
Black-box density function estimation using recursive partitioning
Supplementary material

Erik Bodin 1 Zhenwen Dai 2 Neill D. F. Campbell 3 Carl Henrik Ek 4

1. Down-stream tasks and applications
• Analytical expectations of functions with respect to the

approximation, EP̂(θ)[g(θ)], where P̂(θ) ∝ f̂(θ), and
g is an arbitrary function of θ.

• Using f̂(θ) as a proxy, allowing density queries with-
out resorting to f , and constant-time re-sampling.

• Conditional approximations P̂(θa|θb), where θ =
{θa,θb}. without requiring more evaluations of f ,

• Marginal approximations P̂(θa) =
∫
P(θa,θb)dθb,

where P(θa) may optionally be substituted with
P̂(θa,θb). Note that this constitute an integral den-
sity estimation problem for every θa ∈ Ωa, and where
DEFER chooses a finite collection of points in a deci-
sion loop and constructs a tree akin to the other prob-
lems. For the inner loop of estimating each integral∫
P(θa = θa,θb)dθb we may use an arbitrary integra-

tion method, including DEFER.

• Marginalisation also through arbitrary conditionals,
such as

∫
P(θa|c(θb))P(θb)dθb where c is a boolean-

valued function. For an example, see Figure 8 in the
paper.

• Composites of use-cases above, like estimating mutual
information I(θa;θb) = EP(θa,θb)[log P(θa,θb)

P(θa)P(θb)
],

where the joint and both marginals may be approxi-
mated first, followed by the analytical expectation of
density ratio term with respect to P̂(θa,θb), querying
the marginal approximation densities using tree search.

• Any use-case above in a (axis-aligned, hyper-
rectangular) subregion of Ω, including mass integration
or sampling, by forming a tree from a query region of
the tree.

1University of Bristol, United Kingdom 2Spotify, United
Kingdom 3University of Bath, United Kingdom 4University of
Cambridge, United Kingdom. Correspondence to: Erik Bodin
<mail@erikbodin.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

• Divergence estimation between different distributions
over the same domain (or an overlap via the above).

We provide code and examples at https://github.com/bodin-
e/defer.

2. Algorithm
Keeping track of Ẑ and the highest mass partitions At
every step of the algorithm, we keep track of the current
total mass estimate Ẑ, and the top M mass partitions, as
required for checking CR2 and CR3.

We implement both of these through aggregators which are
updated at each include and exclude of a partition in the leaf
set. The leaf set is the partitions that cover the domain in a
non-overlapping fashion at the currently finest resolution,
constituting the current Riemann sum. ’Include’ refers to the
creation of a new child node (and partition), and ’exclude’
to the removal of the previous (parent) node from this set.
To easily keep track of all the updates a partition division
should lead to, we wrap the ’divide function’ in another
function that after division (the forming of child partitions),
makes all the related updates, including the exclusion of the
divided parent node.

The aggregator for the total mass estimate keeps track of the
accumulate sum, where inclusion is addition and exclusion
is subtraction. The aggregator for the top M partitions keeps
track of such a current set of size up to M , where set updates
are handled within the inclusion and exclusion functions.

Note on implementation Densities of typical density
functions can have exceedingly small values, risking under-
flow using default float precisions. In the implementation,
we use a 128-bit float to present the total mass aggregate
and the density evaluation stored in each respective partition
node object. An alternative is to represent the logarithm of
the total mass and the densities, but these values would need
to either be transformed to higher precision before being
exponentiated and used to avoid underflow, or all checks and
operations would need to be performed on the logarithm,
which is more complicated.

https://github.com/bodin-e/defer
https://github.com/bodin-e/defer

Black-box density function estimation using recursive partitioning

2.1. Representer points

To check criterion CR2 and CR3 there are representer points
to be chosen. The representer points are used to efficiently
(but approximately) check for overlaps between respective
partitions and the two spaces Φlinear and Φballs, associated
with CR2 and CR3 respectively. Note that this is an approxi-
mate method for checking overlaps, and although there may
be no false positives, there may be false negatives.

For each representer point, a tree search is performed to find
the associated partition, which will be divided. Note that
if a partition fulfils multiple individually sufficient criteria
(CR1 to CR3), or is ’hit’ by multiple representer points, it
will still only be divided once.

