ε(a, b)2 = 0. In the cases (0, 1) and (1, 0),
(2ŝ(a, b)− s(a, b))2 = (2− 1)2 = 1.

Lemma D.3 (Bias of AISE within a subspace). Suppose
that the scalar elements xi of x are drawn from indepen-
dent Bernoulli(.5) distributions. Then

E[sU (x)− ŝU (x)] = U log2(U)/4 (21)

Proof. Observe that the computation graph can be cast as a
balanced binary tree with U leaves and each parent equal to
the integer average of its children. Consider the bias intro-
duced at each level t of the tree, where t = 0 corresponds
to the leaves and t = log2(U) corresponds to the root. The
expected error E[ξ(t, n)] introduced at a node n in level
t > 0 is given by:

E[ξ(t, n)] =
1

2
· 2t−1 (22)

where the 1
2 follows from Lemma D.1 and the scale 2t−1

is the number of leaf nodes to which the bias is effectively
applied. E.g., adding one to the estimated average of four
leaf nodes would increase the estimated sum by four. Since
there are U · 2−t nodes per level, this means that the total
expected error introduced at level t is 1

2 · 2
t−1 · 2−t = 1

4 .
Summing from t = 1 to t = log2(U) completes the proof
of the expected error. Note that t = 0 is omitted since the
leaf nodes are not the result of averaging operations and so
introduce no error.

Theorem D.1 (Bias of AISE). Suppose that the scalar el-
ements xi of x are drawn from independent Bernoulli(.5)
distributions. Then

E[s(x)− ŝ(x)] = C log2(U)/4 (23)

Multiplying Matrices Without Multiplying

Proof. This follows immediately from Lemma D.3, the
fact that the overall sum is estimated within each of C/U
subspaces of size U , and the assumption that the errors in
each subspace are independent.

We also verified Theorem D.1 numerically by summing
large numbers of integers drawn uniformly from the inter-
val 0, . . . , 255.

Note that the assumption that the elements are indepen-
dent is not especially strong in reality. This is because this
section focuses on the effects on the least significant bits
(which are the ones affected by each averaging operation),
and the least significant bit does tend to be nearly uniformly
random in a great deal of real-world data.

E. Additional Experimental Details
E.1. Choice of Matrix Multiplication Tasks

Because nearly all existing work on approximate matrix
multiplication either focuses on special cases that do not
satisfy our problem definition (André et al., 2019; Jegou
et al., 2011; Ge et al., 2014) or synthetic matrices, there
is not a clear set of benchmark matrix multiply tasks to
use. We therefore propose a collection of tasks that we
believe are both reproducible and representative of many
real-world matrices. To the best of our knowledge, our ex-
periments use over an order of magnitude more matrices
than any previous study.

E.2. Choice of Single-Threaded Benchmarks

Given the ubiquity of GPUs and multicore CPUs, it may
not be obvious why single-threaded experiments are desir-
able. There are a number of reasons we restrict our focus
to CPUs and the single-threaded case:

• To enable fair comparisons to existing work, particularly
the nearest rival, Bolt (Blalock & Guttag, 2017).

• To facilitate fair comparisons to our work by future
authors—single-threaded experiments are much easier to
reproduce and extend than multithreaded ones.

• Matrix multiplication is embarrassingly parallel with re-
spect to rows of the input and columns of the output.
There is therefore nothing “interesting” about how our
method parallelizes relative to any other; all methods re-
duce to a single-threaded kernel that can easily be ap-
plied to disjoint submatrices. While we certainly could
spend the considerable time required to construct and
debug multicore benchmarks, this would be unlikely to
yield any useful insights.

