Value Alignment Verification

Daniel S. Brown ™! Jordan Schneider “> Anca Dragan' Scott Niekum 2

Abstract

As humans interact with autonomous agents to
perform increasingly complicated, potentially
risky tasks, it is important to be able to efficiently
evaluate an agent’s performance and correctness.
In this paper we formalize and theoretically an-
alyze the problem of efficient value alignment
verification: how to efficiently test whether the
behavior of another agent is aligned with a hu-
man’s values. The goal is to construct a kind of
“driver’s test” that a human can give to any agent
which will verify value alignment via a minimal
number of queries. We study alignment verifica-
tion problems with both idealized humans that
have an explicit reward function as well as prob-
lems where they have implicit values. We analyze
verification of exact value alignment for rational
agents and propose and analyze heuristic and ap-
proximate value alignment verification tests in a
wide range of gridworlds and a continuous au-
tonomous driving domain. Finally, we prove that
there exist sufficient conditions such that we can
verify exact and approximate alignment across an
infinite set of test environments via a constant-
query-complexity alignment test.

1. Introduction

If we desire autonomous agents that can interact with and
assist humans and other agents in performing complex, risky
tasks, then it is important that humans can verify that these
agents’ policies are aligned with what is expected and de-
sired. This alignment is often termed value alignment and is
defined in the Asilomar Al Principles' as follows: "Highly
autonomous Al systems should be designed so that their
goals and behaviors can be assured to align with human
values throughout their operation." In this paper, we pro-

“Equal contribution 'University of California, Berkeley,
USA *University of Texas at Austin, USA. Correspondence
to: Daniel Brown <dsbrown@berkeley.edu>, Jordan Schneider
<joschnei@cs.utexas.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).
"https://futureoflife.org/ai-principles/

vide a theoretical analysis of the problem of efficient value
alignment verification: how to efficiently test whether a
robot is aligned with a human’s values.

Existing work on value alignment often focuses on qualita-
tive evaluation of trust (Huang et al., 2018) or asymptotic
alignment of an agent’s performance via interactions and ac-
tive learning (Hadfield-Menell et al., 2016; Christiano et al.,
2017; Sadigh et al., 2017). By contrast, our work analyzes
the difficulty of efficiently evaluating another agent’s cor-
rectness by formally defining value alignment and seeking
efficient tests for value alignment verification that are appli-
cable when two or more agents already have learned a policy
or reward function and want to efficiently test compatibility.
To the best of our knowledge, we are the first to define and
analyze the problem of value alignment verification. In par-
ticular, we propose exact, approximate, and heuristic tests
that one agent can use to quickly and efficiently verify value
alignment with another agent.

As depicted in Figure 1, the goal of value alignment verifi-
cation is to construct a kind of “driver’s test” that a human
can give to any agent which will verify value alignment and
consists of only a small number of queries. We define values
in the reinforcement learning sense, i.e., with respect to a re-
ward function: a robot is exactly value aligned with a human
if the robot’s policy is optimal under the human’s reward
function. The two agents in a value alignment verification
problem (human and robot) may have different communica-
tion mechanisms and different value introspection abilities.
Thus, the way we analyze value alignment verification will
depend on whether the human’s and robot’s access to their
values is explicit, e.g., able to write down a value function or
reward function or implicit, e.g., able to answer preference
queries or sample actions from a policy. The most general
version of value alignment verification involves a human
with implicit values who seeks to verify the value alignment
of a robot with implicit values, e.g. a black-box policy. This
setting motivates our work; however, it is challenging and
we postpone many questions for future research.

We follow a ground-up approach where we analyze the dif-
ficulty of value alignment verification starting in the most
idealized setting, and then gradually relax our assumptions.
We first analyze sufficient conditions under which efficient
exact value alignment verification is possible in the explicit

https://futureoflife.org/ai-principles/

Value Alignment Verification

human, explicit robot setting, where an idealized human
tester knows their reward function and so does the robot.
When the robot is rational with respect to a reward func-
tion that is a linear combination of known features, we
show that it is possible to provably verify the alignment of
any rational explicit robot via a succinct test consisting of
either reward queries, value queries, or trajectory prefer-
ence queries. We next consider the explicit human, implicit
robot setting, where an idealized human knows their reward
function, but seeks to efficiently verify the alignment of a
black-box policy via action queries. We study heuristics for
generating value alignment verification tests in this setting
and compare their performance on a range of gridworlds.

Finally, in Section 4.5 we study the most general setting
of implicit human, implicit robot. We propose an algo-
rithm for approximate value alignment verification in con-
tinuous state and action spaces and provide empirical re-
sults in a continuous autonomous driving domain where
the human can only query the robot for preferences over
trajectories. We conclude with a brief discussion of the
challenge of designing value alignment verification tests
that generalize across multiple MDPs. Somewhat sur-
prisingly, we provide initial theory demonstrating that if
the human can create the test environment for the robot,
then exact and approximate value alignment across an in-
finite family of MDPs can be verified by observing the
robot’s policy in only two carefully constructed test envi-
ronments. Source code and videos are available at https:
//sites.google.com/view/icml-vav.

2. Related work

Value Alignment: Most work on value alignment focuses
on how to iteratively train a learning agent such that its
final behavior is aligned with a user’s intentions (Leike
et al., 2018; Russell et al., 2015; Amodei et al., 2016).
One example is cooperative inverse reinforcement learn-
ing (CIRL) (Hadfield-Menell et al., 2016; Fisac et al., 2020;
Shah et al., 2020), which formulates value alignment as
a game between a human and a robot, where both try to
maximize a shared reward function that is only known by
the human. CIRL and other research on value alignment
focus on ensuring the learning agent asymptotically con-
verges to the same values as the human teacher, but do not
provide a way to check whether value alignment has been
achieved. By contrast, we are interested in value alignment
verification. Rather than assuming a cooperative setting, we
assume the robot being tested has already learned a policy
or reward function and the human wants to efficiently verify
whether the robot is value aligned.

Reward Learning: Inverse reinforcement learning
(IRL) (Ng & Russell, 2000; Abbeel & Ng, 2004; Arora

& Doshi, 2018) and active preference learning (Wirth
et al., 2017; Christiano et al., 2017; Biyik et al., 2019)
algorithms aim to determine the reward function of a
human via offline demonstrations or online queries. In
contrast, value alignment verification only seeks to answer
the question of whether two agents are aligned, without
concern for the exact reward function of the robot. In
Section 6 we prove that value alignment verification can
be performed in a constant number of queries whereas
active reward learning requires a logarithmic number of
queries (Amin & Singh, 2016; Amin et al., 2017). In cases
where the human has implicit values, active reward learning
can be used to infer the reward function of the human
tester, and then this inferred reward function can be used to
automatically generate a high-confidence value alignment
test. While active reward learning may be a subcomponent
of value alignment verification, it focuses on customizing
reward inference queries for a single agent, whereas value
alignment verification seeks to design a single alignment
test that works for all agents.

Machine Teaching: In machine teaching (Zhu et al.,
2018), a teacher seeks to optimize a minimal set of train-
ing data such that a student (running a particular learning
algorithm) learns a desired set of model parameters. Value
alignment verification can be seen as a form of machine fest-
ing rather than teaching—machine teaching algorithms typi-
cally search for a minimal set of training data that will teach
a learner a specific model, whereas we seek a minimal set of
questions that will allow a tester to verify whether another
agent’s learned model is correct. Thus, in machine teaching,
the teacher provides examples and their answers, but in ma-
chine testing the tester provides examples and then queries
the testee for the answer. While machine teaching has been
applied to sequential decision making domains (Cakmak &
Lopes, 2012; Huang et al., 2017; Brown & Niekum, 2019),
we are not aware of any work that considers the problem of
value alignment verification.

Policy Evaluation Policy evaluation (Sutton & Barto,
1998) aims to answer the question, "How much return would
another agent achieve according to my values?" By focus-
ing on the simpler decision problem, "Is the robot value
aligned with the human?", we seek tests that are much more
sample-efficient than running a full policy evaluation. Oft-
Policy Evaluation (OPE) seeks to perform policy evaluation
without executing the testee’s policy (Precup, 2000; Thomas
et al., 2015; Hanna et al., 2017). However, OPE is often
sample-inefficient, provides high-variance estimates, and
typically assumes explicit access to the tester’s reward func-
tion, and the tester and testee policies. Value alignment
verification is applicable in settings where the policies and
reward functions of both agents may be implicit and only
accessible indirectly.

https://sites.google.com/view/icml-vav
https://sites.google.com/view/icml-vav

Value Alignment Verification

Human Test Generator
Tester
Reward Fn.
or
Preferences
>

Alignment Test

Verification Agents to be verified

? = @

o
v/X Iﬁl .'E'.

Figure 1. The tester provides a reward function either explicitly or implicitly to a test generation algorithm which distills the human’s
values into a succinct alignment test. This single test is used to efficiently verify the value alignment of any agent.

3. Notation

We adopt notation proposed by Amin et al. (Amin et al.,
2017) where a Markov Decision Process (MDP) M con-
sists of an environment E = (S, A, P, Sy,) and a re-
ward function R : & — R. An environment F, con-
sists of a set of states S, a set of actions A, a transi-
tion function P : S x A x & — [0,1] from state-action
pairs to a distribution over next states, a discount factor
~ € [0,1), and a distribution over initial states Sp. A pol-
icym : § x A — [0,1] is a mapping from states to a
distribution over actions. The state and state-action values
of a policy 7 are VZ(s) = Er[> ;207" R(st) | so = 3]
and QT (s,a) = Ex[> 27" R(s¢) | so = s,a0 = a] for
s € Sand a € A. We denote V}5(s) = max, Vj (s) and
Q7(s,a) = max, Q%(s,a). The expected value of a pol-
icy is denoted by Vi = Eges, [V ()]

We assume that the arg max operator returns a set, i.e.,
argmax, f(z) = {z | fly) < f(z),Yy}. We let
T € argmax, V5 denote an optimal policy under reward
function R. We also let Ar(s) = argmax, e QR(s,a’)
denote the set of all optimal actions at state s under reward
function R. Thus, Ag(s) = {a € A| mx(als) > 0}

As is common (Ziebart et al., 2008; Barreto et al., 2017,
Brown et al., 2020), we assume that the reward function is
linear under features ¢ : S +— R¥, so that R(s) = wl ¢(s),
where w € RF. Thus, we use R and w interchange-
ably. Note that this assumption of a linear reward func-
tion is not restrictive as these features can be arbitrarily
complex nonlinear functions of the state and could be ob-
tained via unsupervised learning from raw state observa-
tions (Laskin et al., 2020; Brown et al., 2020). Given
that R(s) = wT¢(s), the state-action value function can
be written in terms of discounted expectations over fea-
tures (Abbeel & Ng, 2004): Q7 (s, a) = w5, where

o) — Ex[> oo o(st) | s0=s,a0 = al.

4. Value Alignment Verification

In this section we first explicitly define value alignment
and value alignment verification. Next, we discuss how

assuming rationality of the robot enables efficient provable
value alignment verification. We then examine how to per-
form (approximate) value alignment verification in tabular
MDPs under different forms of test queries, including re-
ward, value, preference, and action queries. We conclude
this section by presenting a method for approximate value
alignment verification when the tester is a human with im-
plicit values and the state and action spaces are continuous.