CR2 We begin with the determination of Φlinear, followed
by Rlinear. To form the linear subspace Φlinear we carry
out the following steps. We first obtain the corresponding
centroids ΘH of the H partitions as stacked vectors, which
is then used to form a basis for the (H − 1)-dimensional
hyperplane being Φlinear. Specifically, we let θj be the
centroid (column vector) among them closest to the centre
of the unit cube, and E = ΘH,6=j − θj be the stacked basis
vectors of the hyperplane. Then we obtain an orthogonal
basis A using QR factorization of E. Let Ẽ be the re-scaled
version of E having unit-norm. Now we can map a vector u
from a unit-cube onto a given hyper-plane as θj + uAẼ, as
specified by the given centroids.

From Φlinear a discrete set of points Rlinear is now to
be chosen. We will concentrate the points on all lower-
dimensional hyper-planes formed by all combinations of
the H high mass partitions, which in line with the assumed
heuristic that mass tends to concentrate on linear subspaces
formed by these partitions. In practice this is implemented
by ahead of time determining all

∑S
s=1

(
M
s+1

)
combinations

of indices up to M where s is the dimensionality of a lower-
dimensional hyperplane. These index combinations are then
iterated through at runtime at step t, each one creating a
subset H∗ of high mass partitions forming a linear subspace.
If a given set of centroids is colinear, it is skipped, as they
would then only form a hyperplane of dimension less than s,
and thus already be taken care of by another hyperplane. For
each H∗ we add a representer point at their average location
in Ω (the weighted centre of the simplex they form). In ad-
dition, to spread points also throughout the linear subspace
(and the constituent lower-dimensional linear subspaces),
we add l representer points per H∗ by sampling uniformly in
a unit cube and map the points onto each lower dimensional
linear subspace, in addition to the (highest dimensional)
subspace Φlinear, using the procedure described above (we
use l = 1 in all experiments).

CR3 We now address the choice of the discrete set of
points Rballs from Φballs. For each partition in H , we
sample b points uniformly within the corresponding D-ball
using the Muller method (Harman & Lacko, 2010). In
practice we set b = D in all experiments. The representer
points are used as specified in the paper.

2.2. Algorithmic complexity analysis

We will now address the complexity analysis of the resulting
algorithm. As discussed in the paper, the algorithm’s time
complexity must allow short decision times and scalability
to a large number of partitions. In practice, we aim to
maintain sub-millisecond decision times even after millions
of density function evaluations. To simplify the analysis, we
will assume that the number of iterations of the algorithm
(Algorithm 1) is proportional to NT . It will always be true
that the number of iterations is less than NT , as multiple
partitions will be divided at each iteration, and also, each
partition division will yield multiple function evaluations.

CR1 Updating the hash map of heaps for a new partition
has average time complexity O(log Nt

U), where U is the
number of unique abscissas (see Section 4). This is because
the heap, found in constant time using the hash map, pro-
vides logarithmic time updates, where Nt/U is the average
number of elements in a heap. As Nt > U this simpli-
fies as the worst-case O(log Nt

U) = O(logNt − logU) =
O(logNt). Note that this requires the tree to be balanced in
the sense that the number of levels of the tree grows logarith-
mically with respect to the number of nodes. Maximum tree
imbalance would happen if, at each iteration, the node that
is the highest number of levels away from the root is chosen
to be divided. However, note that such a node (or partition)
would have an associated volume that exponentially tends
to zero, with a denominator in the base at least three, (1

3)t,
which as a result would be very quickly dominated by other
partitions. This is an important fact, as all partition division
criteria are either based on upper bound mass, proportional
to volume, or volume together with spatial vicinity. As a
result, all criteria encourage the balancing of the tree. In
practice, we will later see empirically that a logarithmic tree
lookup time is maintained, evidenced by that runtime time
cost of iterations of the whole algorithm is no worse than
logarithmic.

Retrieving all top ordinate partitions from this structure at
a given iteration t has time complexity O(U) as the hash
table with U entries is traversed linearly, and the root of each
heap is available in constant time. Using the U obtained
coordinates, the convex hull is computed in O(U logU)
using Graham’s scan (Graham, 1972). Following this, the
hull’s upper-right quadrant is obtained in O(U).

