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A. Proofs of SWL Theory Results
We first introduce the required notions and notation. We
note that even though these results mainly refer to simplicial
complexes, they also apply to graphs because any graph is
also a simplicial complex.

Definition 20 (Simplicial Colouring). A simplicial colour-
ing is a map c that maps a simplicial complex K and one of
its simplices σ to a colour from a fixed colour palette. We
denote this colour by cKσ .

To unload the notation, we will often drop K from the su-
perscript when the underlying K is known from the context.

Definition 21. Let K1,K2 be two simplicial complexes and
c a simplicial colouring. We say that K1,K2 are c-similar,
denoted by cK1 = cK2 , if the number of simplices of di-
mension n in K1 coloured with a given colour equals the
number of simplices of dimension n in K2 with the same
colour. Otherwise, we have cK1 6= cK2 .

Although not explicitly stated in the definition of a colour-
ing, we are only interested in colourings c for which all
isomorphic simplicial complex pairs are c-similar or, more
formally, if K1 is isomorphic to K2, then cK1 = cK2 .

Definition 22. A simplicial colouring c refines a simpli-
cial colouring d, denoted by c v d, if for all simplicial
complexes K1 and K2 and all σ ∈ K1 and τ ∈ K2 with
dim(σ) = dim(τ), cK1

σ = cK2
τ implies dK1

σ = dK2
τ . Addi-

tionally, if d v c, we say the two colourings are equivalent
and we represent it by c ≡ d.

We now prove a lemma that will be used repeatedly in our
proofs in this section.

Lemma 23. Let K1,K2 be any simplicial complexes with
A ⊆ K1 and B ⊆ K2, two subsets containing simplices of
the same dimension. Consider two simplicial colourings
c, d such that c v d. If {{dK1

σ | σ ∈ A}} 6= {{dK2
τ | τ ∈ B}},

then {{cK1
σ | σ ∈ A}} 6= {{cK2

τ | τ ∈ B}}.

Proof. If {{dK1
σ | σ ∈ A}} 6= {{dK2

τ | τ ∈ B}}, there
exists a colour C that shows up (without loss of generality)
more times in the first multi-set than in the second multi-set.
Define by

A∗ = {σ ∈ A | dK1
σ = C}

B∗ = {τ ∈ B | dK2
τ = C}

the sets of those simplices in A and B, respectively, that
have been assigned colour C. Note that because C shows
up more times in the first multi-set, |A∗| > |B∗|.

Since c v d, if dσ 6= dτ , then cσ 6= cτ , for all σ and τ .
Therefore, the c colouring of all the simplices in A∗ and B∗

are different from the colours assigned to the other simplices.
More formally,

{{cσ | σ ∈ A∗ ∪B∗}}
∩ {{cτ | τ ∈ (A ∪B) \ (A∗ ∪B∗)}} = ∅. (15)

Suppose for the sake of contradiction that

{{cK1
σ | σ ∈ A}} = {{cK2

τ | τ ∈ B}}.

Together with Equation 15, this implies

{{cK1
σ | σ ∈ A∗}} = {{cK2

τ | τ ∈ B∗}}.

Then, |A∗| = |B∗|. However, |A∗| > |B∗|.

This result leads to an important corollary.

Corollary 24. Consider two simplicial colourings c, d such
that c v d. If dK1 6= dK2 , then cK1 6= cK2

Proof. This follows immediately by substituting the subsets
A,B from the proof above with all the simplices of a given
dimension in K1 and K2, respectively.

An equivalent way to think about this corollary is that if c
refines d, then it is able to distinguish all the non-isomorphic
simplicial complex pairs that d can distinguish (and poten-
tially others). In that sense, we say c is at least as powerful
as d. This will be our main vehicle to prove the results.

Equipped with this notation and preliminary results, we
proceed to prove the results from the main text.

Lemma 25. SWL with HASH
(
ctσ, c

t
B(σ), ct↓(σ), ct↑(σ)

)
is

as powerful as SWL with the generalised update rule
HASH

(
ctσ, c

t
B(σ), ctC(σ), ct↓(σ), ct↑(σ)

)
.

Proof. Let at denote the colouring of the general update
rule at iteration t and bt the colouring of the restricted update
rule at the same iteration. Then, at v bt because it considers
the additional colours of the co-boundaries ctC(σ) in the
colour updating rule. We will now prove by induction bt v
at, which implies at ≡ bt.

The base case trivially holds since all simplices have the
same colour at initialisation. Let σ ∈ K1 and τ ∈ K2 be
two simplices of the same dimension from two arbitrary
complexes. Suppose bt+1

σ = bt+1
τ . Then, we have that

the arguments of the hash function are equal. Thus, btσ =
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btτ , b
t
↓(σ) = bt↓(τ), bt↑(σ) = bt↑(τ), and btB(σ) = btB(τ).

The aim is to show that these also imply that btC(σ) = btC(τ).

Because bt↑(σ) = bt↑(τ), by substituting their definition we
have the following equality of multi-sets.

{{btδσ | (·, b
t
δσ ) ∈ bt↑(σ)}} = {{btδτ | (·, b

t
δτ ) ∈ bt↑(τ)}}.

Because σ and τ have the same dimension n, the colour of
each δσ ∈ C(σ) and each δτ ∈ C(τ) shows up in exactly
n+ 1 tuples in bt↑(σ) and bt↑(τ), respectively. By removing
the duplicate colours for each such δσ and δτ we obtain the
desired equality:

{{btδσ | δσ ∈ C(σ)}} = {{btδτ | δτ ∈ C(τ)}}.

By the induction hypothesis, we also have atσ =
atτ , a

t
↓(σ) = at↓(τ), at↑(σ) = at↑(τ) , atB(σ) = atB(τ), and

atC(σ) = atC(τ). Thus, at+1
v = at+1

w .

Proof of Theorem 6. Let bt denote the colouring of CWL
using HASH

(
btσ, b

t
B(σ), bt↑(σ)

)
and at the colouring of

CWL using the rule HASH
(
atσ, a

t
B(σ), at↓(σ), at↑(σ)

)
from

Lemma 25. As before, it is trivial to show at v bt because
of the additional argument at↓(σ) used in the update rule.
We now prove that b2t v at by induction. The reason we
consider 2t is because the information from the lower adja-
cencies propagates two times slower through the boundary
adjacencies.

As before, the base case holds since all the colours are equal
at initialisation. Again, consider σ ∈ K1 and τ ∈ K2 ,
two simplices of the same dimension from two arbitrary
complexes. Suppose b2t+2

σ = b2t+2
τ . By unwrapping the

hash function two steps back in time, we obtain b2tσ =
b2tτ , b

2t
B (σ) = b2tB (τ), b2t↑ (σ) = b2t↑ (τ). The goal is to show

that b2t↓ (σ) = b2t↓ (τ) also holds.

Suppose for the sake of contradiction that b2t↓ (σ) 6= b2t↓ (τ).
This means that there exists a pair of colours (C0,C1) that
shows up (without loss of generality) more times in b2t↓ (σ)

than in b2t↓ (τ). For simplicity, we assume that b2tσ 6= C0 6=
b2tτ , since this edge case can be trivially treated separately.

First, we split the apparitions of (C0,C1) by the boundary
simplices of σ and τ where they appear. Consider the col-
lection of multi-sets A indexed by simplices δ of a fixed
dimension:

A(δ) = {{(b2tψ = C0, b
2t
δ = C1) | ψ ∈ C(δ)}}.

We are interested in counting the size of these multi-sets.
For this purpose, for each simplex γ, we define a multi-set
Cγ :

Cγ = {{|A(δ)| | δ ∈ B(γ)}}.
Clearly, Cσ 6= Cτ because the sum of the elements in Cσ
(the number of tuples (C0,C1) in b2t↓ (σ)) is greater than the

sum of the elements of Cτ (the number of tuples (C0,C1)
in b2t↓ (τ)). The next proposition, shows this leads to a con-
tradiction with our original assumption that b2t+2

σ = b2t+2
τ

Proposition 26. If Cσ 6= Cτ , then b2t+2
σ 6= b2t+2

τ .

Proof. Consider the simplicial colouring c(δ) = |A(δ)|.
We will show that b2t+1 v c. Let δ1, δ2 be two simplices
of equal dimension with c(δ1) 6= c(δ2). We assume with-
out loss of generality |A(δ1)| > |A(δ2)|. Then C0 shows
up more times in b2t↑ (δ1) than in b2t↑ (δ2), which implies
b2t↑ (δ1) 6= b2t↑ (δ2). Therefore, b2t+1

δ1
6= b2t+1

δ2
, which proves

b2t+1 v c.

Applying Lemma 23 for the multi-setsCσ andCτ , we obtain
two non-equal multi-sets:

{{b2t+1
δ1

| δ1 ∈ B(σ)}} 6= {{b2t+1
δ2

| δ2 ∈ B(τ)}}

Which are exactly the multi-sets of colours corresponding
to the boundary simplices of σ and τ . So the relation above
is equivalent to b2t+1

B (σ) 6= b2t+1
B (τ). Finally, this implies

that b2t+2
σ 6= b2t+2

τ .

This contradiction proves b2t↓ (σ) = b2t↓ (τ). Finally, ap-
plying the induction hypothesis, we have that atv =
atw, a

t
B(v) = atB(w), at↑(v) = at↑(w) and at↓(v) = at↓(w).