We first formalize value alignment. Consider two agents: a
human and a robot. We will assume that the human has a
(possibly implicit) reward function that provides the ground
truth for determining value alignment verification of the
robot. We define (approximate) value alignment as follows:

Definition 1. Given reward function R, policy 7’ is e-value
aligned in environment F if and only if

Vi(s) = VE (s) < e, Vs €S. (1)

Exact value alignment is achieved when € = 0.

We are interested in efficient value alignment verification
where we can correctly classify agents as aligned or mis-
aligned within certain error tolerances while keeping the
total test size small. Formally, efficient (approximate) value
alignment verification is a solution to the following:

min |T|,s.t. Vo' € II,Vs € S 2)
TCT

Vii(s) — V& (s) > e = Pr[r’ passes test T] < Stpr
Vii(s) — V& (s) < e = Pr[r’ fails test T] < O,

where 7 is the choice set of possible test queries, 11 de-
notes the set of robot policies for which we design the test,
tp, O € [0, 1] denote the allowable false positive rate and
false negative rate, and |T'| denotes the cardinality, or com-
plexity of the test, . If € = dg,, = 0, then we seek the test
that enables exact value alignment verification.

4.1. Query Types and Rational Agents

The difficulty of solving Equation 2 can change significantly
as a function of €, gy, dfnr, the set of policies for which
we design the test II, and the type of queries available in

Value Alignment Verification

the choice set 7. For example, exact alignment is impos-
sible in settings where one can only query for actions (see
Appendix A.1). Even when possible, achieving high confi-
dence may require multiple action queries at every state.

One of the main goals of this paper is to understand un-
der what settings we can achieve efficient, provable value
alignment verification. Towards this end, we assume that
the robot behaves rationally with respect to some reward
function R’. A rational agent is one that picks actions to
maximize its utility (Russell & Norvig, 2016). Formally 7/
is a rational agent if:

Va € A,7'(als) >0 = a € argmax Q(s,a), (3)

where arg max, @}/ (s, a) returns the set of all optimal ac-
tions at state s under R'.

Note that rationality in itself does not restrict the set of poli-
cies II for which we can test, since all policies are rational
under the trivial all zero reward function (Ng & Russell,
2000). Rationality also does not limit the choice set 7 since
a rational agent can answer any question related to its policy
or values. The rationality assumption is helpful because
it directly connects the behavior of the agent to a reward
function: given behavior we can infer rewards and given re-
wards we can infer behavior. It also allows us to extrapolate
robot behavior to new situations, enabling efficient value
alignment verification.

4.2. Exact Value Alignment

We start with the idealized query setting of explicit human,
explicit robot. In this section we discuss exact value align-
ment (¢ = 0, dgpy = 0) of a rational robot and review related
work by (Ng & Russell, 2000) on sets of rewards consistent
with an optimal policy. Then in the next section we will
examine how to construct verification tests for exact align-
ment. We assume that both the human and robot know the
states reward features ¢(s), and that the robot acts rationally
with respect to a reward function linear in these features.

Consider two rational agents with reward functions R and
R'. Because there are infinite reward functions that lead to
the same optimal policy (Ng & Russell, 2000), determining
that 3s € S, R(s) # R'(s) does not necessarily imply
misalignment. For ease of notation, we define

OPT(R) ={m | 7m(a|s) > 0= a € arg 1rn(§JLXQ*R(s,a)}7

as the set of all optimal (potentially stochastic) policies in
MDP (FE, R). Combining Definition (1) and Equation (3)
immediately gives us that a rational robot is aligned with
a human if all optimal policies under the robot’s reward
function are also optimal policies under the human’s reward
function. We formally state this as the following Corollary.

(a) Policy 7

(b) CRS().

Figure 2. An example of the consistent reward set (CRS) for a
policy 7 in a simple gridworld and a linear reward function with
two binary reward features (white and gray) with reward weights
wp and w1, respectively.

Corollary 1. We have exact value alignment in environ-
ment E between a rational robot with reward function
R’ and a human with reward function R if OPT(R') C
OPT(R).

We now review foundational work on IRL by Ng and Rus-
sell (Ng & Russell, 2000) which inspires our proposed ap-
proach for efficient value alignment verification.

Definition 2. Given an environment E, the consistent re-
ward set (CRS) of a policy 7 in environment F is defined as
the set of reward functions under which 7 is optimal:

CRS(r) ={R| 7€ OPT(R)}. 4

When R(s) = wl ¢(s), the CRS is the following polytope:

Corollary 2. (Ng & Russell, 2000; Brown & Niekum, 2019)
Given an environment E, the CRS(r) is given by the fol-
lowing intersection of half-spaces:

{w e RF | wl(®®9) — o) > 0,

Ya € arg max Q%(s,d’),be A, s € S})

As an example consider the grid world MDP shown in Fig-
ure 2. The CRS is an intersection of half-spaces which
define all reward functions under which 7 is optimal. Note
that the all zero reward function and the reward function
where white cells have zero reward are included; however,
not all optimal policies under these reward functions lead to
the policy shown in Figure 2a.

Thus, we cannot directly use Corollary 2 to verify alignment
with a human’s optimal policy—Corollary 2 only provides
a necessary, but not sufficient, condition for testing whether
a reward function R’ is value aligned with a policy 7. Con-
sider the example of the trivial all zero reward function: it is
always in the CRS of any policy; however, an agent optimiz-
ing the zero reward can result in any arbitrary policy. Even
ignoring the all zero reward, rewards can be on the bound-
aries of the CRS polytope that are consistent with a policy,

Value Alignment Verification

but not value aligned since they lead to more than one opti-
mal policy, one or more of which may not be optimal under
the human’s reward function. In the next section we show
that if we remove all such edge cases, we can construct an
aligned reward polytope (ARP) similar to the CRS, which
enables provable value alignment verification. Furthermore,
we show that the aligned reward polytope can be used for
alignment verification even when the human cannot directly
query for the robot’s reward function.

4.3. Sufficient Conditions for Provable Verification of
Exact Value Alignment

We seek an efficient value alignment verification test which
enables a human to query the robot to determine exact value
alignment as in Corollary 1. The following theorem demon-
strates that provable verification of exact value alignment is
possible under a variety of query types.

Theorem 1. Under the assumption of a rational robot that
shares linear reward features with the human, efficient exact
value alignment verification is possible in the following
query settings: (1) Query access to reward function weights
w', (2) Query access to samples of the reward function
R'(s), (3) Query access to V5, (s) and Q% (s, a), and (4)

Query access to preferences over trajectories.

4.3.1. CASE 1: REWARD WEIGHT QUERIES

We first consider the case where the human can directly
query the robot for their reward function weights w’. While
this problem setting is mainly of theoretical interest, we
will show that Cases (2) and (3) also reduce to this setting.
Querying directly for the robot’s reward function is maxi-
mally efficient since by definition it only requires a single
query. Although one can solve for the optimal policy un-
der a given w’ and evaluate it under the human’s reward
function w, this brute force approach is computationally
demanding and must be repeated for each robot that needs
to be tested. By contrast, we will prove that there exists a
single efficient verification test that does not require solving
for the robot’s optimal policy and can be used to verify the
alignment of any robot.

As mentioned in the previous section, the CRS for the hu-
man’s optimal policy does not provide a sufficient test for
value alignment verification. Under the assumption of a
rational robot, a sufficient condition for value alignment
verification is to test whether a robot’s reward function lies
in the following set:

Definition 3. Given an MDP M composed of environment
E and reward function R, the aligned reward set (ARS) is
defined as the following set of reward functions:

ARS(R) = {R' | OPT(R') C OPT(R)}. (6)

Using Definition 3, we prove the following lemma which
will enable efficient verification of exact value alignment.

As a reminder, we use the notation Q7%,(s,a) = wl®ls®)

for (5 — Er[> o7 d(st) | so = s,a0 = a], and
Ag(s) = argmaxy e Qg (s, a’).
Lemma 1. Given an MDP M = (E,R), assuming the

human’s reward function R, and the robot’s reward function
R/ can be represented as linear combinations of features

o(s) € R, ie, R(s) = wlé(s), R'(s) = w'" ¢(s), and

given an optimal policy Ty, under R then

we () HE,, = ReARS(R) (]
(s,a,b)eO
s,a s,b
where Hf, , = {w | WT((I)ST;) - @;E)) > 0} and

O ={(s,a,b)|s € S,a € Ar(s),b ¢ Agr(s)}.

Proof sketch. First we show 7}, is optimal under R’ using
the policy improvement theorem. Then, using the unique-
ness of the optimal value function, we show that all optimal
actions under R are also optimal actions under R/, and so
all optimal policies under R’ are optimal under R. (see
Appendix A.3 for the full proof). O

Lemma 1 provides a sufficient condition for verifying exact
value alignment. We now have the necessary theory to
construct an efficient value alignment verification test in the
explicit human, explicit robot setting. We aim to efficiently
verify whether the robot’s reward function, R/, is within the
above intersection of half-spaces, which we call the Aligned
Reward Polytope (ARP), as this gives a sufficient condition
for R’ being value aligned with the human’s reward function
R. Our analysis in this section will be useful later when we
consider approximate tests for value alignment verification
when one or both of the agents have implicit values.”

The verification test is constructed by precomputing the
following matrix representation of the ARP:

@‘(ns*,a) o (I)Srs*,b)
A= | TR TR ®)

where each row corresponds to a tuple (s, a,b) € O. Thus,
a is an optimal action and b is a suboptimal action under R
and each row of A represents the normal vector for a strict
half-space constraint based on feature count differences be-
tween an optimal and suboptimal action. Note that, using
this notation, exact value alignment can now be verified by
checking whether Aw’ > 0. This test can be made more

2QOur results may also be of interest in the analysis of explicit
robot, explicit robot teaming, e.g., ad hoc teamwork (Stone et al.,
2010) where value alignment verification could provide a frame-
work for verifying whether two robots can work together.

Value Alignment Verification

efficient by only including non-redundant half-space normal
vectors in A. In Appendix G.2 we discuss a straightforward
linear programming technique to efficiently obtain the mini-
mal set of half-space constraints that define the intersection
of half-spaces specified in Lemma 1.

4.3.2. CASE 2: REWARD QUERIES

We now consider the case where the tester can query for
samples of the robot’s reward function R'(s). Verifying
alignment via queries to R’(s) can be reduced to Case (1)
by querying the robot for R'(s) over a sufficient number
of states and then solving for a system of linear equations
to recover w’, since we assume both the human and robot
have access to the reward features ¢(s).> Let @ be defined
as the matrix where each row corresponds to the feature
vector ¢(s)7 for a distinct state s € S. Then, the number
of required queries is equal to rank(®) since we only need
samples corresponding to linearly independent rows of .
Thus, if w/ € R*, in the worst case we only need k£ samples
from the robot’s reward function, since we have rank(®) <
k. If there is noise in the sampling procedure, then linear
regression can be used to efficiently estimate the robot’s
weight vector w’. Given w’ we can verify value alignment
by checking whether Aw’ > 0.