• Parallelization in modern numerical libraries is often
managed at a higher level than the lowest-level subrou-
tines. For example, the authors of FBGEMM (Khudia
et al., 2018) state: “Internally, FBGEMM is intention-
ally designed not to create any threads. Usually, such a
library is intended to be used as a backend by deep learn-
ing frameworks, such as PyTorch and Caffe2, that create
and manage their own threads.”3 I.e., a multithreaded
library calls into single-threaded subroutines (such as a
matrix multiplication function); it is this single-threaded
subroutine where we make contributions, and therefore
where we focus our experimental efforts. Independent
of common practices in modern libraries, this pattern is
also the only sensible strategy for small matrices, like
many of those we consider—the overhead of launching
and joining threads is extremely unlikely to be worth it

3https://engineering.fb.com/ml-applications/fbgemm/

Multiplying Matrices Without Multiplying

for sufficiently small matrices. We could perhaps char-
acterize where this breakpoint is, but this is a hardware-
specific result that has little to do with our contributions.

• While training of deep neural networks is typically done
on GPUs or other accelerators, trained models (includ-
ing, but not limited to, neural networks) are commonly
deployed on smartphones with just CPUs and/or graph-
ics acceleration that is no better than the CPU (Wu et al.,
2019). Since most of the billions of smartphones in the
world tend to be low-end or old, the need to deploy mod-
els on CPUs (including those with few cores) is unlikely
to change for many years.

• Creating, benchmarking, and analyzing a performant im-
plementation of our method for GPUs would require a
great deal of engineering work. We plan to create such an
implementation in the future, but believe that the many
empirical and theoretical results we currently have are
more than adequate proof of concept and already worth
sharing with the community.

E.3. SparsePCA Details

We took steps to ensure that SparsePCA’s results were not
hampered by insufficient hyperparameter tuning. First,
for each matrix product, we tried a range of λ val-
ues which we found to encompass the full gamut of
nearly 0% to nearly 100% sparsity: λ ∈ 2i, i ∈
{−5,−4,−3,−2,−1, 0, 1, 2, 3}. Second, because differ-
ent sparsity patterns may yield different execution times,
we report not times from the single matrix SparsePCA pro-
duces for a given (d, λ) pair, but the best times from any
of 10 random matrices of the same size and at most the
same sparsity. Finally and most importantly, we plot only
the Pareto frontier of (speed, quality) pairs produced for a
given matrix multiply. I.e., we let SparsePCA cherry-pick
its best results on each individual matrix multiply.

E.4. Exact Matrix Multiplication

We also implemented our own matrix product function spe-
cialized for tall, skinny matrices. In all cases, we report
the timings based on the faster of this function and Eigen’s
(Guennebaud et al., 2010) matrix multiply function for a
given matrix product.

E.5. Additional Baselines

We also tested Frequent Directions / Fast Frequent Direc-
tions (Liberty, 2012; Ghashami et al., 2016; Desai et al.,
2016), many variations of the sampling method of Drineas
et al. (2006a), projection using orthogonalized Gaussian
random matrices (Ji et al., 2012), projection using matrices
of scaled i.i.d. Rademacher random variables (Achliop-
tas, 2001), projection using orthonormalized matrices of

Rademacher random variables, the co-occurring directions
sketch (Mroueh et al., 2016), OSNAP (Nelson & Nguyên,
2013), Product Quantization (Jegou et al., 2011), and Opti-
mized Product Quantization (Ge et al., 2014).

The poor performance of many of these methods is unsur-
prising in our setting. Given that we have access to a train-
ing set on which to learn the true principal components, the
Eckart-Young-Mirsky theorem (Eckart & Young, 1936) in-
dicates that PCA should outperform any other individual
matrix sketching method employing dense projection ma-
trices, at least in the limit of infinite training data. Also,
since PQ and OPQ use 256 dense centroids (except in the
Bolt / QuickerADC variations), it is also impossible for
them to perform well when min(D,M) is not significantly
larger than 256.

E.6. UCR Time Series Archive

We set the number of returned neighbors to 128 (results
with 64 and 256 were similar). We omitted datasets with
fewer than 128 training examples, since it is not possible
for Stochastic Neighbor Compression to draw 128 samples
without replacement in this case.