Then, b2t v at.

Next, we show a slightly weaker version of Theorem 7.
Lemma 27. SWL is at least as powerful as WL in distin-
guishing non-isomorphic simplicial complexes.

Proof. Let K be a simplicial complex. Let at be the colour-
ing of the vertices of K at iteration t of WL and bt the
colouring of the same vertices inK at iteration t of SWL. To
prove the lemma, we will show by induction that bt v at.

For the base case, the implication holds at initialisation since
all nodes are assigned the same colour. For the induction
step, suppose bt+1

v = bt+1
w , for two 0-simplices v and w in

two arbitrary complexes K1,K2. As vertices are only upper
adjacent and have no boundary simplices, btv = btw and
bt↑(v) = bt↑(w). Using the definition of the latter multi-set
equality:

{{btz | (btz, ·) ∈ bt↑(v)}} = {{btu | (btu, ·) ∈ bt↑(w)}}.

Equivalently, this can be rewritten in terms of the upper-
neighbours of the vertices as

{{btz | z ∈ N↑(v)}} = {{btu | u ∈ N↑(w)}}.

By the induction hypothesis, atv = atw and at↑(v) = at↑(w).
Since these are the arguments the WL hash function uses to
compute the colours of v and w at the next step, we obtain
at+1(v) = at+1(w).
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Informally, this proof shows that the information coming
from the higher-dimensional simplices of the complex will
refine the colouring of the vertices. This means that SWL
will be able to distinguish just through its vertex-level colour
histogram at least the same set of simplicial complexes
(and graphs) that WL can distinguish. However, this proof
ignores the histograms of the higher-levels and these can
indeed be used to show that SWL is strictly more powerful
than WL when using a clique complex lifting. This is done
in Theorem 7.

Proof of Theorem 7. Based on Lemma 27, it is sufficient
to present a pair of graphs that cannot be distinguished
by WL, but whose clique complexes can be distinguished
by SWL. Such a pair is included in Figure 2. While WL
produces the same colouring for both graphs, one clique
complex contains two triangles, while the other has no tri-
angles.

Proof of Lemma 9. Let ct and ht be the colouring at itera-
tion t of SWL and the t-th layer of an MPSN, respectively.
We consider an MPSN model with L layers. For t > L, we
assume ht = hL. We will show by induction that ct refines
the colouring of ht. For this proof, it is convenient to use
the most general version of SWL, containing the complete
set of adjacencies.

The base case trivially holds. For the induction step, sup-
pose we have two simplicies σ and τ such that ct+1(σ) =
ct+1(τ). Because the SWL colouring is an injective map-
ping, the arguments to the HASH must also be equal. This
means that ctσ = ctτ and the multi-sets of colours formed
by their neighbours are identical: ct↓(σ) = ct↓(τ), ct↑(σ) =

ct↑(τ), ctB(σ) = ctB(τ), ctC(σ) = ctC(τ). By the induction
hypothesis, these multi-sets will also be equal under the
colouring ht. Enumerating all, ht(σ) = ht(τ), ht↓(σ) =

ht↓(τ), ht↑(σ) = ht↑(τ), htB(σ) = htB(τ), htC(σ) = htC(τ).
Because the exact same multi-sets are supplied as input to
the message, aggregate and update functions, their output
will also be the same for σ and τ . Thus, ht+1

σ = ht+1
τ .

Proof of Theorem 10. By Lemma 9, we only need to show
that for an MPSN model satisfying the conditions in the
theorem, we have that ht v ct.

The base case can be proved by definition. For the step case,
given that the update, aggregate and message functions are
injective, their composition is also injective. Therefore, for
any two simplicies σ, τ with ht+1

σ = ht+1
τ , the multi-sets of

colours in their neighbourhoods are also the same. As in
our previous proofs, by applying the induction hypothesis,
the inputs to the SWL HASH function at iteration t for σ
and τ are also equal and ct+1

σ = ct+1
τ . It follows ht v ct,

ct v ht (Lemma 9) and, consequently, ct ≡ ht.

A.1. Higher-Order WL and Strongly Regular Graphs

Higher-order variants of the standards WL procedure oper-
ate on node tuples rather than single nodes and iteratively
apply color refinement steps thereon.

k-WL The k-WL is one such higher-order variants. It
specifically operates on node k-tuples by refining their col-
ors based on the generalized notion of j-neighborhood.
The j-neighborhood (j ∈ {1, . . . , k}) for node k-
tuple v = (v1, v2, . . . , vk) is defined as Nj(v) =
{(v1, . . . , vj−1, w, vj+1, . . . , vk)|w ∈ VG}. The algo-
rithm first initialises node tuples based on their isomor-
phism type: two k-tuples va = (va1 , v

a
2 , . . . , v

a
k), vb =

(vb1, v
b
2, . . . , v

b
k) have the same isomorphism type (and are

thus assigned the same initial colour cva = cvb) iff (i)
∀ i, j ∈ {1, . . . , k}, vai = vaj ⇔ vbi = vbj , (ii) ∀ i, j ∈
{1, . . . , k}, vai ∼ vaj ⇔ vbi ∼ vbj , where ∼ indicates adja-
cency. Given this initial colouring, the procedure iteratively
applies the following color refinement step

ct+1
v = HASH

(
ctv,M

t(v)
)
, (16)

M t(v) =
(
{{ctu|u ∈ Nj(v)}}

∣∣j = 1, 2, . . . , k
)

(17)

until the colouring does not change further. The k-WL
procedure can be employed to test the isomorphism between
graphs in the same way as the standard WL one is. For
any k ≥ 2, it is known that (k + 1)-WL test is strictly
stronger than k-WL one, i.e. there exist exemplary pairs of
non-isomorphic graphs that k-WL cannot distinguish while
(k+ 1)-WL can, but not vice-versa. Local variants of k-WL
have recently been introduced in Morris et al. (2020b).

k-FWL The k-Folklore WL procedure (k-FWL)
is another higher-order variant of the standard WL.
Similarly to k-WL, it operates by refining the colors
of node k-tuples, initialised based on their isomor-
phism type. However, it employs a different notion
of neighborhood and refinement step. The Folklore
j-neighborhood for node k-tuple v is defined as NF

j (v) =(
(j, v2, . . . , vk), (v1, j, . . . , vk), . . . , (v1, . . . , vk−1, j)

)
,

with j ∈ VG. The algorithm iteratively applies the steps

ct+1
v = HASH

(
ctv,M

F,t(v)
)
, (18)

MF,t(v) = {{
(
ctu|u ∈ NF

j (v)
)∣∣j ∈ VG}} (19)

until the colouring does not change anymore. It is known
that k-FWL is equivalent to (k + 1)-WL for k ≥ 2.

Strongly Regular Graphs A Strongly Regular graph in
the family SR(n,d,λ,µ) is a regular graph with n nodes and
degree d, for which every two adjacent nodes always have
λ mutual neighbours and every two non-adjacent nodes
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always have µ mutual neighbours. This class of graphs is of
particular interest due to the following lemma.

Lemma 28. No pair of Strongly Regular graphs in family
SR(n,d,λ,µ) can be distinguished by the 2-FWL test.

Proof. Let us denote by V2
G the set of all node 2-tuples in

graph G. We note that three isomorphism types are induced
by considering node 2-tuples:

(1) node type: v = (v1, v1)

(2) edge type: v = (v1, v2) with v1 ∼ v2 (the two nodes
are adjacent in the original graph)

(3) non-edge type: v = (v1, v2) with v1 6∼ v2 (the two
nodes are not adjacent in the original graph).

These three isomorphism types partition the tuple set V2
G

into the three subsets V2
G(1),V

2
G(2),V

2
G(3) such that any tu-

ple v ∈ V2
G(i) is of isomorphism type i. We write v(i) to

indicate v ∈ V2
G(i) for simplicity.

At initialisation, the 2-FWL algorithm assigns a colour to
each tuple v ∈ V2

G based on its isomorphism type, that is
∀v ∈ V2

G(i), cv = c0i . The colouring is therefore constant
within partitions. Then, we notice that the colouring is kept
constant within partitions through the application of the re-
finement steps described by Equation 18. In other words,
the 2-FWL procedure cannot produce a colour partitioning
of the set of node 2-tuples that is finer than the one at ini-
tialisation. This is shown by induction on the step t of color
refinement.

The base case evidently holds for t = 0 since all tuples
in the same partition are assigned the same colour by the
2-FWL initialisation procedure.

For the induction step we assume that the colouring is con-
stant within each partition at t and show that it maintains
constant at t+ 1, that is, after the application of one colour
refinement step. This is proved by showing that all node
tuples within the same partition have their colour refined
identically. We will show this for each of the three partitions
separately, leveraging on the induction hypothesis and the
properties of Strongly Regular graphs.

A node tuple v = (v1, v1) ∈ V2
G(1) has NF

j (v) =(
(j, v1), (v1, j)

)
, j ∈ VG. Therefore, any v ∈ V2

G(1) has
exactly:

• (j = v1) 1 neighborhood of the form
(
w(1),w(1)

)
,

associated with color tuple (ct1, c
t
1);

• (j ∼ v1) d neighborhoods of the form
(
w(2),u(2)

)
,

associated with color tuple (ct2, c
t
2);

• (j 6∼ v1) n − d − 1 neighborhoods of the form(
w(3),u(3)

)
, associated with color tuple (ct3, c

t
3).