4.3.3. CASE 3: VALUE FUNCTION QUERIES

Given query access to the robot’s state and state-action value
functions, w’ can be determined by noting that R'(s) =

w'T ¢(s) and

R(s) = Qh(s,a) =B V(). ©)

Computing the expectation requires enumerating succes-
sor states. If we define the maximum degree of the MDP
transition function as

{s' € S| P(s,a,s") >0}, (10

dmax = Joax
then at most the d,,x possible next state value queries
are needed to evaluate the expectation. Thus, at most
rank(®)(dmax + 1) queries to the robot’s value functions
are needed to recover w’, and the tester can verify value
alignment via Case (1). Since rank(®) < k as before, at
most k(dmax + 1) queries are required for w’ € R¥.

4.3.4. CASE 4: PREFERENCE QUERIES

Finally, we consider the implicit robot setting where the
tester can only query the robot for preferences over tra-
jectories, &. Each preference over trajectories, £4 < &p,
induces the constraint w'” (®(£p) — ®(€4)) > 0, where
(&) =D, 7' ¢(s;) is the cumulative discounted reward

3Note that our results also hold for rewards that are functions
of (s,a) and (s, a, s").

features along a trajectory. Thus, our choice set of tests,
T, consists of all trajectory preference queries, and we
can guarantee value alignment if we have a test T such
that w2 (®(Ep) — ®(£4)) > 0,V(€a,Ep) € T implies that
w € (HE, ,. We can then construct A in a similar fashion
as above, éxéept each row corresponds to a half-space nor-
mal resulting from a preference over individual trajectories
(see Appendix A.3). Only a logarithmic number of prefer-
ences over randomly generated trajectories are needed to
accurately represent (| H %, via intersection of half-spaces
formed by the rows in A i]érown etal., 2019).

4.4. Value Alignment Verification Heuristics

In the next section we relax our assumptions on the robot and
consider the explicit human, implicit robot setting, where
the human seeks to verify value alignment but the robot
has a black-box policy that only affords action queries.
In this case, we resort to heuristics for value alignment
as exact value alignment verification becomes impossible,
and e-value alignment verification by directly attempting to
solve Equation (2) when 7 consists of state-action queries
is computationally intractable. As we discuss in detail in
Appendix B, a direct optimization approach would involve
estimating II by computing the optimal policies for a large
number of different reward functions, evaluating each policy
under w to determine which policies are not e-aligned with
the tester’s reward function R, and then solving a combina-
torial optimization problem over all possible state queries.

Instead, we resort to efficient heuristics. We consider three
heuristic alignment tests designed to work in the black-box
value alignment verification setting, where the tester can
only ask the robot policy action queries over states. Each
heuristic test consists of a method for selecting states at
which to test the robot by querying for an action from the
robot’s policy and checking if that action is an optimal action
under the human’s reward function. Note that querying only
a subset of states for robot actions is fundamentally limited
to value alignment verification tests with dg,, > 0 since
we will never know for sure that the agent will not take
a different action in that state if we query its policy again.
Thus, receiving the “right answer"—an optimal action under
the tester’s reward R—to an action query in a state is not a
sufficient condition for exact value alignment. We briefly
discuss three action query heuristics with full details in
Appendix C. Figure 3 shows examples of the state queries
generated by each heuristic in a simple gridworld.

Critical States Heuristic Our first heuristic is inspired by
the notion of critical states: states where Q% (s, mh(s)) —
Y aca @r(s,a) > t, and t is a user defined thresh-

& (Huang et al., 2018). We adapt this idea to form a
critical state alignment heuristic test (CS) consisting of criti-
cal states under the human’s reward function R. Intuitively,

Value Alignment Verification

these states are likely to be important; however, often many
critical states will be redundant since different states are
often important for similar reasons (see Figure 3).

Machine Teaching Heuristic Our next heuristic is based
on Set Cover Optimal Teaching (SCOT) (Brown & Niekum,
2019), a machine teaching algorithm that approximates the
minimal set of maximally informative state-action trajecto-
ries necessary to teach a specific reward function to an IRL
agent. Brown & Niekum (2019) prove that the learner will
recover a reward function in the intersection of halfspaces
that define the CRS (Corollary 2). We generate informative
trajectories using SCOT, and turn them into alignment tests
by querying the robot for their action at each state along the
trajectories. SCOT replaces the explicit checking of half-
space constraints in Section 4.3 with implicit half-space
constraints that are inferred by querying for robot actions
at states along trajectories, thus introducing approximation
error and the possibility of false positives. Furthermore, gen-
erating a test using SCOT is more computationally intensive
than generating a test via the CS heuristic; however, unlike
CS, SCOT will seek to avoid redundant queries by reasoning
about reward features over a collection of trajectories.

ARP Heuristic Our third heuristic takes inspiration from
the definition of the ARP to define a black-box alignment
heuristic (ARP-bb). ARP-bb first computes A (see Equa-
tion (8)), removes redundant half-space constraints via lin-
ear programming, and then only queries for robot actions
from the states corresponding to the non-redundant con-
straints (rows) in A. Intuitively, states that are queried
by ARP-bb are important in the sense that taking differ-
ent actions reveals important information about the reward
function. However, ARP-bb uses single-state action queries
to approximate checking each half-space constraint. Thus,
ARP-bb trades off smaller query and computational com-
plexity with the potenital for larger approximation error.

4.5. Implicit Value Alignment Verification

We now discuss value alignment verification in the implicit
human, implicit robot setting. Without an explicit represen-
tation of the human’s values we cannot directly compute
the aligned reward polytope (ARP) via enumeration over
states and actions to create an intersection of half-spaces as
described above. Instead, we propose the pipeline outlined
in Figure 1 where an Al system elicits and distills human
preferences and then generates a test which can be used to
approximately verify the alignment of any rational agent.

As is common for active reward learning algorithms (Biyik
et al., 2019), we assume that the preference elicitation al-
gorithm outputs both a set of preferences over trajectories
P = {(&,&) : & > &} and a set of reward weights w
sampled from the posterior distribution {w;} ~ P(w|P).

Given P and P(w|P), the ARP of the human’s implicit
reward function can be approximated as

() {wlw(®&) - (&) >0},
(&:,&5)€EP
(11)

which generalizes the definition of the ARP to MDPs with
continuous states and actions. To see this, note that the
intersection of half-spaces in Lemma | enumerates over
states and pairs of optimal and suboptimal actions under
the human’s reward R to create the set of half-space normal
vectors A, where each normal vector is a difference of
expected feature counts. This enumeration can only be done
in discrete MDPs. Equation (11) approximates the ARP for
continuous MDPs via half-space normal vectors constructed
with empirical feature count differences obtained from pairs
of actual trajectories over continuous states and actions.

ARP(R) ~

This test can be further generalized to e-value alignment
(Definition 1) to test agents with bounded rationality or
slightly misspecified reward functions. One method of con-
structing an e-alignment test is to use the mean posterior
reward E[w] to approximate the value difference of each
pair of trajectories E[w](®(&;) — ®(¢;)), and only include
preference queries with estimated value differences of at
least €. A robot with implicit values is verified as e-value
aligned by test 7' if its preferences over each pair of trajec-
tories in 7' match the preferences provided by the human
(see Appendix F for more details).

5. Experiments

We now study the empirical performance of value alignment
verification tests, first in the explicit human setting and then
in the implicit human setting.

5.1. Value Alignment Verification with Explicit Human

We first study the explicit human setting and analyze the
efficiency and accuracy of exact value alignment verification
tests and heuristics. We consider querying for the weight
vector of the robot (ARP-w), querying for trajectory pref-
erences (ARP-pref), and the action-query heuristics: CS,
SCOT, and ARP-bb, described in Section 4.4.

5.1.1. CASE STUDY

To illustrate the types of test queries found via value align-
ment verification, we consider two domains inspired by
the Al safety gridworlds (Leike et al., 2017). The first do-
main, island navigation is shown in Figure 3. Figure 3a
shows the optimal policy under the tester’s reward function,
R(s) =50 1green(s) — 1 - Lynite(s) — 50 - Lpiye(s), where
1color(8) is an indicator feature for the color of the grid
cell. Shown in figures 3b and 3c are the two preference
queries generated by ARP-pref which consist of pairwise

Value Alignment Verification

trajectory queries (black is preferable to orange under R).
Preference query 1 verifies that the robot would rather move
the to terminal state (green) rather than visit more white
cells. Preference query 2 verifies that the robot would rather
visit white cells than blue cells. Figures 3d, 3e, and 3f show
action query tests designed using the ARP-bb, SCOT, and
CS heuristics. The robot is asked which action its policy
would take in each of the states marked with a question
mark. To pass the test, the agent must respond with an
optimal action under the human’s policy in each of these
states. ARP-bb chooses two states based on the half-space
constraints defined by the expected feature counts of 7},
resulting in an small but myopic test. SCOT queries over a
maximally informative trajectory that starts near the water,
but includes several redundant states. CS only reasons about
Q-value differences and asks many redundant queries (see
Appendix D for more results).

5.1.2. SENSITIVITY ANALYSIS

We also analyze the accuracy and efficiency of value align-
ment verification in the explicit human, explicit robot and
explicit human, implicit robot settings for verifying exact
value alignment. We analyze performance across a suite
of random grid navigation domains with varying numbers
of states and reward features. We summarize our results
here and refer the reader to Appendix E for more details.
As expected, ARP-w and ARP-pref result in perfect accu-
racy. SCOT has uses fewer samples than the CS heuristic
while achieving nearly perfect accuracy. ARP-bb results
in higher accuracy tests, but generates more false positives
than SCOT. CS has significantly higher sample cost than the
other methods and requires careful tuning of the threshold
t to obtain good performance. Our results indicate that in
the implicit robot setting, ARP-pref and ARP-bb provide
highly efficient verification tests. Out of the action query
heuristics, SCOT achieved the highest accuracy, while hav-
ing larger sample complexity than ARP-bb, but achieving
lower sample complexity than CS.

5.2. Value Alignment Verification with Implicit Human

We next analyze approximate value alignment verification
in the continuous autonomous driving domain from Sadigh
et al. (2017), shown in Figure 4a, where we study the im-
plicit human, implicit robot setting and consider verifying
e-value alignment. As depicted in Figure 1 we analyze the
use of active preference elicitation (Biyik et al., 2019) to
perform value alignment verification with implicit human
values. We first analyze implicit value alignment verifica-
tion using preference queries to a synthetic human oracle
unobserved ground-truth reward function R.

We collected varying numbers of oracle preferences, and
computed a non-redundant e-alignment test as described

in 4.5 and Appendix G.2. Tests were evaluated for accuracy
relative to a set of test reward weights. See Appendix G for
experimental parameters and details of the testing reward
generation protocol. Figure 4b displays the results of the
synthetic human experiments. The best tests achieved 100%
accuracy. Although collecting additional synthetic human
queries consistently improved verification accuracy, above
50 human queries, accuracy gains were minimal, demon-
strating the potential for human-in-the-loop preference elic-
itation. Furthermore, the generated verification tests were
often succinct: one of the tests with perfect accuracy re-
quired only six questions out of the original 100 elicited
preferences. Additional experiments and results are detailed
in Appendix G, including false positive and false negative
rate plots, and different methods of estimating the value gap
of questions. We also ran an initial pilot study using real
human preference labels which resulted in a verification test
that achieves 72% accuracy.