In addition to being a large, public corpus of over a hun-
dred datasets from a huge variety of different domains, the
UCR Time Series Archive also has the advantage that it can
be used to produce matrix multiplication tasks of a fixed
size. This is necessary for meaningful comparison of speed
versus accuracy tradeoffs across datasets. We constructed
training and test matrices Ã and A by resampling each
time series in each dataset’s train and test set to a length
of 320 (the closest multiple of 32 to the median length
of 310). We obtained the matrix B for each dataset by
running Stochastic Neighbor Compression (Kusner et al.,
2014) on the training set with an RBF kernel of bandwidth
one. We set the number of returned neighbors to 128 (re-
sults with 64 and 256 were similar), yielding a B matrix
of size 320 × 128. Since different datasets have different
test set sizes, all results are for a standardized test set size
of 1000 rows. We wanted the length to be a multiple of 32
since existing methods operate best with sizes that are ei-
ther powers of two or, failing that, multiples of large powers
of two.

We approximate Euclidean distances using the identity
‖x− y‖22 = ‖x‖22 − 2x>y + ‖y‖22. We approximate only
the inner products x>y, since ‖y‖22 can be precomputed
for fixed exemplars y and ‖x‖22 doesn’t affect the class pre-
diction since it is constant across all exemplars for a given
input x.

Multiplying Matrices Without Multiplying

E.7. Caltech101

We only extracted valid windows—i.e., never past the edge
of an image. We extracted the windows in CHW order,
meaning that scalars from the same color channel were
placed at contiguous indices. The “first” images are based
on filename in lexicographic order.

We used pairs of filters because using a single filter would
mean timing a matrix-vector product instead of a matrix-
matrix product.

To allow meaningful speed comparisons across images, we
resized and center-cropped each image to 224 × 224 as
commonly done in image classification pipelines (He et al.,
2016a;b; Huang et al., 2017). We then extracted sliding
windows of the appropriate size and used each (flattened)
window as one row of Ã or A. We similarly flattened the
filters, with each set of coefficients forming one column of
B. In both cases, B has two columns—this is because us-
ing a single filter would mean timing a matrix-vector prod-
uct instead of a matrix-matrix product. Two columns also
made sense since Sobel filters are often used in horizon-
tal and vertical pairings, and Gaussian filters are often used
together to perform difference-of-Gaussians transforms.

Even though the RGB values at each position are naturally
unsigned 8-bit integers, we allowed all rival methods to
operate on them as 32-bit floating point, without includ-
ing the conversion when timing them. Because it only
requires checking whether values are above a threshold,
MADDNESS can operate on 8-bit data directly.

E.8. Why Not Speed Up Whole Neural Nets?

Using our ideas to accelerate overall neural networks and
other layer types would be a valuable contribution. In fact,
we are actively working on this problem. However, as we
state in the introduction and problem statement, our focus
in this paper is approximate matrix multiplication (AMM)
and we deliberately make no claim about accelerating en-
tire neural networks or convolutional layers. We limit our
scope in this way for several reasons:

1. Approximate matrix multiplication is an established re-
search problem of general interest independent of deep
learning.

2. Lifting a method from accelerating a single layer to an
overall network is challenging. Just as scalar quantiza-
tion of network parameters is simple for a single layer
but an active area of research for an entire network, so
too is using our method on multiple layers at once an
open research problem. For example, it is not clear
how to deal with the fact that distributions of activations
change throughout training, or how to efficiently incor-
porate our non-differentiable hash function. We could

show how to accelerate one internal FC layer in a net-
work, but we dont want to risk misleading the reader—it
would be unclear what conclusions to draw from such re-
sults, particularly given the difficulty of retraining / fine-
tuning without introducing many lurking variables (c.f.,
(Blalock et al., 2020)).

3. It is correct that convolution can be reduced to GEMM
using im2col, and that accelerating convolution using
our ideas would be a valuable contribution. However,
state-of-the-art algorithms for convolution exploit struc-
ture that is not available to general matrix multiply algo-
rithms. To match the performance of specialized Wino-
grad, direct, FFT-based, and hybrid convolution schemes
that do exploit this additional structure, we would have
to make modifications to our approach that would make
it less general. For example, the individual spatial po-
sitions should be encoded only once, and then reused at
multiple filter positions. Regarding Section 5.5: while
we do test our method on matrices of flattened image
patches, we do not claim that the overall pipeline of
flattening + matrix multiply constitutes a state-of-the-
art convolution method—we only claim that using our
method in this pipeline outperforms using other AMM
methods there.