For any v ∈ V2
G(1) we thus have

ct+1
v = HASH

(
ct1,M

F,t(v)
)

MF,t(v) = {{(ct1, ct1)︸ ︷︷ ︸
1 time

, (ct2, c
t
2)︸ ︷︷ ︸

d times

, (ct3, c
t
3)︸ ︷︷ ︸

n− d− 1 times

}}.

A node tuple v = (v1, v2) ∈ V2
G(2) has NF

j (v) =(
(j, v2), (v1, j)

)
, j ∈ VG. Therefore, any v ∈ V2

G(2) has
exactly:

• (j = v2) 1 neighborhood of the form
(
w(1),u(2)

)
,

associated with color tuple (ct1, c
t
2);

• (j = v1) 1 neighborhood of the form
(
w(2),u(1)

)
,

associated with color tuple (ct2, c
t
1);

• (j ∼ v2, j ∼ v1) λ neighborhoods of the form(
w(2),u(2)

)
, associated with color tuple (ct2, c

t
2);

• (j ∼ v2, j 6∼ v1) d − λ neighborhoods of the form(
w(2),u(3)

)
, associated with color tuple (ct2, c

t
3);

• (j 6∼ v2, j ∼ v1) d − λ neighborhoods of the form(
w(3),u(2)

)
, associated with color tuple (ct3, c

t
2);

• (j 6∼ v2, j 6∼ v1) k = n− 2− 2d+ λ neighborhoods
of the form

(
w(3),u(3)

)
, associated with color tuple

(ct3, c
t
3).

For any v ∈ V2
G(2) we have

ct+1
v = HASH

(
ct2,M

F,t(v)
)

MF,t(v) = {{(ct1, ct2)︸ ︷︷ ︸
1 time

, (ct2, c
t
1)︸ ︷︷ ︸

1 time

, (ct2, c
t
2)︸ ︷︷ ︸

λ times

,

(ct2, c
t
3)︸ ︷︷ ︸

d− λ times

, (ct3, c
t
2)︸ ︷︷ ︸

d− λ times

, (ct3, c
t
3))︸ ︷︷ ︸

k times

}}.

A node tuple v = (v1, v2) ∈ V2
G(3) has NF

j (v) =(
(j, v2), (v1, j)

)
, j ∈ VG. Therefore, any v ∈ V2

G(3) has
exactly:

• (j = v2) 1 neighborhood of the form
(
w(1),u(3)

)
,

associated with color tuple (ct1, c
t
3);

• (j = v1) 1 neighborhood of the form
(
w(3),u(1)

)
,

associated with color tuple (ct3, c
t
1);

• (j ∼ v2, j ∼ v1) µ neighborhoods of the form(
w(2),u(2)

)
, associated with color tuple (ct2, c

t
2);
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• (j ∼ v2, j 6∼ v1) d − µ neighborhoods of the form(
w(2),u(3)

)
, associated with color tuple (ct2, c

t
3);

• (j 6∼ v2, j ∼ v1) d − µ neighborhoods of the form(
w(3),u(2)

)
, associated with color tuple (ct3, c

t
2);

• (j 6∼ v2, j 6∼ v1) k = n− 2− 2d+ µ neighborhoods
of the form

(
w(3),u(3)

)
, associated with color tuple

(ct3, c
t
3).

For any v ∈ V2
G(3), we then obtain

ct+1
v = HASH

(
ct3,M

F,t(v)
)

MF,t(v) = {{(ct1, ct3)︸ ︷︷ ︸
1 time

, (ct3, c
t
1)︸ ︷︷ ︸

1 time

, (ct2, c
t
2)︸ ︷︷ ︸

µ times

,

(ct2, c
t
3)︸ ︷︷ ︸

d− µ times

, (ct3, c
t
2)︸ ︷︷ ︸

d− µ times

, (ct3, c
t
3))︸ ︷︷ ︸

k times

}}.

This proves the induction and confirms that all tuples in the
same partition have the same colour at any colour refinement
time step t.

If the colouring is constant within partitions at any 2-FWL
step, then the colour histogram associated with a graph
at step t purely depends on the cardinality of each of the
three. We notice that, for any G ∈ SR(n,d,λ,µ), they are
completely determined by the first two parameters with

• |V2
G(1)| = n

• |V2
G(2)| = nd

• |V2
G(3)| = |V

2
G| − (n+ nd).

Given the above, any two graphs G1, G2 ∈ SR(n,d,λ,µ) are
associated with the same colour histograms at any step of the
2-FWL procedure and, therefore, cannot possibly deemed
non-isomorphic by the last.

We leverage on Lemma 28 to prove Theorem 8.

Proof of Theorem 8. In virtue of Lemma 28 and the fact
that 2-FWL is as powerful as 3-WL, Theorem 8 is proved
by exhibiting a pair of Strongly Regular graphs in the same
family that are distinguished by the SWL test. This pair is
given by the two graphs in Figure 3: Rook’s 4x4 graph (G1)
and the Shrikhande graph (G2), (the only) members of the
SR(16,6,2,2) family of Strongly Regular graphs. The SWL
test which considers their clique 3-complexes distinguish
them due to the fact that, differently from G1, G2 possesses
no 4-cliques, thus its associated complex has no 3-simplices.

B. Proofs of Linear Regions Results
Background on Hyperplane Arrangements A function
f : RN → RM is a piecewise linear function if its graph
{(x, f(x)) : x ∈ RN} ⊆ RN × RM consists of a finite
number of polyhedral pieces. Projecting these polyhedra
back onto RN by (x, y) 7→ x defines a polyhedral subdi-
vision of RN . The linear regions of the function are the
N -dimensional pieces in this subdivision. These are the
(inclusion maximal) connected regions of the input space
where the function is affine linear.

Let ψ : R→ R; s 7→ max{0, s} be the linear rectification.
A ReLU with N inputs defines a function y : x 7→ ψ(w>x),
which for any fixed value of the weight vector w ∈ RN ,
w 6= 0, has gradient with respect to the input vector x ∈
RN equal to 0 on the open halfspace {x : w>x < 0} and
equal to w on the open halfspace {x : w>x > 0}. Hence a
ReLU defines a piecewise linear function with two linear
regions. A layer of ReLUs ψ(w>i x), i = 1, . . . ,M has
linear regions given by the intersection of linear regions of
the individual ReLUs. The number of linear regions of the
function represented by the layer is equal to the number of
connected components that are left behind once we remove
∪Mi=1Ai from RN , where Ai = {x ∈ RN : w>i x = 0} is
the hyperplane dividing the two linear regions of the ith
ReLU. Hence the linear regions of a layer of ReLUs can
be described in terms of a hyperplane arrangement, i.e. a
collection A = {Ai : i = 1, . . . ,M} of hyperplanes.

An arrangement of hyperplanes in RN is in general position
if the intersection of any k hyperplanes in the arrangement
has the expected co-dimension, k. We will focus on central
arrangements, where each hyperplane contains the origin. A
central arrangement is in general position when the normal
vectors wi1 , . . . , wik of any k ≤ N of the hyperplanes are
linearly independent. The following well-known result from
the theory of hyperplane arrangements will be particularly
important in our discussion.
Theorem 29. Let A be a central arrangement of M hy-
perplanes in RN in general position. Then the number
of regions of the arrangement, denoted r(A), is equal to
2
∑N−1
j=0

(
M−1
j

)
. This is also the maximum number of re-

gions of any central arrangement of M hyperplanes in RN .

This result can be derived from Zaslavsky’s theorem (Za-
slavsky, 1975), which expresses the number of regions of an
arbitrary arrangement, not necessarily in general position,
in terms of properties of a partially ordered set, namely the
collection of intersections of the hyperplanes in the arrange-
ment partially ordered by reverse inclusion.

We will focus on central arrangements, but we point out that
similar results to Theorem 29 can be derived for the case
of non-central hyperplane arrangements. An non-central
arrangement of (affine) hyperplanes in RN is in general
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position when any k ≤ N of the hyperplanes intersect in a
set of dimension N − k, and any k > N of the hyperplanes
have an empty intersection. For such an arrangement, the
number of regions is

∑N
j=0

(
M
j

)
.

The main challenges in computing the number of regions
defined hyperplane arrangements happen when the hyper-
planes satisfy some type of constraints and are not in general
position. The type of layers that we discuss in the following
correspond to central arrangements subject to certain con-
straints, namely that the normal vectors are the rows of a
matrix with a particular block Kronecker product structure.

B.1. GNNs

Proof of Theorem 15. For simplicity, we write Y =
H(A,X)T ∈ Rd×S0 and V = WT ∈ Rm×d. We de-
note Y:j the jthe column of Y , and Vi: the ith row of V .
The GNN layer defines hyperplanes, for i = 1, . . . ,m, j =
1, . . . , S0,

Aij :=
{
Y ∈ Rd×S0 : Vi:Y:j = 0

}
.

The arrangement A = {Aij : i = 1, . . . ,m, j = 1, . . . , S0}
is a direct sum of the arrangements Aj = {Aij : i =
1, . . . ,m}, j = 1, . . . , S0. It can be shown (see Zaslavsky,
1975) that this implies r(A) =

∏S0

j=1 r(Aj).