6. Generalization to Multiple MDPs

Up to this point, we have considered designing value align-
ment tests for a single MDP; however, it is also interesting
to try and design value alignment verification tests that en-
able generalization, e.g., if a robot passes the test, then this
verifies value alignment across many different MDPs.

As a step towards this goal, we present a result in the explicit
human, explicit robot setting where the human can construct
testing environments. We consider the idealized setting of an
omnipotent tester that is able to construct a set of arbitrary
test MDPs and can query directly for the entire optimal
policy of the robot in each MDP. This tester aims to verify
value alignment across an infinite family of environments
that share the same reward function. Our result builds on
prior analysis on the related problem of omnipotent active
reward learning. Amin & Singh (2016) prove that an active
learner can determine the reward function of another agent
within e precision via O(log |S| + log(1/€)) policy queries.
By contrast, we prove in the following theorem that the
sample complexity of e-value alignment verification is only
O(1) (see Appendix A.5 for the proof).

Theorem 2. Given a testing reward R (not necessarily
linear in known features), there exists a two-query test (com-
plexity O(1)) that determines e-value alignment of a ratio-
nal agent over all MDPs that share the same state space
and reward function R, but may differ in actions, transitions,
discount factors, and initial state distribution.

We also note that if the human has access a priori to a finite
set of MDPs over which they want to verify value alignment,
then our results from earlier sections on exact, heuristic,
and approximate value alignment could be extended to this
setting. For example, we can define a generalized aligned
reward polytope for a family of MDPs as the intersection of

Value Alignment Verification

Pl vN v~
A v *
I

(a) Optimal policy (b) Preference query 1 (c) Preference query 2 (d) ARP-bb queries

? ? ?
? ?[? ?
?0? ?

(e) SCOT queries (f) CS queries

Figure 3. Examples of exact and heuristic value alignment verification tests for an island navigation gridworld (Leike et al., 2017). Only
two preference queries (b) and (c) are required to provably verify any robot policy (black should be preferred over orange). Figures (d)-(f)

show heuristic tests that query for actions at individual states.

p | TS 10

ol
S ;05 25

O <

-
-
@
S

0.0 100
0700 125 25 375 50

€

(a) Driving domain (b) Alignment test accuracy vs €
Figure 4. Implicit human, implicit robot: e-value alignment
verification in a continuous autonomous driving domain. (a) A
preference query. The human is asked if they prefer the blue or
the red trajectory w.r.t. the trajectory of the white car. (b) 80%
confidence intervals on verification accuracy for different values
of ¢, different human query budgets n, averaged over ten seeds.

the aligned reward polytope for each individual MDP. This
intersection of half-spaces provides a sufficient condition
for testing value alignment across the entire family of MDPs.
We leave this as a promising area for future work.

7. Discussion

We analyzed the problem of efficient value alignment veri-
fication: how to generate an efficient test that can be used
to verify the value alignment of another agent with respect
to the human’s reward function. We developed a theoretical
foundation for value alignment verification and proved suf-
ficient conditions for verifying the alignment of a rational
agent under explicit and implicit values for both the human
and robot. Our empirical analysis demonstrates that action
query heuristics can achieve low sample complexity and
high accuracy while only requiring black-box access to an
agent’s policy. When the human has only implicit access
to their values, we analyzed active preference elicitation
algorithms as a potential means to automatically construct
an approximate value alignment test that can efficiently test
another agent with implicit values.

The biggest assumption we make is that the reward function
is a linear combination of features shared by both the human
and robot. We would like to emphasize three points: First,
on representing rewards as linear combinations of features,
note that the features can be arbitrarily complex, and can
even be features learned via a deep neural network which
are then linearly transformed by a final linear layer (Brown

et al., 2020). Second, there is the issue of the human and the
robot sharing the features. The reason this might actually
be a reasonable assumption is that recent techniques enable
robots to detect when they cannot explain human input with
their existing features and ask for new input specific to the
missing features (Bobu et al., 2020; 2021), thereby explicitly
aligning the robot’s reward representation with the human’s
reward representation. Third, even if the features are not
perfectly aligned, our approach can still provide value by
learning a linear combination of features that approximates
the human’s reward function to design an alignment test.

Our pilot study with the driving simulation hints that this
might be the case, as it gives evidence that value alignment
verification is possible when using real human preferences
that are determined using pixel-based observations. Fur-
thermore, the only true requirement for generating value
alignment tests that query for robot actions or preferences is
for the tester to have a reward function that can be approxi-
mated by a linear combination of features. Thus, these tests
could be possibly be applied in cases where a human uses a
linear combination of learned or human-designed features
to construct an approximate alignment test for robots who
have pixel-based policies and/or rewards.

In conclusion, we believe that value alignment verification
is an important problem of practical interest, as it seeks
to enable humans to verify and build trust in Al systems.
It may also be possible for a robot to use value alignment
verification to verify the performance of a human, e.g., Al-
generated assessment tests. Future work also includes re-
laxing rationality assumptions, analyzing value alignment
verification tests in more complex domains, and perform-
ing a full user study to better analyze the use of human
preferences for alignment verification.

Acknowledgements

We would like to thank the anonymous reviewers and
Stephen Giguere for their suggestions for improving the
paper. This work was funded in part by NSF, AFOSR, ARO,
NSF NRI SCHOOL, and ONR YIP.

Value Alignment Verification

References

Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse
reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1.
ACM, 2004.

Amin, K. and Singh, S. Towards resolving unidentifia-
bility in inverse reinforcement learning. arXiv preprint
arXiv:1601.06569, 2016.

Amin, K., Jiang, N., and Singh, S. Repeated inverse rein-
forcement learning. In Advances in Neural Information
Processing Systems, pp. 18151824, 2017.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Arora, S. and Doshi, P. A survey of inverse reinforce-
ment learning: Challenges, methods and progress. arXiv
preprint arXiv:1806.06877, 2018.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T,
van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. In Advances in neural
information processing systems, pp. 4055-4065, 2017.

Biyik, E. and Sadigh, D. Batch active preference-based
learning of reward functions. PMLR, 2018.

Biyik, E., Palan, M., Landolfi, N. C., Losey, D. P., and
Sadigh, D. Asking easy questions: A user-friendly ap-
proach to active reward learning. In Conference on Robot
Learning (CoRL), 2019.

Bobu, A., Bajcsy, A., Fisac, J. F.,, Deglurkar, S., and Dragan,
A. D. Quantifying hypothesis space misspecification in
learning from human-robot demonstrations and physical
corrections. IEEE Transactions on Robotics, 36(3):835—
854, 2020.

Bobu, A., Wiggert, M., Tomlin, C., and Dragan, A. D. Fea-
ture expansive reward learning: Rethinking human input.
In Proceedings of the 2021 ACM/IEEE International Con-
ference on Human-Robot Interaction, pp. 216-224, 2021.

Brown, D. S. and Niekum, S. Machine teaching for inverse
reinforcement learning: Algorithms and applications. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 7749-7758, 2019.

Brown, D. S., Goo, W., and Niekum, S. Better-than-
demonstrator imitation learning via automaticaly-ranked
demonstrations. In Conference on Robot Learning
(CoRL), 2019.

Brown, D. S., Niekum, S., Coleman, R., and Srinivasan,
R. Safe imitation learning via fast bayesian reward infer-
ence from preferences. In International Conference on
Machine Learning. 2020.

Cakmak, M. and Lopes, M. Algorithmic and human teach-
ing of sequential decision tasks. In AAAZ, 2012.

Christiano, P. F,, Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In Advances in Neural Information
Processing Systems, pp. 4299-4307, 2017.

Fisac, J. F., Gates, M. A., Hamrick, J. B., Liu, C., Hadfield-
Menell, D., Palaniappan, M., Malik, D., Sastry, S. S., Grif-
fiths, T. L., and Dragan, A. D. Pragmatic-pedagogic value
alignment. In Robotics Research, pp. 49-57. Springer,
2020.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan,
A. Cooperative inverse reinforcement learning. In Ad-
vances in Neural Information Processing Systems 29, pp.
3909-3917. 2016.

Hanna, J. P., Stone, P., and Niekum, S. Bootstrapping with
models: Confidence intervals for off-policy evaluation.
In Proceedings of the 16th Conference on Autonomous
Agents and Multiagent Systems, 2017.

Huang, S. H., Held, D., Abbeel, P., and Dragan, A. D.
Enabling robots to communicate their objectives. In
Robotics: Science and Systems, 2017.

Huang, S. H., Bhatia, K., Abbeel, P., and Dragan, A. D.
Establishing appropriate trust via critical states. In 2078
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3929-3936. IEEE, 2018.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.

In International Conference on Machine Learning, pp.
5639-5650. PMLR, 2020.

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt,
T., Lefrancq, A., Orseau, L., and Legg, S. Ai safety
gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and
Legg, S. Scalable agent alignment via reward modeling:
a research direction. arXiv preprint arXiv:1811.07871,
2018.

Ng, A. Y. and Russell, S. J. Algorithms for inverse rein-
forcement learning. In ICML, pp. 663-670, 2000.

Paulraj, S., Sumathi, P., et al. A comparative study of redun-
dant constraints identification methods in linear program-
ming problems. Mathematical Problems in Engineering,
2010.

Value Alignment Verification

Precup, D. Eligibility traces for off-policy policy evalua-
tion. Computer Science Department Faculty Publication
Series, pp. 80, 2000.

Russell, S., Dewey, D., and Tegmark, M. Research prior-
ities for robust and beneficial artificial intelligence. Ai
Magazine, 36(4):105-114, 2015.

Russell, S. J. and Norvig, P. Artificial intelligence: a modern
approach. Malaysia; Pearson Education Limited,, 2016.

Sadigh, D., Dragan, A. D., Sastry, S. S., and Seshia, S. A.
Active preference-based learning of reward functions. In
Proceedings of Robotics: Science and Systems (RSS), July
2017. doi: 10.15607/RSS.2017.XII1.053.

Shah, R., Freire, P., Alex, N., Freedman, R., Krasheninnikov,
D., Chan, L., Dennis, M., Abbeel, P., Dragan, A., and
Russell, S. Benefits of assistance over reward learning.
Workshop on Cooperative Al (Cooperative AI @ NeurIPS,
2020.

Stone, P, Kaminka, G. A., Kraus, S., Rosenschein, J. S.,
et al. Ad hoc autonomous agent teams: Collaboration
without pre-coordination. In AAAI 2010.

Sutton, R. S. and Barto, A. G. Introduction to reinforcement
learning, volume 135. MIT press Cambridge, 1998.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M.
High-confidence off-policy evaluation. In AAAI, pp. 3000-
3006, 2015.

Wirth, C., Akrour, R., Neumann, G., Fiirnkranz, J., et al. A
survey of preference-based reinforcement learning meth-
ods. Journal of Machine Learning Research, 18(136):
1-46, 2017.

Zhu, X., Singla, A., Zilles, S., and Rafferty, A. N.
An overview of machine teaching. arXiv preprint
arXiv:1801.05927, 2018.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI 2008.