In summary we obtain the worst-case time complexity

Black-box density function estimation using recursive partitioning

O(logNt + U logU) for checking this criterion for all par-
titions at step t. The space complexity of the hash map of
heaps data structure is linear with respect to Nt.

CR2 The checking of this criterion entails computation
associated with

∑S
s=1

(
M
s+1

)
linear subspaces, where M is

the maximum number of high mass partitions (H). The
number of partitions that will be divided as a result grows
proportionally to this constant, so we simplify the analysis
to treating one such linear subspace and an associated con-
stant set of representer points. The two largest terms come
from the QR factorization, with time complexity O(M2D),
and the tree-search for the partition of a representer point
has time complexity O(logNt). The space complexity is
O(M) of keeping track of the high mass partitions. As D is
constant with respect to Nt and M is upper bounded by D,
we summarise this as time complexity O(logNt) and the
space complexity as constant.

CR3 For the check of this criterion, all up to M high
mass partitions are sampled in O(MD) time, and the tree-
search for a partition is O(logNt). Analogous to CR2, we
summarise this as a time complexity O(logNt) and the
space complexity as constant.

Summary The combined time complexity of a step t is
O(logNt + U logU), where U is the number of unique
abscissas (see paper). For an average number of steps pro-
portional to NT this results in a total average time complex-
ity of the algorithm as O(NT (logNT + Ū log Ū)). The
space complexity (including storage of partitions) of the
algorithm is linear, i.e. remains proportional to the number
of observations. In Section 3.1 we show empirically that Ū
is sufficiently small, and close to constant with respect to
NT , leading to a fast and scalable algorithm.

3. Experiments
3.1. Runtime experiments

The DNS and DEFER were run (single-threaded) on a 2.6
GHz Intel Core i7, and PTMCMC used multiple cores due
to its implementation. In Figure 3 we note both that DEFER
has a similar algorithmic cost to the other methods, and that
the DEFER has a near constant cost per function evaluation
with respect to NT . With algorithmic cost we refer to the
cost per ’decision’ of where to evaluate the density function,
which is computed from the total (wall-clock) time of infer-
ence minus the total function evaluation time, divided by
the number of function evaluations made. We also illustrate
the common situation where the function evaluation time
dominates the decision time, making sample-efficiency a
critical concern for total efficiency in these cases.

As discussed in Section 2.2, the time complexity of the

algorithm is O(NT (logNT + Ū log Ū)). To achieve the
near linear scalability empirically illustrated, it is clear that
Ū must be close to constant with respect to NT . In Figure 4
we confirm this explicitly.

3.2. Ablation study of criteria

For a small visual ablation study of the partition division
criterion (see Section 4 of the paper), see Figure 5 and
Figure 6.

3.3. Baseline setups

We used the following implementations: DNS (Speagle,
2020), slice sampling (Abadi et al., 2016), and PTM-
CMC (Ellis & van Haasteren, 2017).

Slice sampling We use an initial step size corresponding
to 0.05 of the unit domain sides, with max doublings set to
5. The used burn-in ratio is 25%.

PTMCMC We follow the default settings and sample p0
uniformly within the domain and set the initial covariance
matrix to be diagonal with variance 0.01. We use covUp-
date=500, 25% burn-in and all parameters set to the default.

DNS We use the default (as all other settings) of
nlive init=500, in practice nlive init=min(500, 2 + int(NT

/ 10)) as the max number of function evaluations NT in a
few experiments are small. For ’Posterior mode’ pfrac =
1.0, and for ’Evidence mode’ pfrac = 0.0.