Each Aj is an arrangement of m hyperplanes in RN , N =
dS0, whose normals span a subspace of dimension at most
d, irrespective of S0. Counting the number of regions de-
fined by Aj is equivalent to counting the number of regions
defined by its essentialization ess(Aj), which is the arrange-
ment that the hyperplanes define on the span of their normal
vectors. We can regard ess(Aj) as a (central) arrangement of
m hyperplanes in Rd with normals Vi: ∈ Rd, i = 1, . . . ,m.
For generic choices of the weight matrix W> = V , this
is a central arrangement in general position. Hence, by
Theorem 29, r(Aj) = r(ess(Aj)) = 2

∑d−1
i=0

(
m−1
i

)
.

For the number of regions of the entire arrangement A,
corresponding to the number of linear regions of the func-
tion expressed by the layer, we obtain RGNN = r(A) =∏S0

j=1 r(Aj) =
(

2
∑d−1
i=0

(
m−1
i

))S0

. This then concludes
the proof.

B.2. SCNNs

Proof of Theorem 16. By the definition of the SCNN layer,
for each dimension n, each of the Sn n-simplices in the
simplicial complex has dn input features. Similar to the
proof of Theorem 15, the arrangement for the n-dimensional
simplices corresponds to a direct sum of Sn arrangements,
each ofmn hyperplanes in Rdn . Hence the number of linear

regions for this part of the complex is(
2

dn−1∑
i=0

(
mn − 1

i

))Sn
. (20)

Now for the entire layer, the arrangements for the different
n are also combined as a direct sum, so that their number of
regions multiply. We have n ranging from dimension 0 to p,
so that

p∏
n=0

(
2

dn−1∑
i=0

(
mn − 1

i

))Sn
. (21)

This concludes the proof.

B.3. MPSNs

We can rewrite (11) more generality and more concisely as
follows. For each n the output features on Sn can be written
as

Hout
n =ψ(MnHn + UnHn−1 +OnHn+1)

=ψ

(
[UnHn−1|MnHn|OnHn+1]

[
Wn−1

Wn

Wn+1

])
,

(22)

for some fixed matrices Un ∈ RSn×Sn−1 , Mn ∈ RSn×Sn
and On ∈ RSn×Sn+1 depending only on the simplicial
complex. To avoid clutter, we omit the superscript “in” of
the input feature matrices Hn. Concatenating (22) for all n,
we can write the entire MPSN layer as

Hout
0

Hout
1

Hout
2

...
Hout
p

 = ψ


M0H0 O0H1

U1H0 M1H1 O1H2

U2H1 M2H2 O2H3

. . .



W0

W1

W2

...
Wp


 .

(23)

We will use this representation (or rather 22) in the proof of
the first bound in Theorem 19.

It is also useful to write the linear function in standard form.
Using Roth’s lemma, we can write (22) as

vec(Hout
n ) =ψ

([
W>n−1 ⊗ Un|W>n ⊗Mn|W>n+1 ⊗On

]
× vec

([
Hn−1|Hn|Hn+1

]))
. (24)

Now, concatenating over n yields the expression ψ(WH)
from (12) for the entire layer, with the matrix W ∈ RM×N
from (13).

Proof of Proposition 18. This result is known in theory
of partial orders and hyperplane arrangements. We in-
clude a proof which illustrates the evaluation of the char-
acteristic polynomial. If there is K so that rank(WB:) =
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min{|B|,K} for all B, then Lemma 17 can be evaluated as

r(A) =
∑
B

(−1)|B|−min{|B|,K}

=

K∑
j=0

∑
B∈({1,...,M}j )

1 +

M∑
j=K+1

∑
B∈({1,...,M}j )

(−1)j−K

=

K∑
j=0

(
M

j

)
+ (−1)M−K

M−(K+1)∑
j=0

(
M

j

)
(−1)j

=

K∑
j=0

(
M

j

)
+ (−1)

(
M − 1

K

)

=2

K−1∑
j=0

(
M − 1

j

)
,

which is what was claimed.

We now proceed with the proof of Theorem 19. We will use
the following.

Proposition 30. If W,W ′ ∈ RM×N are two matrices with
rank(WB:) ≥ rank(W ′B:) for all B ⊆ {1, . . . ,M}, then
r(A) ≥ r(A′).

Proof of Proposition 30. Notice that if W ′B: is not full
rank, then W ′ solves a polynomial system. More precisely,
some minors (determinants of sub-matrices) of W ′B: vanish.
Hence, increasing the rank corresponds to stepping outside
of the solution set to a polynomial system. This can be
accomplished by an arbitrarily small perturbation of the ma-
trix. On the other hand, the number of regions of a central
arrangement with normals W corresponds to the number
of vertices of a polytope which is the convex hull of points
parametrized by the entries of W . The number of vertices is
a lower semi-continuous function of the considered polytope
(see Grünbaum, 2003, Section 5.3), and hence the number
of regions is a lower semi-continuous function of the entries
of W . This means that for sufficiently small perturbations
of the entries, the number of regions of the corresponding
hyperplane arrangement does not decrease.

Further, we will use an inequality for the rank of a block
matrix (see, e.g. Matsaglia & Styan, 1974, Theorem 19).

Lemma 31. Let A ∈ Rk×l, B ∈ Rm×l, C ∈ Rm×n be
matrices. Then rank([ A 0

B C ]) ≥ rank(A) + rank(C).

Proof of Theorem 19. The proof of the first upper bound
is analogous to Theorem 16. The difference is now we
consider also the boundary and co-boundary simplices that
interact with an n-simplex in the MPSN. We use the expres-
sion (22). The difference compared with Theorem 16 lies in

the number of input features for each n, which here results
in

p∏
n=0

2

dn−1+dn+dn+1−1∑
i=0

(
m− 1

i

)Sn

, (25)

which is the first upper bound. The second upper bound
is the trivial upper bound, which is the maximum possible
number of regions of a central arrangement of M hyper-
planes in RN from Theorem 29.

The lower bound follows from Proposition 30. We verify
that the hypothesis of the proposition is satisfied. Note that
the matrix W from (13) is lower block triangular, of the
form

W =


∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 .
Applying Lemma 31 recursively, for the network with
outputs Hout

0 , . . . ,Hout
p−1 we find that rank(W ) ≥

rank([W>0 ⊗M0|W>1 ⊗O0]) +
∑p−1
n=1 rank(W>n+1⊗On).

A similar expression holds for any selection of rows, WB:.

On the other hand, the corresponding matrix W ′ for an
SCNN is block diagonal with blocks W>n ⊗Mn and hence
rank(W ′) =

∑p−1
n=0 rank(W>n ⊗Mn). A similar expres-

sion holds for any selection of rows, W ′B:.

Hence, if dn+1 ≥ dn and rank((On)C:) ≥ rank((Mn)C:)
for any subsets C of rows, then, choosing full rank matrices
Wn, we have that the overall matrix satisfies rank(WB:) ≥
rank(W ′B:) for any subset B of rows. Hence, applying
Proposition 30 gives the desired result.

It is not difficult to obtain case by case improvements of
the bounds in Theorem 19 by conducting a more careful
analysis of the row independencies in matrix W for specific
values of the input feature dimensions d0, . . . , dp, output
feature dimension m, numbers of simplices S0, . . . , Sp, and
the structure of the matrices Un,Mn, On, n = 0, . . . , p.

MPSN with Populated Higher-Features Finally, we
consider the populated higher features for a situation when
we are given a simplicial complex but only vertex features
are available. This strategy can increase the network com-
plexity, as proved by Proposition 32 below.

Proposition 32 (MPSN with populated higher-features).
Consider an arbitrary simplicial complex and an MPSN
layer mapping RS0×d0 → RS0×m;H in

0 7→ Hout
0 , whereby

higher-dimensional input features are populated as linear
functions of the input vertex features. Consider further
the corresponding SCNN layer which computes Hout

0 =
ψ(L0H

in
0 W0). Then, RMPSN ≥ RSCNN. Furthermore,



Message Passing Simplicial Networks

GNN / SCNN MPSN
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Figure 7. Shown is a 2D slice of the input vertex feature space
of SCNN and MPSN layers with S0 = S1 = 3, d0 = d1 = 1,
m = 3, computing output vertex features, with input edge features
set as a random linear function of the input vertex features.

for certain simplicial complexes and feature dimensions
d0, . . . , dp,m, the inequality is strict.

The regions for the two cases are illustrated in Figure 7. It
shows MPSN (Right) has more regions than GNN/SCNN
(Left) and has a higher complexity for populated case.

Proof of Proposition 32. Focusing on the S0 output fea-
tures, the relevant matrices are [W>0 ⊗M0] for the simplicial
network and [W>0 ⊗M0|W>1 ⊗O0]C for the MPSN with
populated higher-dimensional features. Both matrices have
format mS0 × dS0 and rank min{m, d0} rank(M0). How-
ever, subsets of rows have different ranks in both cases. For
illustration, if d = 1 and l is the smallest number of nonzero
entries of any row in M0, then [W>0 M0] has an m row sub-
matrix of rank min{m, l}. In contrast, an m row submatrix
of the augmented matrix will have rank min{m, l + l′},
where l′ is the smallest number of nonzero entries of a row
in O0.