Value Alignment Verification

A. Theory and Proofs
A.1. Value Alignment Verification of Black-Box Agents

Definition 1 makes no assumptions about the robot agent except that it acts according to some policy 7’. Given this
assumption, how can a tester with reward function R efficiently solve the value alignment verification problem? A brute
force attempt at verification would be to query 7' (s) at every state. However, querying the robot’s policy at every state is
expensive for discrete problems, and impossible for many real-world problems with continuous state-spaces. If we are
able to query for action probabilities at every state, then for discrete MDPs we can verify value alignment by checking
whether {a | 7'(a|s) > 0} C argmax, Q- (s, a),Vs € S. However, in the case of black-box value alignment verification
where the tester only has sample access to the robot’s policy without any additional assumptions about policy structure or
rationality, we have the following impossibility result:

Proposition 1. Even in a finite MDP (i.e., |S|, | A| < 00), exact value alignment verification via sampling or observing
actions from a black-box policy 7' is impossible in a finite number of queries.

Proof. Consider the robot policy 7’ that takes actions uniformly at random and assume that the tester’s reward function is
non-trivial, i.e., =3¢ € R,Vs € S, R(s) = c. Given a finite number of queries, there is a (3_,c g max, @t (s.0) (als))™
probability that every time the policy is queried at a state s it will select any optimal action a € arg max, Q7 (s, a). This
proves the existence of a non-value aligned policy 7’ that has non-zero probability of being certified as value aligned. In the
worst-case, almost surely verifying the value alignment of a policy requires an infinite number of policy queries. [

A.2. Value Alignment for Rational Agents

We define OPT(R) = {n | Vm € I, w(a|s) > 0 = a € argmax, QF(s, a)}, the set of all optimal (potentially stochastic)
policies in MDP M = (E, R) where argmax, f(z) := {z | f(y) < f(z),Vy} is the set of all function maximizing
arguments. We now prove the following:

Corollary 1. We have exact value alignment in environment E between a rational robot with reward function R' and a
human with reward function R if OPT(R') C OPT(R).

Proof. If OPT(R') C OPT(R) then since 7’ € OPT(R’') we have 7' € OPT(R). By construction, if a policy is in
OPT(R) then it is optimal under R, and so exact alignment immediately follows.

O

A.3. Value Alignment Verification with Explicit Values

In this section we prove the main theorem of our paper, that efficient exact value alignment verification is possible in many
settings. We start with a lemma, equivalent to the case where we have query access to the robot’s reward function. We will
reduce many of the cases of Theorem 1 to this case.
Lemma 1. Given an MDP M = (E, R), assuming the human’s reward function R, and the robot’s reward function R’
can be represented as linear combinations of features ¢(s) € R¥, i.e., R(s) = wT¢(s), R'(s) = W’Tqb(s), and given an
optimal policy %, under R then

we () HE,, = R €ARS(R) (12)

(s,a,b)eO

where HE, , = {w | wT (@0 — 0{2") > 0} and O = {(5,a,b)|5 € S,a € AR(s),b ¢ Ar(s)}

s,a,b —

Proof. We will prove that (), , ;) co #HE,, € ARS(R). Consider an arbitrary w’ € Ns,a,0)c0 HE, ;- By assumption
we have that

Vs € S, Va € Ap,b ¢ Ag, wTol > wTol) (13)

-
TR

QT (s,a) > Q7 (s,b) (14)

Value Alignment Verification

Under R’ the Q-value of all actions that 7}, does not take are strictly worse than that of the actions that it does take, and so
7, is optimal under R’ by the policy improvement theorem.

Since 7}, is optimal under R/, Qg} (s,a) = Q% (s,a). Thus Eq. 14 becomes

Vs € §,Va € Ar,b ¢ AR, Qi (s,a) > QF/ (s,b) (15)

Now consider an arbitrary optimal policy under R/, call it 7}, . Assume for contradiction that 7}, ¢ OPT(R). Therefore,
there exists s € S, a € Ag(s), and b ¢ Ag(s) such that Q% (s,b) > Q7 (s, a). However, this contradicts (15). Thus,
we have 3, € OPT(R) and since 7}, was assumed to be any optimal policy under R’, we have W' € (|, , yyco Hi

implies OPT(R') C OPT(R) and s0 () , p)co ’Hffmb C ARS(R) by Definition 3. O

We now prove the full theorem.

Theorem 1. Under the assumption of a rational robot that shares linear reward features with the human, efficient exact
value alignment verification is possible in the following query settings: (1) Query access to reward function weights w’', (2)
Query access to samples of the reward function R'(s), (3) Query access to V5, (s) and Q. (s, a), and (4) Query access to
preferences over trajectories.

Proof. The proof of case (1) follows directly from Lemma 1.

In case (2), the tester can query for samples of the reward function R’(s). If the tester only has query access to R/ (s), then
the weight vector w’ can be recovered by solving a linear system.

sample

: = R(Sz) :(bsampl(:w/: CI)(S'L) w’ (16)

This system is guaranteed to have a unique solution if rank(®sample) = k i.e. Psampe is full column rank. If ¢, the matrix
of features at every state, is full column rank, then there is a subset of k rows which is also full column rank. If ® is not
full column rank, then there is some feature column ¢; which is a linear combination of other feature columns, and so can
be removed from the test without affecting the predicted alignment of any policy. Features can be safely removed in this
manner until the remaining columns are linearly independent. Thus for any environment there is a set of k states which one
can query R'(s) at in order to recover a sufficient subset of the reward weights for value alignment purposes. Note that this
also works for rewards that are functions of (s, a) and (s, a, s').

If R/(s) is a stochastic function, then linear regression can be used to efficiently estimate the robot’s weight vector w’. After
recovering the weight vector, the same value alignment test used for case (1) can be used.

In case (3) the tester has access to the value functions of the robot. If the tester can query the robot agent’s value function
then R(s) can be recovered from the Bellman equation

R(s) = Qg(s,a) = VEy|s.q [Vi(s)] (17)

Computing the expectation requires enumerating successor states. If we define the maximum degree of the MDP transition
function as
dmax = max |[{s' € S| P(s,a,s') >0 18
o= max {5/ € 8| Pls,a,5) > 0}, ()
then at most the di,ax possible next state value queries are needed to evaluate the expectation. Thus, at most rank (®) (dmax +
1) queries to the robot’s value functions are needed to recover w’, and the tester can verify value alignment via Case (1).
Since rank(®) < k as before, at most k(d,ax + 1) queries are required.

In case (4), the tester only has access to the robot’s values via preference queries over trajectories. If the robot agent being
tested can answer pairwise preferences over trajectories, then a value alignment test can also be tested via an approximation

Value Alignment Verification

of the ARP. Each preference over trajectories {4 < &g induces the constraint WT(f B —&a) > 0. Thus, given a test T
consisting of preferences over trajectories, we can guarantee value alignment if

{w | w" (s —€a) > 0,Y(€a,€8) € T} C ARS(w). (19)

Note that a single trajectory in general will not actually match the successor features of a stochastic policy. However, by
synthesizing arbitrary trajectories we can create more half-space constraints than are used to define the ARP since these
trajectories do not need to be the product of a rational policy. As more trajectory queries are asked the estimate of the ARP
will approach a subset of the true ARP. Brown et al. (Brown et al., 2019) proved that given random halfplane constraints,
the volume of the polytope will decrease exponentially. Thus we will need a logarithmic number of queries to accurately
approximate the ARP.

O

A 4. Relationship of the ARP to Ng and Russell’s Consistent Reward Sets

In this section we discuss the relationship between our approach and the foundational work on IRL by Ng and Russell (Ng
& Russell, 2000).

We define the set of rewards consistent with an optimal policy as follows:

Definition 2. Given an environment E, the consistent reward set (CRS) of a policy 7 in environment E is defined as the set
of reward functions under which m is optimal.:

CRS(7) = {w € R* | 7 is optimal with respect to R(s) = w” ¢(s)}. (20)

The fundamental theorem of inverse reinforcement learning (Ng & Russell, 2000), defines the set of all consistent reward
functions as a set of linear inequalities for finite MDPs.

Proposition 2. (Ng & Russell, 2000) Given an environment E, with finite state and action spaces, R € CRS(w) if and only
if
(Pr—Pa)(I—9P) "R >0, Vac A @1

where P, is the transition matrix associated with always taking action a, P is the transition matrix associated with policy
m, and R is the column vector of rewards for each state in the MDP.

When the reward function is a linear combination of features, we get the following:

Corollary 2. (Ng & Russell, 2000; Brown & Niekum, 2019) Given an environment E, the C RS(w) is given by the following
intersection of half-spaces:

{w e R* | wl(®5 — 39 > 0,Va € support(n(s)),b € A, s € S}. (22)

Proof. In every state s there is one or more optimal actions a. For each optimal action a € support(m(s)), we then have by
definition of optimality that
Q*(s,a) > Q*(s,b), Vbe A (23)

Rewriting this in terms of expected discounted feature counts we have
wldld) > Wl vhe A (24)

Thus, the entire feasible region is the intersection of the following half-spaces

wl (@) — @) > 0, (25)
Va € support(w(s)),be A,s €S (26)
and thus the feasible region is convex. O

The consistent reward set of a demonstration from an optimal policy can be defined similarly:

Value Alignment Verification

Corollary 3. (Brown & Niekum, 2019) Given a set of demonstrations D from a policy m, CRS(D|r) is given by the
following intersection of half-spaces:

wl (@50 _ @by >0, V(s,a) € D,b e A 27)

Proof. The proof follows from the proof of 2 by only considering half-spaces corresponding to optimal (s, a) pairs in the
demonstration. O

Note that Corollary 2 does not solve the alignment verification problem. It only provides a necessary, but not sufficient
condition. If a reward function is within the CRS of a policy dot not imply all agents optimal under that reward function are
aligned. Consider the example of the all zero reward: it is always in the CRS of any policy; however, an agent optimizing
the zero reward can end up with any policy. Even ignoring the all zero reward we can have rewards on the boundaries of the
CRS polytope that are consistent with a policy, but not value aligned since they lead to more than one optimal policy, one or
more of which may not be optimal under the tester’s reward function.

A.5. Proof of Theorem 2: e-Alignment Verification via Omnipotent Testing

In this section we consider what is possible in the omnipotent tester case where a tester can design a set of test MDPs in
order to verify alignment over a (potentially infinite) family of MDPs that share reward information. We are able to prove
that, under some assumptions, alignment over a family of MDPs is possible by querying a complete policy in only two test
MDPs.

More formally, we consider the case where the testing agent is able to construct a set of arbitrary test MDPs to verify value
alignment across a family of environments that may have different transitions, actions, initial state distribution, and discount
factor, but that share the same reward function over states. Amin and Sing (Amin & Singh, 2016) prove that an omnipotent
active learner can determine the reward function of another agent within € precision via O(log(|S|) + log(1/€)) active
policy queries. We extend this result to the case of e-value alignment verification.

Before we prove Theorem (2), we require the following Lemma, which proves that if two agents’ reward functions are
similar enough (in an L°° sense) then we can guarantee e-value alignment.

Lemma 2. If ||R(s) — R'(8)|lco < €(1 —7)/2, where v is the discount factor and € is any non-negative error term, then
rational agents that have reward functions R(s) and R'(s) are e-value aligned across all MDPs that share the reward
Sunction R(s).