3.4. Real-world density surfaces

3.4.1. GRAVITIONAL-WAVE PHYSICS

Problem background Motivation for use cases of this
algorithm can be found in natural science research areas
such as gravitational-wave physics (Collaboration et al.,
2020; Abbott et al., 2019; Mandel & Fragos, 2020). In
GW research, scientific knowledge is often expressed in
the form of physically motivated likelihood functions and
priors (Kalaghatgi et al., 2020). An increasing sophistica-
tion has brought challenges from an inference standpoint.
Tractable gradients are often missing, the functions may
exhibit undefined (or zero density) regions, and the in-
duced density surfaces tend to be multi-modal, discontin-
uous, have mass concentrated in tiny regions, and exhibit
complicated correlations. As a consequence, inference can
be prohibitively slow even for problems of around ten di-
mensions. Simple techniques such as standard rejection
sampling are typically infeasible due to small typical sets,
requiring a prohibitively large number of function evalua-
tions to obtain representative samples. Markov Chain Monte
Carlo methods, generally popular for their asymptotic guar-

Black-box density function estimation using recursive partitioning

Figure 1. Multi-modality in the posterior of the parameters of the Spectral Mixture kernel. Shown is how the log density of the model
changes with respect to each component mean within the Gaussian mixture representing the spectral density of the kernel. In the upper
row the density changes with respect to each mean are shown at an uniformly sampled position in the (10D) domain. In the lower row
these shown at the (estimated) mode of the parameter posterior. The estimation of the posterior mode was done using DEFER.

antees (Geyer, 1992) and strengths in high dimension (Neal
et al., 2011), struggle in handling the multi-modality present
in these problems. Furthermore, MCMC does not provide
evidence estimation, which often is of crucial importance in
scientific applications and elsewhere.

A popular family of methods to deploy instead is Nested
Sampling (Higson et al., 2019; Collaboration et al., 2020),
known for performing well on multi-modal and degenerate
posteriors, as well as additionally providing evidence esti-
mation. Still, the computation required to run an experiment
can often be impractical, such as weeks on a cluster. Re-
sampling, density re-weighting and local density integration
have been identified as important tasks to save computa-
tion, when considering different priors (Mandel & Fragos,
2020) or estimating equations of state (Vivanco et al., 2019).
Currently these tasks, as well as parameter and evidence
estimation, require a portfolio of different algorithms with
various tuning parameters, requiring significant expertise
and effort to obtain reliable results. DEFER outputs a den-
sity function approximation with support for these tasks;
the latter via making use of the domain-indexed search tree
over partitions.

We apply DEFER to a simulated signal example from (Ash-
ton et al., 2019) similar to (Collaboration et al., 2020).
Shown in the corresponding figure in the paper are all the
2D marginals of a six-dimensional problem using the ‘IMR-
PhenomPv2’ waveform approximant. Inferred parameters
are, for example, the luminosity distance, and the spin mag-

nitudes of binary black-holes. We note the complicated
interactions between parameters, showing the importance
of handling multi-modality and strong correlations. Impor-
tantly, DEFER is able to handle the surface well without
any tuning parameters.

To see results of the different baselines after varying bud-
gets, see Figure 7 and Figure 8, where the latter figure
is a modified example where the masses of the two black
holes instead of the luminosity distance to the source and
the orbital phase are being inferred, keeping the other four
parameters.

Details The problem addressed concerns inferring model
parameters to explain an event involving two black holes in
a binary system. This 4D example (link) was turned into a
6D example with the injection of all parameters except the
following six parameters, which are inferred:

• The luminosity distance to the source dL.

• Phase: The orbital phase of the binary at the reference
time.

• Theta JN: The inclination of the system’s total angular
momentum with respect to the line of sight.

• Psi: The polarisation angle describes the orientation of
the projection of the binary’s orbital momentum vector
onto the plane on the sky.

• Dimensionless spin magnitude a1.

https://git.ligo.org/lscsoft/bilby/blob/master/examples/gw_examples/injection_examples/fast_tutorial.py

Black-box density function estimation using recursive partitioning

1950 1952 1954 1956 1958 1960
Year

200

400

600
Ai

rli
ne

 P
as

se
ng

er
s (

k)

1950 1952 1954 1956 1958 1960
Year

200

400

600

Ai
rli

ne
 P

as
se

ng
er

s (
k)

1950 1952 1954 1956 1958 1960
Year

200

400

600

Ai
rli

ne
 P

as
se

ng
er

s (
k)

1950 1952 1954 1956 1958 1960
Year

200

400

600

Ai
rli

ne
 P

as
se

ng
er

s (
k)

Figure 2. Time-series forecasting using Gaussian Processes with the Spectral Mixture (Wilson & Adams, 2013) kernel. The data is shown
in black, ground truth in green and posterior GP samples in blue. Shown from the top left is slice sampling, followed by PTMCMC on its
right, then DNS and lastly DEFER in the bottom right.