C. Relationship to Convolutions
Background on Hodge Laplacian The simplicial convo-
lutions described in this section rely on the Hodge Lapla-
cians of the simplicial complex. Such a Laplacian operator
Lp is associated with each dimension p of the complex.
The operator Lp has a special structure that depends on the
boundary operators of the corresponding dimensions Bp
and Bp+1. These matrices are the discrete equivalent of the
boundary operators encountered in algebraic topology (see
Schaub et al. (2020) for more details). They essentially de-
scribe things such as the fact that boundary of a 2-simplex is
formed by its edges with some relative orientation (positive
or negative). The Laplacian can be written as a function
of these boundary matrices as Lp = B>p Bp + Bp+1B

>
p+1.

We denote the first term by L↓p and the second by L↑p, be-
cause they encode up and down adjacencies between the
p-simplicies of the complex and the relative orientation be-
tween them. Additionally, let us recall the important relation
BpBp+1 = 0 (i.e. the zero map). This equation, which is

fundamental in homology theory and differential geome-
try, formally specifies that the boundary of a simplex has no
boundary (e.g. the boundary of a 2-simplex has no boundary
because it forms a loop and, therefore, it has no endpoints).

We emphasise that the boundary matrices and the Hodge
Laplacian depend on an arbitrary choice of orientation for
the simplicial complex. Although these linear operators are
orientation-equivariant, more general convolutional layers
based on these operators are not guaranteed to be orientation-
equivariant. When originally introduced, the orientation
equivariance properties of the convolutional operators from
Ebli et al. (2020) and Bunch et al. (2020) were not consid-
ered. Therefore, when the orientation of the input complex
is changed, these models could produce completely differ-
ent outputs. This is also emphasised by the MPSN ReLU
model in Section 6. In Appendix D we analyse these aspects
in more detail.

Simplicial Neural Networks Ebli et al. (2020) presented
Simplicial Neural Networks (SNNs), neural network mod-
els extending convolutional layers to attributed simplicial
complexes. The theoretical construction closely resembles
the one by Defferrard et al. (2016), where the standard
graph Laplacian is simply replaced by the more general
Hodge p-Laplacian Lp, i.e. the generalization of the Lapla-
cian operator to simplices of order p. The p-th order SNN
convolutional layer is defined as

F−1p (φW ) ∗p c = ψ

(
R∑
r=0

WrL
r
pc

)
, (26)

where φW is a convolutional filter with learnable param-
eters W , c ∈ Cp(K) is a p-cochain on input simplicial
complex K (i.e. a real valued function over the set of p-
simplices in K) and ψ accounts for the application of bias
and non-linearity. In particular, the convolutional filter φW
is parameterized as an R-degree polynomial of the Hodge p-
Laplacian Lp. By imposing a small degree R, it is possible
to guarantee spatial filter localization similarly as in graphs.

This proposed convolutional layer can easily be be rewrit-
ten in terms of our message passing scheme. Let us first
conveniently introduce the following Lemma:

Lemma 33. The r-th power of the Hodge p-Laplacian, Lrp,
is equivalent to the sum of the r-th powers of its constituent
upper and lower components, that is: Lrp = (L↓p + L↑p)

r =

(L↓p)
r + (L↑p)

r.

Proof. We prove the lemma by induction on the power
exponent r. As the base case, we consider exponent r = 1,
for which the equivalence clearly holds as L1

p = (L↓p +

L↑p)
1 = L↓p + L↑p = (L↓p)

1 + (L↑p)
1.

For the induction step, we assume that Lr−1p = (L↓p)
r−1 +
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(L↑p)
r−1 holds true and prove that Lrp = (L↓p)

r + (L↑p)
r. Lrp

is defined as:

Lrp = LpL
r−1
p = (L↓p + L↑p)(L

↓
p + L↑p)

r−1

By the induction hypothesis:

(L↓p + L↑p)(L
↓
p + L↑p)

r−1 =

= (L↓p + L↑p)
(
(L↓p)

r−1 + (L↑p)
r−1) =

= L↓p(L
↓
p)
r−1 + L↓p(L

↑
p)
r−1

+ L↑p(L
↓
p)
r−1 + L↑p(L

↑
p)
r−1 =

= (L↓p)
r + L↑p(L

↓
p)
r−1 + L↓p(L

↑
p)
r−1 + (L↑p)

r

The second term L↑p(L
↓
p)
r−1 can be rewritten as

Bp+1B
>
p+1(B>p Bp)

r−1 = Bp+1B
>
p+1 B>p Bp︸ ︷︷ ︸

(r − 1) times

= 0,

since B>p+1B
>
p = (BpBp+1)>, which equals 0> by def-

inition.

Similarly, the third term L↓p(L
↑
p)
r−1 can be rewritten as

B>p Bp(Bp+1B
>
p+1)r−1 = B>p BpBp+1B

>
p+1︸ ︷︷ ︸

(r − 1) times

= 0, since,

again, BpBp+1 = 0.

We now proceed to prove Theorem 12 that our MPSN can
be reduced to SCNN of Ebli et al. (2020) or Bunch et al.
(2020). We split the proofs in two individuals.

Proof of Theorem 12 in Reference to Ebli et al. (2020).
We first rephrase Equation (26) for a generic layer and
multi-dimensional input and output p-simplicial representa-
tions:

Ht+1 = ψ
( R∑
r=0

LrpH
tW t+1

r

)
=
(
HtW t+1

0 +

R∑
r=1

LrpH
tW t+1

r

)
.

The convolutional operation for p-simplex σ can be rewrit-
ten as

ht+1
σ = ψ

(
htσW

t+1
0 +

R∑
r=1

(Lrp)σH
tW t+1

r

)
= ψ

(
htσW

t+1
0 +

R∑
r=1

∑
τ∈Sp

(Lrp)σ,τh
t
τW

t+1
r

)
,

where ht+1
σ denotes the σ-th row of matrix Ht+1, (Lrp)σ

denotes the σ-th row of operator Lrp and (Lrp)σ,τ its entry at

position σ, τ . We now leverage on Lemma 33 to rewrite the
convolution operation on simplex σ as

ht+1
σ = ψ

( R∑
r=1

∑
τ∈Sp

(
((L↓p)

r)σ,τ + ((L↑p)
r)σ,τ

)
htτW

t+1
r

+ htσW
t+1
0

)
= ψ

(∑
τ∈Sp

R∑
r=1

((L↓p)
r)σ,τh

t
τW

t+1
r

+
∑
τ∈Sp

R∑
r=1

((L↑p)
r)σ,τh

t
τW

t+1
r + htσW

t+1
0

)
.

Considering that matrices L↓p and L↑p only convey the no-
tions of, respectively, lower and upper simplex adjacency,
the equation above is easily interpreted in terms of our mes-
sage passing scheme by setting

M t+1
↑
(
htσ, h

t
τ , h

t
σ∪τ
)

=

R∑
r=1

((L↑p)
r)σ,τh

t
τW

t+1
r

M t+1
↓
(
htσ, h

t
τ , h

t
σ∩τ
)

=

R∑
r=1

((L↓p)
r)σ,τh

t
τW

t+1
r

U t+1
(
htσ, {mt

i(σ)}i=↓,↑
)

= ψ
(
htσW

t+1
0

+m↑
t+1
σ +m↓

t+1
σ

)
,

and by letting AGG be the summation over the extended
notion of upper and lower R-neighborhoods, that is neigh-
borhoods comprising p-simplices at a distance from σ which
is at most R (τ is at distance d from σ if there exists a se-
quence of upper- (respectively, lower-) adjacent p-simplices
[ν0, ν1, . . . , νd] such that ν0 = σ, νd = τ ).

It is noteworthy that, contrary to our general proposed frame-
work, the two message functions M t+1

↑ and M t+1
↓ share the

same learnable parameters {W t+1
r }Rr=1, and that no signal

of order lower or higher than p is involved in computation.

SC-Conv Bunch et al. (2020) proposed a convolutional
operator that can be applied on 2-dimensional simplicial
complexes. The construction is based on the canonical nor-
malised Hodge Laplacians defined by Schaub et al. (2020);
starting from the operators, the authors generalize the Graph
Convolutional Network model proposed in Kipf & Welling
(2017) by defining the corresponding adjacency matrices
with added self-loops:

Ht+1
0 = ψ(D−11 B1H

t
1W

t
0,1 + Ãu0H

t
0W

t
0,0)

Ht+1
1 = ψ(B2D3H

t
2W

t
1,2

+ (Ãd1 + Ãu1 )Ht
1W

t
1,1
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+D2B
>
1 D
−1
1 Ht

0W
t
1,0)

Ht+1
2 = ψ(Ãd2H

t
2W

t
2,2 +D4B

>
2 D
−1
5 Ht

1W
t
2,1).

We defer readers to Section 2.1 of the original paper for
the definitions of the {Ãαi }2i=0 and {D}5i=1 matrices in the
above equations. Differently from Ebli et al. (2020), this
scheme models the interactions between signals defined at
different dimensions. It can, nonetheless, be rewritten in
terms of our message passing framework.