Proof. For 1" € OPT(R') to be e-value aligned under the humans’ reward function R we must have Vs € S, V3 (s) —
V' (s) < e. To prove the lemma we must show that an adversary that picks R’ within the constraint || R(s) — R'(5)[/oe <
€(1 — v)/2 cannot violate the alignment condition in any MDP.

The adversary wants to maximize V7 (s) — V5 (s) at some state. Let 75 € OPT(R) be an optimal policy under R. Since
7’ is optimal under R’, we have Vg} (s) — V]{,/ (s) < 0. We will show bounds on the maximum gap between Vs and Vi
for both policies, and use those bounds in combination with the above inequality to show that V;;(s) — V& (s) < €. The
adversary would like the resulting upper bound to be as large as possible, which is achieved by making V;{ R as large as
possible and V3 " as small as possible, which is in turn achieved by making Vg,’*% as small as possible in relationship to

Vi " and vice versa for Vg,l. Thus the adversary creates R’ by subtracting the maximum €(1 — +)/2 from the true reward
(R'(s) = R(s) — €(1 — ~y)/2) at states visited by 7}, to make them look as bad as possible and adding ¢(1 — 7)/2 to the
true reward (R'(s) = R(s) + ¢(1 —)/2) at states visited by 7’ look as good as possible. If 73, and 7’ visit some of the

Value Alignment Verification

same states, this assignment of R’(s) isn’t possible, but this only tightens our bound. Thus, we have in the worst-case

Vi =E[>_ 4R (s0) | s¢ ~ 3] (28)
t=0
> B[4" (R(se) —e(1—)/2) | s ~ 73] (29)
t=0
TR 6(1 - 7)
2 VR = 50) (30)
S T % 31)
and
Vi =E[> 'R (s1) | 50 ~ 7] (32)
t=0
<SED A (R(se) +e(1—7)/2) | se ~ 7' (33)
t=0
7’ 6(1 B ’7)
<vE+< (35)

2

As noted above we have VE,R (s) < V]{: (s) since 7’ is optimal under R'. Substituting the above bounds provides that

ViR(s) < VE (s) (36)
ViR (s) — /2 <V (s) + /2 (37)
Vii(s) — VE (s) < e (38)

Thus, we have shown that under the assumption that ||R(s) — R'(s)||cc < €(1 —)/2, then the robot agent with reward

function R’ is e-value aligned with the tester’s reward function R under all possible MDPs that share the reward function
R. O

Note that if we scale the reward of an agent by a positive constant or by a constant vector, we can get the difference to look
arbitrarily large even if the two rewards lead to the same optimal policy. This is undesirable for computing value alignment
in terms of reward differences. Comparing rewards in this way works best if they are similarly normalized. We utilize a
canonical form for reward functions defined by the transformation (R(s) — max, R(s))/(max, R(s) — ming R(s)) such
that the values of the reward function are scaled to be between 0 and 1 (Amin & Singh, 2016). Following the notation of
Amin and Singh (Amin & Singh, 2016) we use [R] to denote the canonical form for reward function R. Note that we will
not assume access to the canonical form of the robot’s reward function. Indeed we assume no direct access to this reward
function.

Given the ability to construct arbitrary testing environments, we can guarantee e-value alignment over all MDPs that share
the reward function R. The following theorem is inspired by Amin and Singh (Amin & Singh, 2016) who prove an analogous
theorem for the case of actively querying an expert’s policy to approximate the expert’s reward function. The proof of Amin
and Singh (Amin & Singh, 2016) relies on binary search and the query algorithm they derive results in query complexity of
O(log(|S]) + log(1/€)), where each query requires the expert to specify a complete policy for a new MDP. In contrast, our
proof is based instead on machine testing, and we prove that in the case of value alignment verification we only require O(1)
policy queries. In fact we only need two test MDPs with policy queries.

Value Alignment Verification

Theorem 2. Given a testing reward R, there exists a two-query test (complexity O(1)) that determines e-value alignment of
a rational agent over all MDPs that share the same state space and reward function R, but may differ in actions, transitions,
discount factors, and initial state distribution.

Proof. By Lemma 2 we want a test that guarantees ||[R'] — [R]||co < €(1 — 7)/2. Thus we need to show that
[R](s) = [Rl(s)| < e(1=7)/2,¥s € 5 (39)
which implies that
[R](s) — e(1 = 7)/2 < [R'](s) < [R](s) +€(1—7)/2,¥s € S. (40)

We use the notation [R] and [R'] to represent the canonical versions of R and R/, the tester’s and robot’s reward functions,
respectively. If we can directly query for R/, then we simply compute || R — R’||~ and check if it is less than e(1 —) /2.
We now consider the case where we can only query the robot’s policy. We define s;,.x = argmaxg R(s) and Spin =
arg min, R(s) and s}, = argmax, R'(s) and s, ;, = argming R'(s).

We first cover the simple case where we only have two states: Sy, and smax. In this case, we can construct an MDP
with two actions: a; that always leads to syi, and as which always leads to s;,.x. We then can verify value alignment
verification by asking for the robot’s optimal policy and checking that a- is always preferred over a;. Note that if the robot
has more than two actions, we can simply make all remaining actions equivalent to either a; or ay since the tester has full
control over the transition dynamics.

We now consider the general case where there are more than two states. We create two testing environments such that from
each state there is an action a4 that self transitions and an action ay that goes from each state to sy,,x With probability o and
to Smin With probability (1 — «), except in states Spyin and spax in which all transitions via a; and ag are self transitions.
Thus, taking action as represents a gamble between the states with minimum and maximum reward under the tester’s reward
function R. For s € S\ {Smax, Smin }» We design two different transition dynamics with the parameters oY and o’ such
that X = max([R](s) — @, 0) and oV = min([R](s) + 6(17;7), 1). Then we construct two test environments £, and
Ey. Lhas o” as the transitions and U has oY as the transitions. We then query the robot for its optimal policy in both test
environments and use the policy to answer the two test questions:

1. Is7(s) = a1, Vs € S\ {Smin, Smax } in MDP L?
2. Isw(s) = az, Vs € S\ {Smin, Smax | in MDP U?
If the agent answers "YES" to the first question, then Vs € S\ {Smax, Smin } We know that a; is at lest as good as aq. Thus

the agent prefers to self transition at a state rather than take action as which leads to a stochastic transitions to either sy,,x Or
Smin- Thus, under the robot’s unknown reward R’ the following inequality holds for all s € S\ {Smax; Smin }:

AL R ($max) + (1 — o) R/ (510in) < R'(5) 41
A asLR/(SmaX) + (1 —ay)R/ S$min) = R/ (8110) < R'(5) — R (8110) 42)
&y (R (Smax) = R (i) + (1 = a2) (R ($min) — R/ (51nn)) < R'(5) = R/ (}uin) (43)

'(5max ' Smin) — /(s '(s) — R
S e (e AU (e e e B i Ze B
& o] [R](5max) + (1 = af)[R](smin) < [R](5). (45)

and similarly, if the agent answers "YES" to question 2, we have

R'(s) < af R (smax) + (1 — o)R/ ($min) (46)
& [R](s) < ag] [R)(8max) + (1 — a)[R/](Sm1n>- 47

These above inequalities hold for all s € S\ {Smax, Smin }-

We now prove that answering "YES" to both questions 1 and 2 also means that s/, = max, R'(s) = maxs R(S) = Smax

and s/, = min, R'(s) = ming R(S) = Spin. We assume that 76(12 Y < (.5 and thus consider three cases for the values of
o = max([R](s) — 52, 0) and o = min((R](s) + <452, 1)

Value Alignment Verification

L _ U _ e(1—7)
I. al =0and of = [R](s) + “5*

2. «

@

= [R](s) — @ and oV = [R](s) + @
3. oy =[R](s) — @ and oV =1

Case 1: We have aSL = 0, thus. If the robot answers YES to question 1, we have
g [R)(smax) + (1 = o)[R (smin) < [R)(s)
= [R](smin) < [R'](5)

We also have

[R'](5) < o [R']($max) + (1 — &)[R (Smin)-
plugging in the value in Equation (49) we have
[R'](s) < o [R] (5max) + (1 = a)[R'](5)
[R'](s) = (1 = a)[R')(s) < af [R'](Smax)

=
= [R](s) < [R'](smax)

Case 2: We have o = [R](s) — 122 and o¥ = [R](s) + 2. Plugging these into Equation (45) we have

g [R($max) + (1 =)[R (smin) < [R'](5)

(1 _laL) ([R/](S) - asL[R/](Smax))

S

= [R(smin) <

Plugging this into the following equation, yields:

[R'](s) < ag[R/](SmaX) +(1- ag)[R/](Smin)

= [R)(s) <oV [R’](smxml—a;f)(! ([R'Ks)—aﬁm’](smx)))

(1-af)

= (1= a)[R](s) < (1= o)l [R](smax) + (1 = o) ([R](s) — @

S

Plugging the values for aX and oY for Case 2 and reducing the resulting algebraic equation results in

[R/](S) < [R/](SmaX)
We then plug this value into Equation (54) we get
asL[R/](SmaX) + (1 - aﬁ)[Rl](smin) < [R](s)
= af[R](s) + (1 = ad)[R](smin) < [R](s)
= [R)(smin) < [R](s).

Case 3: We have ol = [R](s) — 6(17;7) and oV = 1. Thus,

[R'](5) < o [R')(smax) + (1 —)[R} (smin)
= [R](5) < [R](smax)-
Plugging this into the following equation yields:
org [R')(smax) + (1 =)[R (min) < [R')(5)
= af[R](s) + (1 = ad)[R](smin) < [R'](5)
= [R](smin) < [R'](5)

(48)
(49)

(50)

(G
(52)
(53)

(54)
(55)

(56)
(57)

(58)

(59)

(60)
(61)
(62)

(63)
(64)

(65)
(66)
(67)
(68)

Value Alignment Verification

Thus, for every state s € S \ {Smax, Smin }> We have proved that we always have
[R/Ksmin) < [R/](S) < [R/](sma)c)- (69)

Therefore, it must be the case that s, ,, = maxs R'(s) = maxs R(S) = Smax and s,;,, = min; R'(s) = min, R(s) =
Smin-
Combining the above results we have (assuming the robot answers "YES" to questions 1 and 2) that [R](Smax) =

[R'](Smax) = 1 and [R](Smin) = [R'](Smin) = 0. Additionally, for the remaining states, s € S \ {Smax, Smin },» We have
that

AP R (smax) + (1 — aX)R' (5min) < R'(5) < aV R (5max) + (1 — aY) R/ (51in) (70)
= @l [R)(5max) + (1 — &)[R](s5min) < [R](5) < ol [R](smax) + (1 — &)[R](Smin)
= aﬁ [R'](s) < of (71)
= max([R](s) —e(1 —7)/2,0) < [R](s) < min([R](s) + €(1 —~)/2,1) (72)
= \[R’](s) = [R](s)] < e(1—n)/2. (73)

Thus, we have||[R] — [R]||cc < €(1 —7)/2 so by Lemma 2 we have verified e-value alignment via two policy preference
queries as desired. O

B. Value Alignment Verification for Action Queries

In this section we discuss the difficulty of solving Equation (2) directly to find which states to query for actions. The
approach detailed here will generally be intractable, but motivates the tractable heuristics discussed in Section 4.4.