• Dimensionless spin magnitude a2.

For more details, see (Veitch et al., 2015). To produce a de-
terministic surface the seed of the pseudo-random generator
must be fixed. To set the global seed used by the wave-
form approximant, while not fixing the seed for DEFER or
the baseline stochastic methods, we maintain the state of
the pseudo-random generator used within and outside the
function, respectively.

To see results of the different baselines after varying bud-
gets, see Figure 7 and Figure 8, where the latter figure
is a modified example where the masses of the two black
holes instead of the luminosity distance to the source and
the orbital phase are being inferred, keeping the other four
parameters.

3.4.2. GP REGRESSION WITH SPECTRAL MIXTURE
KERNEL

Problem background Apart from inferring a complex
posterior surface, we also compare the quality of the poste-
rior samples in terms of prediction accuracy. We consider
a time-series forecasting problem because the parameter
posterior of such problems are often complex and multi-
modal, generally making approximate inference more diffi-
cult. We use a Gaussian process (GP) time-series regression
model with a spectral mixture kernel (SMK) (Wilson &
Adams, 2013). SMK can approximate any stationary ker-
nel including periodic ones by learning the parameters of
a Gaussian mixture to represent the kernel spectral den-
sity (Bochner, 1959). However, inference of the parameters
of the mixture can be difficult as the induced density sur-

face is multi-modal. In Figure 1 we confirm the presence
of multi-modality, which may cause local optimizers and
step-wise sampling techniques like MCMC to get stuck in
poor solutions.

We use the airline passengers data (Wilson & Adams, 2013)
and use the first 60% of months for training and the rest for
test. The GP model has three mixture components plus a lin-
ear slope, which translates into a 10D parameter inference
task. With a budget of 50k function evaluations, the negative
log-likelihoods on the test data are 377.66, 365.97, 236.89
and 205.50, for slice sampling, PTMCMC, DNS and DE-
FER, respectively. For predictions, see Figure 2. DEFER
performs better than other methods, which evidenced by the
figure, may be explained by better capturing multi-modality
and thus a larger breadth of possible solutions. In contrast,
the MCMC techniques capture only a single mode each.

Details PyTorch Spectral Mixture kernel GP example.
This example was adapted for the Airline Passengers dataset
used in (Wilson & Adams, 2013).

3.5. Synthetic density functions

The synthetic density functions used in the quantitative ex-
periments are the following. All domains are scaled to be a
unit hybercube.

Student’s t The scale parameter was 0.01. The mean pa-
rameter was uniformly sampled U(0.2, 0.8) per dimension
for each of the 20 runs. The degrees of freedom was set to
2.5 + (D/2).

https://gpytorch.readthedocs.io/en/latest/examples/01_Exact_GPs/Spectral_Mixture_GP_Regression.html

Black-box density function estimation using recursive partitioning

103 104 105 106

Function evaluations

0.2 ms

0.4 ms

0.6 ms

A
lg

or
it

h
m

ti
m

e
/

ev
al

.

103 104 105 106

Function evaluations

0.2 ms

0.4 ms

0.6 ms

0.8 ms

A
lg

or
it

h
m

ti
m

e
/

ev
al

.

Function eval. PTMCMC DNS DEFER
Function cost versus costs of decisions per method

0.0 ms

2.0 ms

4.0 ms

6.0 ms

Ti
m

e
/ f

un
ct

io
n

ev
al

Figure 3. Algorithmic time. Shown in the two plots from the left
is the associated runtime cost of each algorithm to decide where
to evaluate the density function, for the Student’s t 10D density
function and gravitational-wave example, respectively (for legend
see the bar plot on the right). Shown on the right is the time spent
on evaluating the function versus the algorithm cost of respective
method, with mean and standard deviation across 20 runs using
the various settings of function evaluation budgets NT .

Canoe
f(θ) = max(v(θ), 0), (1)

v(θ) = 2 + 5Nθ|(µ,Σinner)− 10N (θ|µ,Σouter), (2)

where µ = 0.5, Σouter = a, Σinner = 0.01(0.95JD +
0.05ID). and Σouter = 0.02(0.60JD + 0.40ID). JD is
a D ×D matrix of all ones, and ID is the identity matrix.