Proof of Theorem 12 in Reference to Bunch et al. (2020).
We report here the derivation for message passing on
1-simplices (edges) as it is the most general. The derivation
on 0- and 2-simplices can simply be obtained as a special
case of this last.

First, let us conveniently denote:

∆1,1 = Ãd1 + Ãu1 , ∆1,0 = D2B
>
1 D
−1
1 , ∆1,2 = B2D3.

We note that the convolutional operation for a generic 1-
simplex δ can be rewritten as:

ht+1
1,δ =

= ψ
(

(∆1,2)δH
t
2W

t
1,2 + (∆1,1)δH

t
1W

t
1,1

+ (∆1,0)δH
t
0W

t
1,0

)
= ψ

(∑
τ∈S2

(∆1,2)δ,τh
t
2,τW

t
1,2 +

∑
γ∈S1

(Ãu1 )δ,γh
t
1,γW

t
1,1

+
∑
γ∈S1

(Ãd1)δ,γh
t
1,γW

t
1,1 +

∑
σ∈S0

(∆1,0)δ,σh
t
0,σW

t
1,0

)
= ψ

( ∑
τ∈C(δ)

(∆1,2)δ,τh
t
2,τW

t
1,2 +

( ∑
γ∈N↑(δ)

(Ãu1 )δ,γh
t
1,γ

+
∑

γ∈N↓(δ)

(Ãd1)δ,γh
t
1,γ + (∆1,1)δ,δh

t
1,δ

)
W t

1,1

+
∑

σ∈B(δ)

(∆1,0)δ,σh
t
0,σW

t
1,0

)
.

This equation is interpreted in terms of our message passing
scheme by setting:

M t+1
1,↑
(
ht1,δ, h

t
1,γ , h

t
2,δ∪γ

)
= (Ãu1 )δ,γh

t
1,γ

M t+1
1,↓
(
ht1,δ, h

t
1,γ , h

t
0,δ∩γ

)
= (Ãd1)δ,γh

t
1,γ

M t+1
1,C
(
ht1,δ, h

t
2,τ

)
= (∆1,2)δ,τh

t
2,τ

M t+1
1,B
(
ht1,δ, h

t
0,σ

)
= (∆1,0)δ,σh

t
0,σ

U t+1
1

(
ht1,δ, {mt

i(δ)}i=B,C,↓,↑
)

= ψ
(
W t

1,1
>(

(∆1,1)δ,δh
t
1,δ +m↑(δ)

t+1 +m↓(δ)
t+1
)

+W t
1,2
>
mC(δ)

t+1

+W t
1,0
>
mB(δ)t+1

)
,

and AGG =
∑

.

Simplicial Complex Pooling Typically, CNNs interleave
convolutional layers with pooling layers, which spatially
downsample the input features. This problem has proven
to be much more challenging on graph domains, where no
obvious graph coarsening strategy exists. While we have
not employed any simplicial complex pooling operators in
this work, this is likely going to be an exciting direction of
future work. Some of the previously proposed graph pooling
operators can readily be extended to simplicial complexes.
For instance, TopK pooling (Cangea et al., 2018) can be
performed over the vertices of the complex and the higher-
order structures associated with the pooled vertices can be
maintained at the next layer. Other operators, such as the
topologically-motivated pooling proposed by Bodnar et al.
(2020) can already handle simplicial complexes, but it has
only been employed in a graph setting.

D. Equivariance and Invariance
One would expect MPSNs to be aware of the two symme-
tries of a simplicial complex: relabeling of the simplicies in
the complex and, optionally, changes in the orientation of
the complex if the complex is oriented. We address these
two below.

Permutation Equivariance Let K be simplicial p-
complex with a sequence B of boundary matrices
(B1, . . . , Bp) and a sequence H of feature matrices
(H0, . . . ,Hp). Let P be a sequence of permutation ma-
trices (P0, . . . , Pp) with Pi ∈ RSi×Si . Denote by PH
the sequence of permuted features (P0H0, . . . , PpHp) and
by PBP>, the sequence of permuted boundary matrices
(P0B1P

>
1 , . . . , Pp−1BpP

>
p ).

Definition 34 (Permutation equivariance). A function f :
(Hin,B) 7→ Hout is (simplex) permutation equivariant
if f(PHin,PBP>) = Pf(Hin,B) for any sequence of
permutation operators P.

Definition 35 (Permutation invariance). Similarly, we say
that a function f is (simplex) permutation invariant if
f(PHin,PBP>) = f(Hin,B) for any sequence of per-
mutation operators P.

Proof of Theorem 13. We abuse the notation slightly and
use Pi(a) to denote the corresponding permutation function
of Pi acting on indices.

We focus on a single simplex σ of an arbitrary dimension
n and the corresponding τ = Pn(σ). Let hσ be the output
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feature of simplex σ for an MPSN layer taking (H,B) as
input and h̄τ the output features of simplex τ for the same
MPSN layer taking (PH,PBP>) as input. We will now
show they are equal by showing that the multi-set of features
being passed to the message, aggregate and update functions
are the same for the two simplicies.

The boundary of the n-simplicies in B are given by the non-
zero elements of Bn. Similarly, in PBP>, these are given
by the non-zero elements of Pn−1BnP>n . That is the same
boundary matrix but with the rows and columns permuted
according to Pn). This then gives

(Bn)a,b = (Pn−1BnP
>
n )Pn−1(a),Pn(b).

In particular, this holds for b = σ, Pn(b) = τ . Because the
feature matrices for the (n− 1)-simplices in PH are also
accordingly permuted with Pn−1Hn−1, σ and τ receive the
same message from their boundary simplices. The proof
follows similarly for co-boundary adjacencies.

The lower adjacenices of the n-simplicies in B are given
by the non-zero entries of B>n Bn. Similarly, the lower
adjacencies in PB are given by the non-zero elements of

(Pn−1BnP
>
n )>(Pn−1BnP

>
n ) = PnB

>
n P
>
n−1Pn−1BnP

>
n

= PnB
>
n BnP

>
n .

That is, the same adjacencies as in B, but with the rows and
columns are accordingly permuted. Therefore, we obtain

(B>n Bn)a,b = (PnB
>
n BnP

>
n )Pn(a),Pn(b),

which, in particular, holds for a = σ, Pn(a) = τ . Since
the feature matrices for the n-simplices in PB are also
permuted with PnHn, σ and τ receive the same message
from the lower adjacenct simplicies. This can be similarly
shown for upper adjacencies.

Permutation invariance for an MPSN model can be obtained
by stacking multiple permutation equivariant layers fol-
lowed by a permutation invariant readout function. The
readout must be permutation invariant in each of the multi-
sets of simplices of different dimensions it takes as input.
Any commonly used GNN readout functions such as sum
or mean could be employed.

Orientation Equivariance Another symmetry that we
would like to preserve is orientation. For instance, we know
that the homology of the complex is invariant to the par-
ticular orientation that was chosen. Therefore, for certain
applications where orientations are of interest, we would
like to design MPSN layers that are orientation equivariant
and MPSN networks that are orientation invariant.

When a simplex σ changes its orientation, it changes its
relative orientation (i.e. +1 becomes −1 and vice-versa)

with respect to all the neighbours in the complex, and the
signature of its own features is flipped. Overall, this can
be modelled by multiplying the rows and columns of the
boundary matrices where σ appears and the corresponding
row of the feature matrix by −1. We formalise this intuition
below.

Consider a simplicial p-complex K. Let T = (T0, . . . , Tp)
be a sequence of diagonal matrices with Ti(j, j) = ±1 for
all i > 0 and any j and T0 = I . The latter constraint is
due to the fact that vertices have trivial orientation and it
cannot be changed. Using the same notation as for permu-
tation equivariance, define TH = (T0H0, . . . , TpHp) and
TBT = (T0B1T1, . . . , Tp−1BpTp).

Definition 36 (Orientation equivariance). A function f
mapping (Hin,B) 7→ Hout is orientation equivariant if
f(THin,TBT) = Tf(Hin,B) for any sequence of oper-
ators T.

Definition 37 (Orientation invariance). A function f is ori-
entation invariant if f(THin,TBT) = f(Hin,B) for any
sequence of operators T.

Remark 38. Orientation invariance can be trivially
achieved by considering the absolute value of the features
and by treating the complex as an unoriented one.

However, it is (in general) desirable to use equivariance
at the intermediate layers and make the network invariant
with a final transformation (readout). Constructing such an
MPSN layer requires imposing additional constraints on the
structure of the message, update and aggregate functions.
We will start with a simple MPSN layer that can be ex-
pressed in the matrix form to develop an intuition, and then
we will generalise this to provide a more flexible MPSN
layer that is orientation equivariant.

For instance, we can consider the model from (11) used
in our linear regions analysis, with a convenient vectorised
form

Hout
i = ψ

(
B>i BiH

in
i W1 +H in

i W2 +Bi+1B
>
i+1H

in
i W3

+B>i H
in
i−1W4 +Bi+1H

in
i+1W5

)
, (27)

where we have separated the upper and lower adjacencies in
two and included the featureHi matrix as an additional term.
This corresponds to an MPSN with a message function that
multiplies the feature of the neighbour by the relative orien-
tation (±1), sum-based aggregation and an update function
that adds the incoming messages to its linearly transformed
features and passes the output through ψ.

