Appendix

A. StarCraft environment details

A.1. Instruction grammar

(task) == { ¢, (line-type) }

(line-type) ::= (building) | {unit)

A.2. Generation of instructions

We initially generate the build-tree as a random directed
acyclic graph. Next we randomize the building production
capabilities by assigning a random building to each unit
(that building being the one capable of producing that unit).
We generate instructions, unit by unit, randomly selecting
each unit from those whose instructions are sufficiently
short. For example, if the cap on instruction length is 5,
we would exclude any unit that is produced by a building
with a prerequisite chain exceeding a depth of 5. If the
resulting instruction had length 3, we would repeat this
process again but for instructions of length 2. We iterate
these steps until the instruction reaches the desired length
or no valid instructions are possible.

A.3. Spawning of world objects

Each episode begins with a Nexus building (per the original
game) and three Probe workers. We choose the number
of other initial buildings at random between O and 36 (the
number of grids in our 6 x 6 environment. We choose
the starting location of all buildings uniformly at random
(although no two buildings are permitted to occupy the same
grid). The three Probe workers spawn at the Nexus (per the
original game).

B. Minecraft environment details
B.1. Instruction grammar

(task) = { ¢, (line-type) }

(line-type) ::= (subtask) |
(if-expression)

(while-expression) |

(while-expression) ::= while (object) do (subtask-list)
(if-expression) ::= (if-block) {(else-block) | (if-block)

(if-block) ::= if (object) do (subtask-list)

(else-block) ::= else do (subtask-list)

(subtask-list) == { ¢, (subtask) }

(subtask) ::= (interaction) | (resource)
(interaction) = inspect | pickup | transform
(resource) ::= iron | gold | wood

B.2. Generation of instructions

Tasks are generated randomly. Most lines in the task are
sampled uniformly at random from {If, While, Subtask}.
If the current line is inside an if-clause and the preceding
line is a subtask, then {Else, Endlf} is added to the list of
randomly sampled line types. Similar rules apply to while-
clauses (we add EndWhile to the list) and else-clauses (we
add EndlIf).

B.3. Spawning of world objects

At the beginning of each episode we choose the num-
ber n of resources/merchants uniformly at random be-
tween O and 36 (the number of grids in our 6 X 6 gri-
world). We then sample uniformly at random 7 times from
{iron, gold, wood, merchant} to select the candidate popu-
lation of the gridworld. We then test the feasibility of the
environment for the instruction by checking that the requi-
site resources exist for each subtask that the agent will have
to perform. If the environment is deemed infeasible, we
perform the aforementioned sampling process again. After
50 resamples, if we have still failed to generate a feasible
environment, we generate a new instruction per section B.2.
Once we have generated a feasible population, if n < 30,
we place water in a straight line through a random index and
at a random horizontal/vertical orientation. Next we place
the remaining n resources/merchants and the agent each in
unique, random, open grids. At this point, we check that the
agent has access to a wood resource (with which to build
a bridge), and if not, we remove the water from the map.
Finally, we place walls at any open even-indexed tiles (this
to ensure that walls do not cut off parts of the gridworld).

1.04

1.0 = 0.94
° 0.9 0.8
&
% 0.8 g 0.7
i 0.7 % 0.6
6 06 (3
= 0.5
T 05 X £ 04
F04 \w < 0.4 £ 0.4
° = ~A > o CoFCAS T3l CoFCA-S
£ 0.3 CoFCA o3 CoFCA Lo CoFCA
oLsk oLsk oLsK
Go2 OLSK (extended range) 0.2- OLSK (extended range) 0.2 OLSK (extended range)
0.1 Unstructured Memory 0.1 Unstruetured Memary 0.1 Unstructured Memory
0.0 T T T T T T T . 0.0+ T T T T T T T T T T 1 0.0 — T
0 5 10 15 20 25 30 35 40 0 20 40 60 80 100 120 0 10 20 30 40 50 60 70

Length of failing condition block

(a) Generalization by condition block size.
X-axis corresponds to instruction length; Y-
axis is mean success per episode.

C. Analysis of long pointer movements in the
Minecraft domain

Here we present results assessing the agents’ capability to
perform larger pointer movements than those learned dur-
ing training. We trained the agents on instructions from
the Minecraft domain with lengths sampled randomly from
between 1 and 10 (the same training regimen as in §4.3.1).
We evaluated the agent on a special instruction beginning
with a failing condition-block (if or while) that extends to
the end of the instruction, followed by a concluding subtask.
Thus a successful agent will generally have to jump over the
failing condition block to reach the final subtask. We varied
the length of the failing condition block between 1 and 40
and noted each agent’s performance at each length. These
results are shown in Figure 1a. This experiment identifies
one of the key failure points of the CoFCA architecture that
the Scan mechanism is intended to address. The CoFCA
architecture is unlikely to sample pointer movements larger
than those it was trained to perform. Concretely, if the agent
has never seen a control-flow block larger than n, and P
has always placed zero mass on pointer movements greater
than +n, it is unlikely that it will ever place more than zero
mass on those movements, even when longer control-flow
blocks require them. This explains the precipitous drop in
its performance in Figure 1a as soon as the required jump
exceeds the largest that it might have encountered in its
training set. We also note the relatively strong performance
of the unstructured memory architecture, comparable to
CoFCA-S; this shows that the recurrence within the unstruc-
tured memory is able to handle longer condition blocks but
is unable to deal with multiple control flows accounting for
its relatively poor performance in the other generalization
experiments. Finally, we note that OLSK (extended range)
maintains consistently poor performance irrespective of the
condition-block length because, as noted in §4.3.1, this ar-
chitecture ignores the instruction, having never learned to
interpret it in the first place.