In short, while we believe that our ideas show great promise
for accelerating full neural networks and more layer types,
making this happen requires much more research.

E.9. Additional Results

In Section 5, we showed the classification accuracy as a
function of wall time for the CIFAR-10 and CIFAR-100
softmax classifiers, as well as on the UCR datasets. In
Figure 8 and Figure 9, we instead show normalized mean
squared error versus time. In Figure 10 and Figure 11, we
show accuracy or NMSE versus number of operations per-
formed, where one operation is either one multiply-add or
one table lookup, depending on the method. The first two
figures illustrate that NMSE is closely related to classifi-
cation accuracy, but with imperfect NMSE still yielding
excellent accuracy in many cases. The second two fig-
ures show that our method’s superior results are not merely
caused by the use of faster CPU instructions, but also by
the use of fewer basic operations at the algorithm level.

Multiplying Matrices Without Multiplying

0.0

0.5

1.0

1
- N

M
SE

CIFAR-10

100 101 102

Speedup Over Exact Matrix Multiply
0.0

0.5

1.0

1
- N

M
SE

CIFAR-100

Approximating Softmax Classifiers

MADDNESS
MADDNESS-PQ
Exact

ScalarQuantize
Bolt
FastJL

HashJL
PCA
SparsePCA

Figure 8: MADDNESS achieves a far better speed versus
squared error tradeoff than any existing method when
approximating two softmax classifiers. These results
parallel the speed versus classification accuracy results,
except that the addition of our ridge regression is much
more beneficial on CIFAR-100.

0.0

0.5

1.0

Fr
ac

tio
n

>
0.

5

0.0

0.5

1.0

Fr
ac

tio
n

>
0.

75

100 101 102

Speedup Over Exact Matrix Multiply
0.0

0.5

1.0

Fr
ac

tio
n

>
0.

95

Approximating an RBF Kernel Classifier

MADDNESS
MADDNESS-PQ
Exact

ScalarQuantize
Bolt
FastJL

HashJL
PCA
SparsePCA

Figure 9: MADDNESS achieves the lowest squared error
at high speedups on the UCR datasets. These results
parallel the speed versus classification accuracy results.

0.25
0.50
0.75

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

CIFAR-10

107 108

Number of Operations

0.25

0.50

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

CIFAR-100

Approximating Softmax Classifiers

MADDNESS
MADDNESS-PQ
Exact

ScalarQuantize
Bolt
FastJL

HashJL
PCA
SparsePCA

Figure 10: MADDNESS achieves the best speed versus
accuracy tradeoff on the CIFAR datasets of any method
even when speed is measured as number of operations
instead of wall time. Note that fewer operations with a
high accuracy (up and to the left) is better.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Operations 1e6

0.0

0.5

1.0

1
- N

M
SE

Approximating a Sobel Filter

0.0 0.2 0.4 0.6 0.8 1.0
Number of Operations 1e7

0.0

0.5

1.0

1
- N

M
SE

Approximating a Gaussian Filter

MADDNESS MADDNESS-PQ SparsePCA

Figure 11: MADDNESS still achieves the best speed ver-
sus squared error tradeoff on the image processing
tasks when speed is measured as number of operations
instead of wall time.

Multiplying Matrices Without Multiplying

F. Theoretical Analysis of MADDNESS

F.1. Complexity

Our encoding function g(A),A ∈ RN×D has complex-
ity Θ(NC), since it does a constant amount of work per
row per codebook. Our table creation function h(B),B ∈
RD×M has complexity Θ(MKCD), since it must com-
pute the inner product between each column of B and
KC prototypes of length D. This is a factor of C worse
than PQ since we do not require the prototypes for differ-
ent codebooks to have disjoint nonzero indices. However,
this reduction in the speed of h(·) is not a concern because
N �M,D; moreover, the matrixB is often known ahead
of time in realistic settings, allowing h(B) to be computed
offline. Finally, the complexity of our aggregation function
f(·) is Θ(NCM), since it performs C table lookups for
each of M output columns and N output rows. This means
our overall algorithm has complexity Θ(MC(KD + N)),
which reduces to Θ(NCM) since we fix K = 16 and our
problem statement requires N � D.