Proposition 39. When ψ is an odd activation function, the
MPSN layer from Equation (27) is orientation equivariant.

Proof. Let Hout
i = fi(Bi, Bi+1, H

in
i , H

in
i−1, H

in
i+1) be the

application of one such MPSN layer on the i-dimensional
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simplices. Note that the output depends only on the sim-
plices of dimension i− 1, i, and i+ 1.

For this MPSN layer to be equivariant, we need to show that

fi(Ti−1BiTi, TiBi+1Ti+1, TiH
in
i , Ti−1H

in
i−1, Ti+1H

in
i+1)

= TiH
out
i (28)

Because TiTi = I and T>i = Ti for all i, we can easily
rewrite LHS as

ψ
(
Ti
(
B>i BiH

in
i W1 +H in

i W2 +Bi+1B
>
i+1H

in
i W3

+B>i H
in
i−1W4 +Bi+1H

in
i+1W5

))
. (29)

Notice that if ψ and Ti commute, then this becomes TiHout
i .

We remark that they commute when ψ is an odd function.

We can generalise this particular architecture to obtain a
more general MPSN layer that is orientation equivariant.
Based on Equation (28), we can see that for an arbitrary
simplex σ, the output features are invariant with respect to
changes in the orientation of the neighbours and it is only
affected by changes in its own orientation.

Let us rewrite the equivalent constraint from Equation (28)
for a local aggregation of the neighbourhood of a sim-
plex σ in the complex. Let us denote by oσ,τ , the relative
orientation between σ and τ . Consider an abstract local
neighbourhood aggregation function A taking as input the
features hσ and a multi-set of tuples containing the fea-
tures of the neighbours of σ and the relative orientations
{{(oσ,τ , hτ ) | τ ∈ N (σ)}}. For brevity, we consider a single
generic multi-set of neighbours denoted here by N (σ), but
multiple types can be easily integrated into A.

Based on Equation (28), we know A is invariant to changes
in the orientations of the neighbours. This means that it is
invariant in changes in the signature of the relative orienta-
tions and of the features of the neighbours:

A(hσ, {{(oσ,τ , hτ )}}) = A(hσ, {{±(oσ,τ , hτ )}}). (30)

At the same time, we know that the output ofAmust change
its sign when the orientation of σ changes. That is, when all
the relative orientations change their signs together with the
features of σ. This leads to a second equation:

A(hσ, {{(oσ,τ , hτ )}}) = −A(−hσ, {{(−oσ,τ , hτ )}}).
(31)

In other words, A must be even in each (oσ,τ , hτ ) and also
odd in (hσ, {{oσ,τ}}).

Consider an auxiliary functionA∗ taking as input the feature
vector hσ and a multi-set, such that A∗ is an odd function:

A∗(hσ, {{hτ}}) = −A∗(−hσ, {{−hτ}}).

Lemma 40. Let A∗ be an odd local aggregator as above.
Then the function A defined by:

A(hσ, {{(oσ,τ , hτ )}}) := A∗(hσ, {{oσ,τ · hτ}}),

where · denotes scalar-vector multiplication, satisfies Equa-
tions 30 and 31.

Proof. First we prove A satisfies Equation (30). Substitut-
ing the definition of A:

A(hσ, {{±(oσ,τ , hτ )}}) = A∗(hσ, {{±oσ,τ · ±hτ}})
= A∗(hσ, {{oσ,τ · hτ}})
= A(hσ, {{(oσ,τ , hτ )}}). (32)

For proving A satisfies Equation (31) we substitute the defi-
nition again:

A(−hσ, {{(−oσ,τ , hτ )}}) = A∗(−hσ, {{−oσ,τ · hτ}})
= −A∗(hσ, {{oσ,τ · hτ}})
= −A(hσ, {{(oσ,τ , hτ )}}).

(33)

Proof of Theorem 14. The proof follows immediately
from Lemma 40 since the composition of odd functions
is odd. Therefore, the function A∗ can be implemented
using a combination of odd message, aggregate and update
functions.

It is useful to note that any MLP without bias units and odd
activation functions is an odd function. Additionally, all
linear aggregators (mean, sum) are odd. Therefore, most
commonly used GNN layers could be adopted by simply
using an odd activation function.

Another important remark is that if the local aggregator
ignores the relative orientations, then Equations 30 and 31
simply imply that the local aggregator of the MPSN layer
must be odd in the features of σ and even in the features
of the neighbours. If the features of σ are not used in the
message function, then an even message function combined
with an update function that is odd in hσ also satisfies the
equations.

Remark 41. A (permutation invariant) aggregation-based
readout layer first applying an element-wise even function ψ
to the elements of its input multiset is orientation invariant
since

AGG({{ψ(xi)}}) = AGG({{ψ(±xi)}}). (34)

A flexible way to implement such a layer is to consider a
function ψ(x) = f(x) + f(−x), where f is an arbitrary
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non-odd function that could be parametrised as an MLP. It
is easy to see that such a function is even since summation
commutes:

ψ(x) = f(x) + f(−x) = f(−x) + f(x) = ψ(−x).

To conclude this section, we note that the concurrent work
of Glaze et al. (2021) has also analysed the equivariance
properties of simplicial networks in the context of a specific
convolutional operator that is similar to the one in Equation
(27). However, our simplicial message passing scheme is
more general, and effectively subsumes the convolutional
operator presented in their work. Therefore, the equivari-
ance analysis performed here also applies to a much larger
family of models.

E. Cubical Complexes
A message passing approach for cell complexes, a generali-
sation of simplicial complexes, has been proposed by Hajij
et al. (2020). Cell Complexes have a similar hierarchical
structure to simplicial complexes, and the approach of Hajij
et al. (2020) is very close to ours. At the same time, arbitrary
cell complexes might be too general for certain applications.
Here we discuss how our approach could be extended to
cubical complexes, a type of cell complex that from a the-
oretical point of view is similar to simplicial complexes
(Kaczynski et al., 2004), and which is used in applications.
We plan to extend our approach to cubical complexes in
future work.

Figure 8. Example of two cubical complexes whose underlying
graphs cannot be distinguished by 1-WL, but are not isomorphic
as cubical complexes.

Figure 9. Decalin and Bicyclopentyl: Non-isomorphic molecular
graphs that cannot be distinguished neither by WL nor by SWL,
when based on clique complexes (here the nodes represent carbon
atoms, and edges are chemical bonds).

Cubical complexes are cell complexes consisting of unions
of points, edges, squares, cubes, and higher-dimensional hy-
percubes (Kaczynski et al., 2004). While they are less well-
known than simplicial complexes, they can nevertheless be

used in applications, and are better suited than simplicial
complexes to the study of certain types of data sets, see, e.g.
Wagner et al. (2011). Our approach to message passing can
be directly implemented also for cubical complexes. One
could similarly define a WL test for cubical complexes.

In Figure 8 we provide an example of two cubical complexes
that are not isomorphic, while their underlying graphs are
isomorphic. We note that the clique complexes of the under-
lying graphs are also isomorphic. The examples in Figures
2 and 8 raise the question of whether we could design tests
that are better suited to take into account the topological
information encoded in simplicial and cubical complexes,
such as homeomorphism tests, which have already been
studied, see e.g. Baik & Miller (1990). In particular, such
tests should be able to distinguish the graphs in Figure 9,
a pair of real world molecular graphs that cannot be distin-
guished by the SWL test based on clique complexes.

A natural next step in our work is to perform tests on data
sets that are more naturally modelled by cubical complexes,
such as digital images, for which they can provide computa-
tional speed-ups compared to simplicial complexes (Wagner
et al., 2011; Kaczynski et al., 2004).

F. Additional Experimental Details
F.1. Strongly Regular Graphs

The original SR datasets can be found at http://users.
cecs.anu.edu.au/˜bdm/data/graphs.html.
Families in Figure 5 are referred to as per the SR(v, k, λ, µ)
notation (see Section A.1). We set ε = 0.01 as the
Euclidean distance threshold for which graphs are deemed
non-isomorphic. Graphs are embedded in a 16-dimensional
space by running an untrained, 5-layer, MPSN model on
the associated clique complexes, obtained by considering
any (p + 1)-clique as a p-simplex in the complex. Nodes
are initialised with a constant, scalar, unitary signal, while
higher-order simplices with the sum of the features of the
constituent nodes. As already mentioned in the main text,
the specific MPSN architecture is dubbed ‘SIN’ given
its resemblance to the GIN model (Xu et al., 2019b).
The following message passing operations are employed
to compute the t + 1 intermediate representation for a
p-simplex σ:

ht+1
σ = MLPtU,p

(
MLPtB,p

(
(1 + εB)htσ +

∑
δ∈B(σ)

htδ
)
‖

MLPt↑,p
(
(1 + ε↑)h

t
σ +

∑
τ∈N↑(σ)

M t
↑,p(h

t
τ , h

t
σ∪τ )

))
M t
↑,p(h

t
τ , h

t
σ∪τ ) = MLPtM,p

(
htτ ‖ htσ∪τ

)
, (35)

where ‖ indicates concatenation, MLPtB,p and MLPt↑,p are
2-Layer Perceptrons and MLPtU,p, MLPtM,p consist of a
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dense layer followed by a non-linearity. Parameters εB,
ε↑ are set to zero. Notice how, in accordance with Theo-
rem 6, messages are only aggregated from boundary and
upper-adjacent simplices (for which we also include the
representations of the shared coboundary simplices). After
the L = 5 message passing layers, for a d-complex X we
perform readout operations as follows:

hX = MLPK
( d∑
p=0

MLPSp
( ∑
σ∈Sp

hLσ
))
, (36)

where Sp is the set of simplices at dimension p, and MLPK,
MLPSp are dense layers followed by non-linearities, set to
ELU (Clevert et al., 2016) throughout the whole architecture.
All layer sizes are set to 16, except for the one of MLPSp
layers, which is set to 2 · 16 = 32.