We consider the problem of finding a subset of states where we will query the robot for an action they would take at that
state. We want to optimize the following objective (copied from the main text for convenience):

min |7, s.t. Vo' € 11, (74)
TCT

Vi(s) — V& (s) > e = Pr[r’ passes test T] < Stpr
Vis(s) — Vi (s) < e = Pr{x’ fails test T] < 6gur

where the choice set T C T is the set of states where we query for actions from the robot’s policy. We seek to use these
actions to verify value alignment. Furthermore, we want to precompute a single test that will certify any agent.

We will discuss a naive approach that motivates our heuristics from Section 4.4. We propose a breadth-first search to find the
optimal set of test states for action queries.

First we need to establish how likely detecting e-misalignment from a single action query at each state is. Consider all
the reward functions that have a policy that is rational under that reward function but is e-value misaligned under R:
R’ ={R'|3n’,n' € OPT(R'),n" is € — misalignedunderR}. For each policy optimal under a reward in R’, rollout that
policy at every state [V times. From this we can obtain a Monte-Carlo estimate of the probability of detecting the robot is
e-misaligned by taking the ratio of rollouts where the robot takes an e-misaligned action b such that

Qr(s,mr(s)) — QR(s,b) > €, (75)
to the number of rollouts V.

We now perform breadth-first search to search to solve the combinatorial optimization problem of determining the subset of
states that allow high-confidence value alignment verification. We use breadth-first search since we are interested in finding
the minimal number of states to test such that we can detect all non-aligned agents with probability at least dg,,. We start
with tests consisting of only one state and grow them via breadth-first search. The goal condition is that the probability the
test fails to detect a misaligned agent is less than d¢,,. We can define this probability as

max Pr[n’ passes test T| = max (1 — Pr(z’ detected at 5)), (76)
/6 ’
seT

Value Alignment Verification

where II’ is the set of ¢ misaligned policies under R.

Thus, we perform breadth-first graph search, where the search progressively explored all subsets of states starting with
singletons and returns the first subset of states such that max - Prn’ passes test T| < dgp,. Note that the above test will
never fail an e-value aligned agent, since all such agents will never take an action b that satisfies Equation (75) by definition.
Thus, we have 6g,, = 0. If we are willing to allow some false negatives (the test is allowed to fail some e-aligned agents),
then we can adjust the test by keeping track of all policies that are e-value aligned and computing an analogous probability
to that above for false positives.

While the above procedure will work for the simplest of domains it has several fundamental drawbacks: (1) We need to
enumerate all policies in II and check whether they are e-value aligned or not, (2) We need to run multiple rollouts from
each e-misaligned policy over multiple states to compute Pr (7’ detected at s) for every state, (3) We have to then run
a combinatorial optimization. In comparison, the action query heuristics we discuss in the paper only require solving a
single MDP for an optimal policy under the human’s reward R. However, the heuristics are specifically for testing exact
value alignment (e = 0, g, = 0) and do not consider false negatives. Future work should examine how to bridge the
gap between these two extremes to see if there is a tractable middle ground that is amenable to high-confidence e-value
alignment verification.

C. Value Alignment Verification Heuristics

In this section we discuss the value alignment verification heuristics in more detail. Note that all of the methods above
are not guaranteed to verify value alignment and may give false positives. However, all are designed to never give a false
negative.

C.1. Critical State-Action Value Alignment Heuristic

Prior work by Huang et al. (Huang et al., 2018), seeks to build human-agent trust by asking an agent for critical states which
are defined as follows:

Q5. m3(s)) - @ S Qilsia) > ¢ 7

acA

for some user-defined ¢. If ¢ = 0, then all states will be critical states. On the otherhand, for large ¢, none of the states will
be critical. Thus, ¢ must be carefully tuned to the scale of the reward function and to the particulars of the MDP. Huang et al.
(Huang et al., 2018) also proposed finding critical states in terms of states with policy entropy below some threshold ¢, but
found that state-action value critical states performed better. Futhermore, using entropy would label every state as critical for
a deterministic policy. State-action value critical states can also be computed for both deterministic and stochastic policies,
thus we only compare against state-action value critical states.

One possible way to use critical states for a value alignment heuristic would be to ask an agent for its critical states and
then see if those match the tester’s critical states However, this is problematic since reward scale isn’t fixed and there are
an infinite number of reward functions that lead to the same policy (Ng & Russell, 2000), so the gap in Q-values can be
arbitrarily large. Thus ¢ would have to be carefully constructed and tuned for both the tester and the agent, making this
impractical. Instead, we simply calculate the critical states for the tester under a tester-defined ¢ and then test whether the
optimal action that the agent being tested would take in the tester’s critical state is also optimal under the tester’s value
function.

This results in the following value alignment heuristic:

(1) Find critical states in true MDP for ¢t > 0.

(2) Query the robot for their action in each critical state and check if this is an optimal action under the tester’s reward
function.

C.2. Aligned Reward Polytope Black-Box Heuristic

For this heuristic we have the tester compute ARP(R) for the tester’s reward function R, and then find the minimum set of
equivalent constraints using linear programming as discussed in Section G.2. To run a verification test we simply take the

Value Alignment Verification

set of states corresponding to this minimal set of constraints. For each of these constraints we have
wl (@5 — M) > 0 (78)

for all a € arg max, Q*(s,a’). The test then consists of asking the agent being tested for the action the testee would take
in state s and checking if it is optimal under the tester’s reward function.

C.3. SCOT Trajectory-Based Heuristic

We also adapt the set cover optimal teaching (SCOT) algorithm for value alignment verification (Brown & Niekum, 2019).
As done in the original paper (Brown & Niekum, 2019), we first compute feature expectations, then we calculate the minimal
set of constraints that define the consistent reward set (CRS) using Corollary 2. We then rollout m trajectories using the
teacher’s policy from each initial state and calculate the CRS of the rollouts using Corollary 3. We then run set cover and
find the minimum set of rollouts of length H that implicitly covers the CRS.

Given the machine teaching demos from SCOT we mask the actions and ask the agent being tested what action it would take
in each state. We then compare this action with the machine teaching action. In particular, we implement this querying the
robot agent for an action at each state s and then checking if this action is optimal under the tester’s reward function.

C.4. Computational Complexity

In terms of complexity, the CS heuristic is the least computationally expensive since it requires only solving for the optimal
Q-values at each state and then selecting states with action-value gap larger than ¢. The ARP-bb heuristic is the next most
computationally intensive heuristic. It also only requires solving for the optimal policy for a single MDP, but also requires
computing A and removing redundant constraints. If the policy is represented and learned using successor features (Barreto
et al., 2017), then we obtain A simply by iterating over each state to find optimal and suboptimal actions. Alternatively,
given an optimal policy, A can be efficiently recovered via a vectorized version of policy evaluation, where expected feature
vectors are propagated instead of expected values. Removing redundant constraints requires solving a LP. The complexity of
this will depend on the number of rows (number of states with unique feature count normal vectors) and columns (number
of features) of A. Finally, the SCOT heuristic is the most computationally intensive. It still requires solving one MDP (to
get the optimal policy for R), but also requires removing redundant half-space constraints from A and then running a greedy
set-cover approximation.

D. Case Study Continued

To illustrate the types of test queries found via value alignment verification, we consider two domains inspired by the Al
safety grid worlds (Leike et al., 2017). The first domain, island navigation is shown in Section 5.1.1. We now discuss
another domain inspired by the Al safety gridworlds: lava world. This domain is shown in Figure 5. Figure 5a shows the
optimal policy under the tester’s reward function

R(s) =50 - 1green(s) — 1 - 1ynite(s) — 50 - Lyed(s), (79)

where 1.010; () is an indicator feature for the color of the grid cell. Shown in figures 5b and 5c are the two preference queries
generated by ARP-pref. In both cases the query consists of two trajectories (shown in black and orange for visualization),
and the agent taking the test must decide which trajectory is preferable (we chose the colors such that the black trajectory is
preferable to orange). We see that preference query 1 verifies that the agent would rather move the to terminal state (green)
rather than visit white cells. The second preference verifies that the agent would rather visit white cells than red cells, and
would rather take an indirect path to the goal state (green) rather than a more direct path that visits red cells. Note that the
black trajectory in preference query 2 first goes up, which results in a self transition, then goes left to get out of the lava.
Shown in figures 5d, Se, and 5f are the query states for ARP-bb, SCOT, and CS heuristics, respectively. In each of these
tests the agent being tested is asked what action its policy would take in each of the states marked with a question mark. To
pass the test, the agent must respond with an optimal action under the tester’s policy in each of these states. ARP-bb chooses
two states where the half-spaces defined by the expected feature counts of following the optimal policy versus taking a
suboptimal action and following the optimal policy fully define the ARP.

Value Alignment Verification

v

v

NN ENEREN

AN AN

(a) Optimal policy (b) Preference query 1 (c) Preference query 2 (d) ARP black-box queries

=~~~

(e) SCOT queries (f) Critical state queries

Figure 5. Example value alignment verification tests for the lava world domain.

E. Value Alignment Verification with Idealized Human Tester

In this appendix we compare the heuristic alignment methods with the exact alignment tests that query for the robot’s
reward function (ARP-w) and query for preferences over trajectories (ARP-pref). Since the tests are designed such that
they accurately verify aligned agents, we constructed a suite of grid navigation domains with varying numbers of states and
reward features. We generated 50 different misaligned agents by sampling random reward functions and comparing the
resulting optimal policies to the optimal policy under a randomly-chosen ground-truth reward function. Figure 6 (a) and (b)
show that for a fixed number of features, the size of the test generated via the critical state heuristic with threshold ¢t = 0.2
(CS-0.2) scales poorly with the size of the grid world, even though the complexity of the reward function stays constant.
The threshold ¢ has a large impact on the performance: small ¢ results in better accuracy at the cost of significantly more
queries and larger ¢ results in significantly more false positives. We chose ¢ = 0.2 to minimize false positives while also
attempting to keep the test size small. In Figure 6 (c) and (d) we plot how the number of constraints grows as the reward
function dimension increases and the MDP size is fixed. The plot for ARP-bb shows that the number of constraints grows
with the size of the reward weight vector as expected. Conversely, the number of critical states has the undesirable effect of
growing with the size of the MDP, regardless of the complexity of the underlying reward function.

By construction, ARP-w requires only one query (querying for w’) to achieve perfect accuracy. Using trajectory preferences
to define the ARP (ARP-pref) also has perfect accuracy, but requires more queries to the robot. SCOT has sample complexity
that is lower than the critical state methods, but much higher than querying directly reward function weights since it queries
for actions at each state along each machine teaching trajectory. We found empirically that SCOT has nearly perfect accuracy,
but occasionally has false positives. Using the ARP inspired heuristic (ARP-bb) has low sample complexity and high
accuracy, but sometimes has false positives as expected due to Theorem 1. These results give evidence that the testing
method of choice depends on the capability of the robot and the complexity of the environment relative to the robot’s reward
function. If the robot can report a ground truth reward weight then ARP-w has the best performance. If the robot can only
answer trajectory preference queries, then ARP-pref should be used. The heuristics (ARP-bb, SCOT, and CS) have higher
query costs and lower accuracy, but are applicable when only given query access to the robot’s policy and when the robot
may not be perfectly rational.