Mixture of Gaussians

f(θ) = 2.5N (θ|µa,Σa) +N (θ|µb,Σb), (3)

where µa = [0.6326, 0.7401, 0.7232, 0.2471],
µb = [0.5139, 0.4667, 0.3777, 0.7995] (sampled from

Figure 4. Shown in the plot is the number of unique abscissas Ut

per number of partitions Nt, as the algorithm executes. Note that
Ut does not continue growing with Nt after a while, here after
about 100 partitions. Used for the illustration is the Student’s t
10D density function.

U(0.2, 0.8)), and

Σa = 0.012


2.25 −1.0 0 0
−1.0 2.25 0 0

0 0 2.25 0
0 0 0 2.25

 , (4)

Σb = 0.012


2.252 −2.25 1.0 −1.0
−2.25 2.252 0 0

1.0 0 2.252 0
−1.0 0 0 2.252

 . (5)

Cigar
f(θ) = N (θ|µ,Σ), (6)

where µ = 0.5 and Σ = 0.01(0.99JD + 0.01ID). JD is a
D ×D matrix of all ones, and ID is the identity matrix.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

Abbott, B., Abbott, R., Abbott, T., Abraham, S., Acernese,
F., Ackley, K., Adams, C., Adhikari, R., Adya, V., Affeldt,
C., et al. Gwtc-1: A gravitational-wave transient catalog
of compact binary mergers observed by ligo and virgo
during the first and second observing runs. Physical
Review X, 9(3):031040, 2019.

Black-box density function estimation using recursive partitioning

Figure 5. Visual ablation study of criteria on the gravitional-physics example. Shown are histograms of the two-dimensional marginals
of the 6D problem (see Section 3.4.1), with samples produced after 200k density functions evaluations in the middle three rows, and
after 5M evaluations in the bottom three rows. Shown in order, per group of three, is DEFER using all criteria (CR1-3), excluding CR2
(CR1,3), and excluding CR3 (CR1,2). The top row shows DEFER (using all criteria) after 10M evaluations for reference. Note that CR1
cannot be excluded as CR2 and CR3 would not explore the sample space at all on their own. We see that CR2, which complements the
search along affine subspaces of high mass partitions, helps to ’fill in gaps’ in various directions earlier than otherwise. CR3 has little
effect in this example, but has seemingly no negative impact. For another example, see Figure 6.

Ashton, G., Hübner, M., Lasky, P. D., Talbot, C., Ackley,
K., Biscoveanu, S., Chu, Q., Divakarla, A., Easter, P. J.,
Goncharov, B., et al. Bilby: A user-friendly bayesian in-
ference library for gravitational-wave astronomy. The As-
trophysical Journal Supplement Series, 241(2):27, 2019.

Bochner, S. Lectures on Fourier integrals, volume 42.
Princeton University Press, 1959.

Collaboration, L. S., Collaboration, V., et al. Gw190412:
Observation of a binary-black-hole coalescence with
asymmetric masses. arXiv preprint arXiv:2004.08342,
2020.

Ellis, J. and van Haasteren, R. jellis18/ptmcmcsampler:
Official release, October 2017. URL https://doi.
org/10.5281/zenodo.1037579.

Geyer, C. J. Practical markov chain monte carlo. Statistical
science, pp. 473–483, 1992.

Graham, R. L. An efficient algorithm for determining the
convex hull of a finite planar set. Info. Pro. Lett., 1:
132–133, 1972.

Harman, R. and Lacko, V. On decompositional algorithms

for uniform sampling from n-spheres and n-balls. Journal
of Multivariate Analysis, 101(10):2297–2304, 2010.

Higson, E., Handley, W., Hobson, M., and Lasenby, A.
Dynamic nested sampling: an improved algorithm for
parameter estimation and evidence calculation. Statistics
and Computing, 29(5):891–913, 2019.

Kalaghatgi, C., Hannam, M., and Raymond, V. Parameter
estimation with a spinning multimode waveform model.
Phys. Rev. D, 101:103004, May 2020. doi: 10.1103/
PhysRevD.101.103004. URL https://link.aps.
org/doi/10.1103/PhysRevD.101.103004.