The ‘MLP-sum’ baseline replaces the 5 message passing
layers by applying a independent dense layer, followed by
non-linearity, at each complex dimension. The readout
scheme replicates the one in SIN we just described above.
In this model, the initial dense layers have size 256, MLPSp
layers have size 2 · 256 = 512 and MLPK has size 16 as in
SIN. We apply ELU non-linearities in this model as well.

Finally, we report here that we ran a comparable GIN archi-
tecture and empirically verified its inability to distinguish
any pair, theoretically justified by its expressive power being
upper-bounded by 1-WL (Xu et al., 2019b).

F.2. Trajectory Prediction

Dataset Details To generate the synthetic complex, we
uniformly sample 1,000 points in the unit square, we per-
form a Delaunay triangulation of these points and then re-
move the triangles (and points) intersecting with two pre-
defined regions of the plane to create the two holes. To
generate the trajectories, we first randomly sample a random
point from the top-left corner of the complex and an end
point from the bottom-right corner of the complex. We then
perform a random walk on the edges of the complex. With
a probability of 0.9, the neighbour closest to the end-point
is chosen, and with a probability 0.1, a random neighbour is
chosen. To generate the two classes, we set random points
either from the bottom-left corner or the top-right corner
as an intermediate checkpoint. We generate 1,000 train
trajectories and 200 test trajectories.

The ocean drifter benchmark has been designed in light
of a study conducted by Schaub et al. (2020) showing
that clock- and counterclockwise drifter trajectories around
Madagascar can be disentangled when projected on the
harmonic subspace of a normalised Hodge 1-Laplacian.
Such operator is the one associated with the simplicial
complex representing the underlying geographical map.
The original drifter measurements have been collected by

the Global Drifter Program, and have been made publicly
available by the U.S. National Oceanic and Atmospheric
Administration (NOAA) at http://www.aoml.noaa.
gov/envids/gld/. The simplicial complex structure
around the Madagascar island is constructed in accordance
with Schaub et al. (2020) and Glaze et al. (2021), i.e. by
considering an underlying hexagonal tiling and by gener-
ating 2-simplices from the triangles induced by the local
adjacency between tiles. Edge-flows are also determined
consistently with these works, that is by drawing trajectories
based on the position of measurement buoys relative to the
underlying hexagonal tiles. We readapted the preprocessing
script from Glaze et al. (2021), which is publicly avail-
able at https://github.com/nglaze00/SCoNe_
GCN/tree/master/ocean_drifters_data. The
final dataset we use consists of 160 train trajectories and 40
test trajectories.

For both benchmarks, the simplicial complexes in the train-
ing dataset use a fixed arbitrary orientation, while each test
trajectory uses a random orientation obtained by multiplying
the boundary and feature matrices with a random diagonal
matrix T1 with ±1 entries as in Appendix D.

Architecture All the evaluated models use a similar archi-
tecture. The MPSN Id, Tanh and ReLU models use layers
of the form:

ψ
(
W0h

t
σ +

∑
τ∈N↓(σ)

W1h
t
τoσ,τ +

∑
δ∈N↑(σ)

W2h
t
δoσ,δ

)
,

where ψ represents the non-linearity from the model’s name
and oσ,τ = ±1 represents the relative orientation between
σ and τ . Based on Theorem 14, this layer is orientation
equivariant if ψ is an odd function. Thus, MPSN Id and
MPSN Tanh are equivariant, whereas MPSN ReLU is not.

The L0-inv MPSN uses a similar layer, but drops the relative
orientations:

ψ
(
W0h

t
σ +

∑
τ∈N↓(σ)

W1h
t
τ +

∑
δ∈N↑(σ)

W2h
t
δ

)
.

The GNN L0-inv model uses the same layer, but without
upper adjacencies:

ψ
(
W0h

t
σ +

∑
τ∈N↓(σ)

W1h
t
τ

)
.

Additionally, the L0-inv models are made orientation invari-
ant by taking the absolute value of the input features before
passing them through the network.

All models use a sum-readout followed by an MLP. The
MPSN Id, Tanh and ReLU models use the absolute value of
the features before the readout.
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Table 3. Hyperparameter configurations on TUDatasets.

Hyperparameter PROTEINS NCI1 IMDB-B IMDB-M RDT-B RDT-M5K

Batch Size 128 128 32 128 32 32
Initial LR 0.01 0.001 0.0005 0.003 0.001 0.001
LR Dec. Steps 20 50 20 50 50 20
LR Dec. Strength 0.5 0.5 0.5 0.5 0.5 0.9
Hidden Dim. 32 32 64 64 64 64
Drop. Rate 0.5 0.5 0.5 0.5 0.0 0.0
Drop. Pos. a a a a b b
Num. Layers 3 4 4 4 4 4

Hyperparameters & Evaluation Procedure All the
models use the same hyperparameters. We use 4 layers,
the hidden size is set to 64, the batch size is 64, and the
initial learning rate is set to 0.001 and decayed by a factor
of 0.5 with a dataset-depending frequency. On the synthetic
dataset we train for 100 epochs and reduce the learning rate
every 20 epochs. On the ocean drifter dataset we train for
250 epochs and reduce the learning rate every 50 epochs.
We report the final training and test accuracy at the end of
training for all models over five seeds.

F.3. Real-World Graph Classification

The graph classification tasks from this set of experiments
are commonly used to benchmark GNNs and are available at
https://chrsmrrs.github.io/datasets/. We
lift each graph to a clique 2-complex, where 0-simplices
are initialised with the original node signals as prescribed
in Xu et al. (2019b). Higher dimensional simplices are ini-
tialised with the mean of the constituent nodes. We employ
a SIN model which applies the following message passing
scheme to compute the t+ 1 intermediate representation for
p-simplex σ:

ht+1
σ = MLPtU,p

(
MLPtB,p

(
(1 + εB)htσ +

∑
δ∈B(σ)

htδ
)
‖

MLPt↑,p
(
(1 + ε↑)h

t
σ +

∑
τ∈N↑(σ)

htτ
))
, (37)

where ‖ indicates concatenation, MLPtB,p and MLPt↑,p
are 2-Layers Perceptrons endowed with Batch Normaliza-
tion (Ioffe & Szegedy, 2015) (BN) and ReLU activations,
MLPtU,p is a dense layer followed by the application of BN
and ReLU. The only exception is represented by Reddit
datasets, on which BN was observed to cause instabilities
in the training process and was not applied. Parameters
εB and ε↑ are set to zero and are not optimised. As it is
possible to notice in Equation (37), upper message m↑,p(σ)
is computed as m↑,p(σ) =

∑
τ∈N↑(σ) h

t
τ , thus explicitly

disregarding the representation of shared co-boundary sim-
plices htσ∪τ : this choice showed to yield better performance
on these benchmarks. We follow Xu et al. (2019b) and
apply a Jumping Knowledge (JK) scheme (Xu et al., 2018):

at dimension p, readout is performed on the concatenation
of the p-simplex representations obtained at each message
passing iteration, projected by the non-linear dense layer
MLPSp . Such a readout operation is dataset specific: we
apply either averaging or summation as prescribed by Xu
et al. (2019b). Final complex representations are obtained
by summing the obtained p-embeddings at dimensions 0
(‘nodes’) and 2 (‘triangles’). One last dense layer is ap-
plied to output class predictions. Training is performed with
Adam optimiser (Kingma & Ba, 2015), starting from an
initial learning rate decayed with a certain frequency.

We employ grid-search to tune batch size, hidden dimension,
dropout rate, initial learning rate along with its decay steps
and strengths, number of layers and the dropout position
(before the final readout on the complex (‘b’), or after it (‘a’).
We report the hyperparameter configurations in Table 3. As
in experiments on SR graphs, the size of MLPSp layers is
doubled w.r.t. the other layers in the architecture.

F.4. Implementation & Availability

We employed PyTorch (Paszke et al., 2019) for all our ex-
periments and we built on top of the PyTorch Geometric
library (Fey & Lenssen, 2019) to implement our simplicial
message passing scheme.

As for clique-lifting procedures, we relied on the simplex
tree data-structure (Boissonnat & Maria, 2014) implemented
in the topological data analysis library Gudhi (The GUDHI
Project, 2021). Empirically, in large-scale experiments in-
volving graphs with 106 nodes, simplex trees are able to
generate the clique complex up to a constant desired dimen-
sion in a computational cost that is linear in the number of
simplicies in the complex (Boissonnat & Maria, 2014).

We refer readers to https://arxiv.org/abs/2103.
03212 for a link to our official code repository. We pro-
vide support for SC datasets, simplicial message passing
networks, oriented SCs, (higher-order) batching, clique com-
plexes and other additional features.