Environment Steps (Millions)

(b) Cumulative reward on training episodes
for StarCraft environment

Environment Steps (Millions)

(c) Cumulative reward on training episodes
for Minecraft environment

D. Discussion of training performance

Figures 1b and Ic display training performance on the Star-
Craft and Minecraft domain. Training performance for the
baselines was lower on the Minecraft domain because it
requires more fine-grained control of the pointer. Results do
not in any way compensate for the failure buffer discussed
in §3.6 and that mechanism therefore depresses the perfor-
mance of the algorithms. On the Minecraft domain, none of
the baselines learned to consistently sequence substasks for
longer instructions.

E. Pseudocode / schematics for baselines

This section provides pseudocode and schematics for our
baselines. We indicate sections that deviate from the al-
gorithms given in Fig. 1 with red highlighting. In these
sections, we retain the variable names given in Section 3.
For review:

e M: an encoding of the instructions.

¢ p;: the integer pointer into IM.

 7: the policy, implemented as a neural network.

* x;: the observation for the current time-step.

* P: a collection of possible pointer movement distribu-
tions.

¢ ¢: a neural network that chooses among these distribu-
tions.

* ¢;: a binary value that permits or prevents movement
of Dt

e . a neural network that determines the value of the
gate value.

Unstructured Memory

1:
2:
3:

PR DN R

M < bag-of-words, (I)
initialize hy € R
H «+ BI-GRU (M) {running from first to last index
of I}
for time step ¢ in episode do
ag ~ T (Xt? Mpt)
ht — (,ZS (Xt7 H,at, ht—l)
Ct ~ ,ll) (Xt7 ht; at)
end for

OLSK

1:
2:
3:
4:

Lo W

10:
11:

po <0
M < bag-of-words, (I)
initialize hy € R¥
for time step ¢ in episode do
ag ~ T (Xt’ Mpt)
u;, hy < ¢ (x4, M,,,a;,h; 1) {u; € R3}
1 <+ softmax (uy)
dt ~ Cat (ﬁt)
cr ~ (%, Mpzvat)
Pey1 < Py + cedy
end for

OLSK with extended range

_ =
e A R A AR AR R S

po+ 0
M <« bag-of-words, (I)
initialize hy € R¥
for time step ¢ in episode do
ag ~ T (Xt? Mpt)
Uy, ht — d) (Xt, Mp“ at, hf/,l) {ut € RQAN}
U, + softmax (u;)
dt ~ Cat (ﬁ.t)
ce ~ 1 (x4, My, , ay)
Piy1 < Py + Cedy
end for

CoFCA

1:
2:
3:
4:

LR U

10:
11:
12:

po <0
M <« bag-of-words, (I)
for time step ¢ in episode do
H + BI-GRU (M, x;) {Here H refers to the last
output of BI-GRU (M) }
P «+ ¢ (H) { ¢is alinear projection}
ag ~ T (Xt’ Mpt)
U; < (]5 (Xt7 Mpt s at)
1 + softmax (uy)
dt ~ Cat (Pflt)
cr ~ (%, Mptvat)
P41 < Py + Cedy
end for

(a) Schematic of OLSK / OLSK (extended-
range).

A

sample

H

T Bidirectional GRU

M

T embed

I

(b) Schematic of Unstructured Memory.

Figure 2. Schematics for baselines. Note that the schematic for
CoFCA does not differ from CoFCA-S and is therefore omitted.

F. Hyperparameters
F.1. StarCraft

CoFCA-S CoFCA Unstructured OLSK OLSK-E
Memory
convolution hidden sizes 250 250 150 250 250
convolution kernel sizes 2 2 2 2 2
convolution strides 1 1 1 1 1
¢ hidden size 250 250 200 200 200
E 200 100 100 150 150
entropy coefficient 0.02 0.02 0.02 0.02 0.02
learning rate 8e-5 7.5e-5 4e- 4e-05 4e-05
L 3 2 NA NA NA
time steps per gradient update | 35 30 35 30 30
gradient steps per update 6 7 7 7 7
F.2. Minecraft
CoFCA-S CoFCA Unstructured OLSK OLSK-E
Memory
convolution hidden sizes 32,32 64,32 32,32 64,16 64,16
convolution kernel sizes 2,2 2,2 2,2 2,2 2,2
convolution strides 2,2 2,2 2,2 2,2 2,2
¢ hidden size 128 128 64 64 64
E 64 32 64 32 32
entropy coefficient 0.015 0.015 0.015 0.015 0.015
learning rate 0.0025 0.0025 0.0025 0.0025 0.0025
L 2 9 NA NA NA
time steps per gradient update | 25 25 25 25 25
gradient steps per update 2 2 2 2 2