F.2. Proof of Generalization Guarantee

In this section, we prove Theorem 4.1, restated below for
convenience.

Theorem (Generalization Error of MADDNESS). Let D
be a probability distribution over RD and suppose that
MADDNESS is trained on a matrix Ã ∈ RN×D whose
rows are drawn independently from D and with maximum
singular value bounded by σA. Let C be the number of
codebooks used by MADDNESS and λ > 0 be the regular-
ization parameter used in the ridge regression step. Then
for any b ∈ RD, any a ∼ D, and any 0 < δ < 1, we have
with probability at least 1− δ that

ED[L(a, b)] ≤ EÃ[L(a, b)]+

CσA‖b‖2
2
√
λ

(
1

256
+

8 +
√
ν(C,D, δ)√

2n

)

where L(a, b) , |a>b − αf(g(a), h(b)) − β|, α is the
scale used for quantizing the lookup tables, β is the con-
stants used in quantizing the lookup tables plus the debias-
ing constant of Section 4.4, and

ν(C,D, δ) , C(4 dlog2(D)e+ 256) log 2− log δ.

The proof relies on the observation that MADDNESS’s
training procedure can be decomposed into two sequential
subroutines: Maddness-Build-Tree, which learns
the function g(a) by constructing a binary decision tree,
and Maddness-Regress, which learns the function
h(b) by optimizing a prototype matrix P such that
g(Ã)P ≈ Ã. This observation allows us to prove 4.1 by
first providing a guarantee for

Maddness-Regress for a fixed
Maddness-Build-Tree hypothesis, and then
union bounding over the hypothesis space for
Maddness-Build-Tree. Bounding the size of
the hypothesis space is straightforward (Lemma F.1), so
the bulk of this section focuses on providing a guarantee
for Maddness-Regress. We must also prove a bound
on the loss contributed by quantizing the lookup tables
array P>b.

Lemma F.1 (Number of Hypotheses for
Maddness-Build-Tree). Let C be the number
of codebooks used by MADDNESS and let D be the num-
ber of columns in the matrix Ã on which MADDNESS is
trained. Then there are at most 2C(4dlog2(D)e+256) unique
trees that Maddness-Build-Tree can generate.

Proof. Maddness-Build-Tree learns four sets of pa-
rameters for each of the C trees it produces: split indices,
split offsets, split scales, and split values.

There are four split indices per tree because there is one
for each of the tree’s four levels. Each index requires
dlog2(D)e bits to store, so the split indices require a total
of 4 dlog2(D)e bits per tree. For each split index, there is
one split offset and scale, used to map floating point data in
an arbitrary range to the interval [0, 255] to match up with
the 8-bit split values.

The offsets require at most 25 bits each for 32-bit floating
point data, since the low seven bits can be dropped without
affecting the post-scaling quantized output. The scales are
constrained to be powers of two, and so require at most nine
bits for non-subnormal 32-bit floating point inputs (which
have one sign bit and eight exponent bits). The offsets and
scales together therefore contribute 4(25 + 9) = 136 bits
per tree.

There are 15 split values because there is one for the root of
each tree, then two for the second level, four for the third,
and eight for the fourth. Each split value is stored using
eight bits, so each tree requires 15 · 8 = 120 bits for split
values. The total number of bits used for all trees is there-
fore C(4 dlog2(D)e + 256). Note that the constant 256
being a power of two is just an accident of floating point
formats. The claimed hypothesis count follows from the
number of expressible hypotheses being at most two to the
power of the largest number of bits used to store any hy-
pothesis.

We now turn our attention to bounding the errors of the
regression component of training. Our strategy for doing so
is to bound the largest singular value of the learned matrix
of prototypes P . Given such a bound, the norms of both
g(a)>P and P>b can be bounded.