Mandel, I. and Fragos, T. An alternative interpretation of
gw190412 as a binary black hole merger with a rapidly
spinning secondary. The Astrophysical Journal Letters,
895(2):L28, 2020.

Neal, R. M. et al. Mcmc using hamiltonian dynamics. Hand-
book of markov chain monte carlo, 2(11):2, 2011.

Speagle, J. S. dynesty: a dynamic nested sampling package
for estimating bayesian posteriors and evidences. Monthly
Notices of the Royal Astronomical Society, 493(3):3132–
3158, 2020.

https://doi.org/10.5281/zenodo.1037579
https://doi.org/10.5281/zenodo.1037579
https://link.aps.org/doi/10.1103/PhysRevD.101.103004
https://link.aps.org/doi/10.1103/PhysRevD.101.103004

Black-box density function estimation using recursive partitioning

Figure 6. Visual ablation study of criteria on another gravitional-physics example, this time inferring the masses of the two black holes
instead of the luminosity distance to the source and the orbital phase, together with the four other parameters (see Section 3.4.1). Shown
are histograms of the two-dimensional marginals, with samples produced after 500k density functions evaluations in the middle three rows,
and after 5M evaluations in the bottom three rows. Shown in order, per group of three, is DEFER using all criteria (CR1-3), excluding
CR2 (CR1,3), and excluding CR3 (CR1,2). The top row shows DEFER (using all criteria) after 10M evaluations for reference. Note that
CR1 cannot be excluded as CR2 and CR3 would not explore the sample space at all on their own. Similar to in Figure 5, we see that CR2
helps to fill in details earlier than otherwise, and the same is true for CR3 although to a lesser extent.

Veitch, J., Raymond, V., Farr, B., Farr, W., Graff, P., Vitale,
S., Aylott, B., Blackburn, K., Christensen, N., Coughlin,
M., et al. Parameter estimation for compact binaries with
ground-based gravitational-wave observations using the
lalinference software library. Physical Review D, 91(4):
042003, 2015.

Vivanco, F. H., Smith, R., Thrane, E., Lasky, P. D., Talbot,
C., and Raymond, V. Measuring the neutron star equation
of state with gravitational waves: The first forty binary
neutron star merger observations. Physical Review D,
100(10):103009, 2019.

Wilson, A. and Adams, R. Gaussian process kernels for
pattern discovery and extrapolation. In International
conference on machine learning, pp. 1067–1075, 2013.

Black-box density function estimation using recursive partitioning

Figure 7. Gravitional-physics parameter inference using the different methods. Shown are histograms of the two-dimensional marginals of
the 6D problem (see Section 3.4.1), with samples produced after 200k density functions evaluations in the upper three rows, after 5M
evaluations in the middle three rows, and efter 10M evaluations in the bottom three rows. Shown in order, per group of three, is DEFER,
PTMCMC and DNS. DEFER is able to capture the surface well. PTMCMC captures areas around some modes well, but fails to capture
all modes. Note that we perform independent runs for each budget. For another gravitional-physics example, see Figure 8.

Black-box density function estimation using recursive partitioning

Figure 8. Gravitional-physics parameter inference using the different methods. Shown are histograms of the two-dimensional marginals of
another 6D problem, this time inferring the masses of the two black holes instead of the luminosity distance to the source and the orbital
phase, together with the four other parameters (see Section 3.4.1). The samples are produced after 500k density functions evaluations
in the upper three rows, after 5M evaluations in the middle three rows, and efter 10M evaluations in the bottom three rows. Shown in
order, per group of three, is DEFER, PTMCMC and DNS. DEFER is able to capture the surface in detail. PTMCMC got stuck on an
insignificant mode within the available budget, and DNS seemingly captures a lower fidelity surface. Note that we perform independent
runs for each budget. Dynamic Nested Sampling (DNS) is designed to automatically adapt the number of live points, which controls the
fidelty of the nested sampling algorithm. A possible explanation for the lack of fidelity of DNS on this example could be a failure of the
algorithm to detect a need for additional live points. Note that, on the other hand, a too high number of live points for a given problem
lowers the overall sample-efficiency of the nested sampling algorithm.