F. Details on Value Alignment Verification with Human Tester

In this section we fully describe the pipelines used to determine e-alignment in the implicit human, implicit robot setting.
Each of these pipelines consist of the following steps:

1. Preference elicitation, generating a posterior reward distribution and a number of potential test questions and answers

Value Alignment Verification

Num Features = 5 Num Features = 5
1.00 - fE—— - R
e e ="
%0.99 st P 3 /‘/:::’_____..____.
©0.98 L g oo
o e 5 101~
7 0.97 2w & i ——————
0.95 \\\ R4 -+ ARP-bb =
~ - -
0.94 ~07 4+~ CS-0.2 100
4 5 6 7 8 4 5 6 7 8
Grid World Width Grid World Width
(a) ARP black-box queries (b) ARP black-box queries
Grid World Width = 8 Grid World Width = 8
1.00 - - —————— oy
L -~ ————
R Prag %) _,—o—’—‘
_ 099 P $ P
©0.98 LS -~ e
g ir S 101" T
8 0.97) —— ARP-w o Pl
(&) 0.96 / —= - ARP-pref “g; ,‘»"
<Y i —— SCOT) e
0.951 :/ o+ ARP-bb B ~
0.94 { = CS-0.2 100
3 4 5 6 7 8 3 4 5 6 7 8
Number of Reward Features Number of Reward Features
(c) ARP black-box queries (d) ARP black-box queries

Figure 6. Queries vs. accuracy (1 - false positive rate) for value alignment testing of misaligned agents. Exact alignment tests (ARP-w and
ARP-pref) achieve good efficiency and perfect accuracy.

2. Deduplication of test questions
3. Filtering questions for e-alignment compatibility using the posterior reward distribution

4. Removal of redundant questions

Step (1) can be performed using any preference elicitation algorithm which produces a posterior reward distribution, although
the questions may be of higher quality if the algorithm can operate over the same linear reward basis the test will operate
over. We used the algorithm from (B1yik et al., 2019), although (Biyik & Sadigh, 2018; Sadigh et al., 2017) and others with
similar structure can be used as easily. Some preference elicitation algorithms that only produce a point estimate of the
human’s reward function are compatible with some methods of e-filtering, including the one used in the main paper.

Step (2) is necessary because active preference elicitation algorithms sometimes ask the same question multiple times if they
believe humans to be noisily reporting their true preference.

Step (3) turns the test from an exact alignment test to an e-alignment test. The goal of this step is to remove questions that
e-aligned reward functions will answer wrong. This is true of a question if the value gap between the trajectories under the
true reward is less than epsilon w (®(&,) — ®(&,)) < e. In the implicit human setting, the true reward function is unknown,
so this true value gap must be estimated somehow from the posterior distribution. One can achieve this by approximating the
true reward w with the empirical mean reward W := Ey,p(./p)[W]. The MAP reward can also be used, although we did
not test this and expect the MAP and mean rewards to be similar. If one is concerned about the confidence of the estimate,
one can instead remove trajectories that are ¢ — § misaligned i.e. those for which P(w’ (®(&,) — ®(&)) > €) < 6. This
ensures that each question in the test has a 1 — § probability of having an value gap of at least e. Empirically we found these
two methods had similar results, and so relied on the simpler one.

Step (4) ensures that test is as small as possible. Each question in the test forms a half-space constraint over the possible
reward functions. Some of these half-space constraints will be redundant. (Brown & Niekum, 2019) describe a procedure
for detecting which half-spaces are redundant by solving a specially constructed linear system of equations. See G.2 for
further details.

The final e-alignment test consists of all the questions asked of the human during step (1) that are not removed by steps (2),

Value Alignment Verification

(3), or (4). In general there is nothing to suggest that questions asked of the human during a preference elicitation process
will make good test questions. In fact, such questions may be stricter than the ones that make up an e-ARP. Questions
asked of the human are often between trajectories that are both suboptimal under the human’s reward function. The ARP is
constructed only using optimal-suboptimal pairs of trajectories, asking the robot only to have the correct preferences in
optimal actions, and is agnostic about preferences over suboptimal actions, as the policy will never take those actions. By
asking for preferences between suboptimal trajectories, we may be asking the robot to not only have the correct optimal
actions at every state, but also the correct rankings between suboptimal actions.

However there are reasons to believe that preference elicitation algorithms that operate over the same linear reward features
as the test will ask questions useful for an alignment test. These algorithms share much of the geometry of the ARP. Each
answer to a question induces a (potentially soft) half-space constraint over the possible reward function of the human. These
algorithms attempt to ask questions that remove the most volume from the posterior reward distribution (Sadigh et al.,
2017) or have the maximum expected information gain (B1yik et al., 2019), which intuitively should result in high quality
questions.

If one is not satisfied by these arguments, one could use the posterior reward distribution to generate new questions for the
test. One could randomly generate test questions and answer those questions using the mean or MAP posterior reward.
In practice we found this to have poor performance. With much larger test sizes, the suboptimal-suboptimal trajectory
comparisons made the test so strict that nearly no rewards were passed. In future work we would like to generate test
questions that will not be too strict by generating optimal trajectories under the posterior reward and comparing them to
random suboptimal trajectories.

G. Experiment Details
G.1. Exact vs Heuristics Grid Domains

In all grid domains the transition dynamics are deterministic and actions corresponding to movement up, down, left, and
right are available at every state. Actions that would lead the agent off of the grid result result in the agent staying in the
same state. We ran experiments over different sized grid worlds with different numbers of features. For each grid world size
and number of features we generated 50 random MDPs with features placed randomly and with a random ground-truth
reward function. We then sampled 50 different reward function weights w from the unit hypersphere. This bounds the
Q-values of states, and so allowed us to tune over a bounded interval of ¢ hyperparameters for the critical-action state value
alignment heuristic. For each reward we function we computed an optimal policy to create different agents for verification.
Duplicate policies were removed.

G.2. Half-space Normal Vector Redundancy removal

All experiments (gridworlds and Driver) do duplication and redundancy filtering. Duplicate constraints are detected by
computing cosine distance between the halfplane normal vectors. Any normal vectors that are within a small threshold
(0.0001) of other normal vectors are deduplicated arbitrarily. Trivial (all-zero) constraints are also removed. There are
several known ways to remove redundant constraints (Paulraj et al., 2010). We remove redundant constraints using the exact
linear programming method (Paulraj et al., 2010), following the procedure from Brown & Niekum (2019) which we will
briefly summarize.

A redundant constraint is one that can be removed without changing the interior of the intersection of half-spaces. We can
find redundant constraints efficiently using linear programming. To check if a constraint a”'z < b is binding we can remove
that constraint and solve the linear program with max, a” z as the objective. If the optimal solution is still constrained to be
less than or equal to b even when the constraint is removed, then the constraint can be removed. However, if the optimal
value is greater than b then the constraint is non-redundant. Thus, all redundant constraints can be removed by making one
pass through the constraints, where each constraint is immediately removed if redundant.

As an example. Consider Figure 7. The hatched region on the right is the intersection of half-spaces that makes up the CRS.
If we take away the boundaries we get the ARP. Note that there are several half-space constraints that do not tightly define
the hatched region and are redundant.

Value Alignment Verification

1.0
1 0.5
R X —
-0.5
Wy
(a) Optimal policy o) ARD

Figure 7. Optimal policy and aligned reward polytope (ARP) for a simple gridworld with two features (white and gray) and a linear reward
function (wp: weight on white feature, w1: weight on gray feature).

—

10

False Poitive Rate
&
/) ;
)
| ~
|
S
False Neg:atlve Rate
o
|

25 A\ 25
/ 50 \ 50
AN SA 00 /\/\/\M 00
0.0 1 0.0 1
00 1.25 25 3.75 50 0.0 1.25 25 375 50
€ €
1.0 _
\ S NN AN .
- | TN "
g — 10
é’ 0.5 25
< -~ 50
\ 100
00757 125 25 375 50

Figure 8. Performance of tests from simulated humans using mean reward e filtering.

G.3. Simulated Human in the Driver Environment

In this section we more thoroughly describe the experimental procedure for the driving study in Section 4.5 and present the
full results, including false positive and false negative rates.

All preference elicitation parameters are as in (Biyik et al., 2019) unless otherwise specified. We run elicitation using strict
queries. The information gain criterion was used. Each experiment is replicated ten times. Within each replication, the
ground truth reward is randomly sampled from a unit-Gaussian and then normalized to unit length. M, the number of
rewards sampled from the posterior in order to determine the expected information gain, was set to 100. Each replication
terminated after asking different numbers of questions, but each replication contained at least 1000 question-answer pairs.

During test generation, the following combination of parameters were used: € € (0.0,0.1,...5.0) and the number of
simulated human preferences used n € (10,25, 50, 100).

Simulated reward functions to evaluate the test were generated in a way to ensure balanced ground truth classes. In all cases,
100000 rewards functions were generated. The reward functions were always generated from a Gaussian distribution with
mean equal to the ground truth reward function. The initial variance of this distribution was 1. Ground truth alignment for
each test reward was determined by checking for agreement between the test reward and the ground truth reward on all
e-compatible questions generated during preference elicitation (>1000) regardless of the value of n. If the initial batch of test
rewards had between 45% and 55% aligned rewards for the given experimental parameters, we deemed the test reward set
balanced and proceeded. If the initial set was unbalanced, we adapted the variance of the distribution until it either produced
balanced test rewards or became implausibly large or small, in which case we used the last reasonable set of test rewards.

The full false positive, false negative, and accuracy graphs for these experiments are displayed below in Figure 8.

Value Alignment Verification

210 21.0
& | n < n
g / 25 2 \ 25
2. / = \
2 0.5 50 gol].d \ 50
o =
2 100 g 100
= 7 b
% 0.0 181 B 181
00 1.25 25 375 50 00 1.5 25 375 50
€ €
1.0
n
g = = \ 25
<§O 9 — 50
—— 100
0.0 181

0.0 1.0 2.0 3.0 4.0 5.0

Figure 9. Detailed breakdown of mistakes from the human pilot study.

G.4. Human Pilot Study

We performed a pilot study using real human preferences provided by the authors. The experimental procedure is the same
as in the simulated case, except for the generation of test rewards and their labelling. Test rewards were generated from a
Gaussian centered at the mean posterior reward with variance 0.5, which was selected after searching for a variance that
would provide a balanced test set. Ground truth reward was determined by producing an optimal trajectory as in (B1yik
et al., 2019), manually inspecting the trajectory, and labelling the reward as aligned if the trajectory looked reasonable. This
procedure is unjustified, as it does not examine reward functions in states that are hard to reach with a reasonable policy, and
so a reward function labeled as aligned may not be aligned everywhere. It serves a reasonable proxy for the pilot study. The
results are in figure G.4.

As epsilon increases, more of the questions are removed from the test. This necessarily increases the number of positive
judgements the test provides, all else being equal. The accuracy initially increases with € because the test has fewer false
negatives as more noise questions are removed. At around € = 1.0 most of the aligned agents pass, and any further removal
of questions creates more false positives than it removes false negatives, lowering the overall accuracy. The cost of false
positives and false negatives are often unequal, and so accuracy may not be the correct metric for your use case. The peak
accuracy was 72%.