Multiplying Matrices Without Multiplying

Lemma F.2 (Regularized Pseudoinverse Operator Norm
Bound). Let X ∈ RN×D be an arbitrary matrix with fi-
nite elements. Then every singular value σi of the matrix
Z , (X>X + λI)−1X>, λ > 0 is at most 1

2
√
λ

.

Proof. LetUΣV > be the singular value decomposition of
X . Then we have

Z = (X>X + λI)−1X> (24)

= (V ΣU>UΣV > + λI)−1V ΣU> (25)

= (V Σ2V > + λI)−1V ΣU> (26)

= (V Σ2V > + V λIV >)−1V ΣU> (27)

= (V ΣλV
>)−1V ΣU> (28)

= V Σ−1λ V
>V ΣU> (29)

= V Σ−1λ ΣU> (30)

= V Σ′U> (31)

where Σλ , Σ2 + λI and Σ′ , (Σ2 + λI)−1Σ. Step
27 follows from the equality V λIV > = λV V > = λI .
Because the matrices V andU> are orthonormal and Σ′ is
diagonal, the singular values ofZ are equal to the diagonal
entries of Σ′. Each entry σ′i is equal to

σ′i =
σi

σ2
i + λ

. (32)

This expression attains its maximal value of 1
2
√
λ

when
σ2
i = λ.

Lemma F.3 (Ridge Regression Singular Value Bound). Let
X ∈ RN×D and Y ∈ RD×M be arbitrary matrices and
let W , (X>X + λI)−1X>Y , λ > 0 be the ridge
regression weight matrix. Then ‖W ‖∞ ≤

‖Y ‖∞
2
√
λ

, where
‖·‖∞ denotes the largest singular value.

Proof. Observe that W = ZY , where Z , (X>X +
λI)−1X>. Then by applying Lemma F.2 and recalling
that Schatten norms are submultiplicative, we have

‖W ‖∞ ≤ ‖Z‖∞‖Y ‖∞ ≤
‖Y ‖∞
2
√
λ
. (33)

Lemma F.4 (Bound on MADDNESS Embedding Norm).
Let g = g(a) be the encoding of an arbitrary vector a us-
ing C codebooks and let P be the prototype matrix learned
by MADDNESS using training matrix Ã with ridge regres-
sion parameter λ > 0. Then

‖g>P ‖2 ≤
C

2
√
λ
‖Ã‖∞ (34)

where ‖Ã‖∞ denotes the largest singular value of Ã.

Proof. We have

‖g>P ‖2 ≤ ‖g‖2‖P ‖∞ (35)
= C‖P ‖∞ (36)

≤ C

2
√
λ
‖Ã‖∞. (37)

The first step follows from Cauchy-Schwarz. The second
follows from g being zero except for exactly C ones. The
last is an application of Lemma F.3.

Lemma F.5 (Maximum Table Quantization Loss). Let â =
g(a)>P , where g(·) and P are trained using C codebooks
and ridge regression penalty λ > 0 on a matrix Ã with
maximum singular value at most σA, and a ∈ RD is an
arbitrary vector. Then for any vector b ∈ RD, |â>b− ŷ| <
CσA‖b‖2
512
√
λ

, where ŷ , αg(a)>g(b) + β is MADDNESS’s

approximation to a>b. α and β are the scale and offsets
used to quantize the lookup tables.

Proof. If MADDNESS had infinite-precision lookup tables,
ŷ would exactly equal â>b. We therefore need only bound
the error introduced by the quantization. By Lemma F.4,
‖â‖2 ≤

CσA

2
√
λ

. This implies that

‖â>b‖ ≤
CσA‖b‖2

2
√
λ

(38)

and therefore

−CσA‖b‖2
2
√
λ

≤ â>b ≤
CσA‖b‖2

2
√
λ

. (39)

For each of the C codebooks, this means that the value to
be quantized lies in the interval [

−σA‖b‖2
2
√
λ

,
σA‖b‖2
2
√
λ

] of width
σA‖b‖2√

λ
. Because MADDNESS quantizes the lookup tables

such that largest and smallest entries for any row of P
are linearly mapped to 255.5 and −0.5,4 respectively, the
worst-case quantization error is when the quantized value
lies exactly between two quantization levels. We there-
fore need to compute the largest possible gap between a
value and its quantization. Using 256 quantization lev-
els, the largest possible gap is 1/(256/.5) = 1/512 of
the interval width. Multiplying by the above interval width
yields a maximum quantization error for a given codebook
of σA‖b‖2

512
√
λ

. Because the errors in each subspace may not
agree in sign, their sum is an upper bound on the overall
quantization error.

At this point, we have all of the pieces necessary to prove a
generalization guarantee for Maddness-Regress save

4We use 255.5 and −0.5 rather than 255 and 0 because the
latter only guarantees that a point is within 1/510 of the inter-
val width, not 1/512. This is not an important choice and either
option would be fine.

Multiplying Matrices Without Multiplying

one: a theorem linking the norms of the various vec-
tors and matrices involved to a probabilistic guarantee.
Kakade et al. (2009) provide such a gaurantee, based on
Rademacher complexity (Bartlett & Mendelson, 2002).

Theorem F.1 ((Kakade et al., 2009), Corollary 5). LetF =
{w>x : ‖w‖2 ≤ W} be the class of linear functions with
bounded L2 norms, let S be a set of n samples drawn i.i.d.
from some distributionD over the L2 ball of radius X , and
let L(f), f ∈ F be a loss function with Lipschitz constant
L. Then for any 0 < δ < 1, it holds with probability at
least 1− δ over the sample S that

ED[L(f)] ≤ ES [L(f)] +
LXW√

2n

(
8 +

√
−log(δ)

)
.

(40)

We can now obtain our desired guarantee for the regression
step.

Lemma F.6 (Generalization Error of
Maddness-Regress). Let D be a probability dis-
tribution over RD and suppose that MADDNESS is
trained on a matrix Ã ∈ RN×D whose rows are drawn
independently from D and with maximum singular value
bounded by σA. Let C be the number of codebooks
used by MADDNESS and λ > 0 the regularization
parameter used in the ridge regression step. Further
let g(a) be a fixed (data-independent) function and
L(a, b) , |a>b − f(g(a), h(b))|. Then for all vectors
b, any vector a ∼ D, and any 0 < δ < 1, we have with
probability at least 1− δ that

ED[L(a, b)] ≤ EÃ[L(a, b)] +
CσA‖b‖2
512
√
λ

+

CσA‖b‖2
2
√

2nλ

(
8 +

√
−log(δ)

)
.

(41)

Proof. The output of Maddness-Regress can be de-
composed into

ŷ , f(g(a), h(b)) = g>Pb+ ε+ ζ (42)

where g = g(a), P is the matrix of prototypes, ε is
data-independent noise from the averaging process5, and
ζ is noise from quantizing the lookup table entries. By
Lemma F.5, ζ ≤ CσA‖b‖2

512
√
λ

(accounting for the second term
in Equation 41). We therefore need only obtain a guar-
antee for |g>Pb − a>b|. Defining w , Pb, we see
that Maddness-Regress is a linear model, and there-
fore subject to Theorem F.1. Given an upper bound on the

5We continue to make the assumption that the least signifi-
cant bits of the lookup table entries are independent Bernoulli(0.5)
random variables, which is nearly true in practice. Even if this
assumption does not hold, this noise does not contribute to the
generalization gap unless it differs between train and test sets.

Lipschitz constant of the loss, a bound on the L2 norm of
g, and a bound on the L2 norm of w, we can apply this
theorem. The Lipschitz constant for the absolute loss is 1.
The L2 norm of g is exactly C. The L2 norm of w can be
bounded as

‖w‖2 = ‖Pb‖2 ≤ ‖P ‖∞‖b‖2 ≤
σA‖b‖2

2
√
λ

(43)

using Lemma F.3.

Using this lemma, the proof of Theorem 4.1 is immediate;
we begin with Lemma F.6 and simply union bound over all
2C(4dlog2(D)e+120) hypotheses from Lemma F.1.

