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Abstract

When decision-makers can directly intervene, pol-
icy evaluation algorithms give valid causal esti-
mates. In off-policy evaluation (OPE), there may
exist unobserved variables that both impact the dy-
namics and are used by the unknown behavior pol-
icy. These “confounders” will introduce spurious
correlations and naive estimates for a new policy
will be biased. We develop worst-case bounds to
assess sensitivity to these unobserved confounders
in finite horizons when confounders are drawn iid
each period. We demonstrate that a model-based
approach with robust MDPs gives sharper lower
bounds by exploiting domain knowledge about
the dynamics. Finally, we show that when un-
observed confounders are persistent over time,
OPE is far more difficult and existing techniques
produce extremely conservative bounds.

1. Introduction

Due to cost, feasibility, or safety concerns, practitioners
often need to evaluate a sequential decision-making strategy
using only previously-collected observational data. In rein-
forcement learning (RL), this problem is called off-policy
policy evaluation (OPE). When the policy used to collect
the data is unknown, there might exist unobserved variables
correlated with both the policy and the outcomes. In this
case, the causal effect of future interventions is unidentified
and naive estimates for a new policy will be biased.

What kind of so-called unobserved confounders arise in
Markov decision processes (MDPs)? Unobserved variables
of interest in a medical setting are almost always highly
persistent. For example, consider electronic medical records
that do not document socio-economic status. A patient’s
socio-economic status is unlikely to change between vis-
its to the hospital. In macroeconomics on the other hand,
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unobserved shocks are often assumed to be drawn iid ev-
ery period. Consider the Federal Reserve Board adjusting
monetary policy in response to oil price shocks. Events like
earthquakes in oil fields might reasonably be assumed to
occur independently across quarters.

Recent work develops OPE methods that are robust to unob-
served confounding (Namkoong et al., 2020; Kallus & Zhou,
2020). Given an observational data set and a hypothetical
confounder, these methods adapt importance sampling ap-
proaches to calculate worst-case estimates for the value of a
new policy. A practitioner can assess the sensitivity of their
results to unobserved variables by increasing the strength
of confounding and computing how quickly the worst-case
bounds degrade.

However, the existing literature arrives at radically different
conclusions. (Kallus & Zhou, 2020) - henceforth KZ - finds
that it is possible to efficiently construct non-conservative
bounds in the infinite horizon setting. On the other hand,
(Namkoong et al., 2020) - henceforth NKYB - only finds
non-trivial bounds when confounding is restricted to a sin-
gle time step. Furthermore, both approaches find the finite
horizon case with confounding at each step to be computa-
tionally intractable.

The natural questions are: 1) what is responsible for the
substantial gap between the conservativeness of the existing
bounds? and 2) how can we compute tractable lower bounds
for the finite horizon case?

Summary of our Results:

We identify a key assumption under which it is possible
to obtain sharp lower bounds on the expected value in a
confounded MDP, even as the horizon grows. When the un-
observed confounding variables are drawn iid each period,
the marginal dynamics over the observed state themselves
form an MDP. In this case, OPE methods can be applied
to the marginal MDP after appropriate adjustments for con-
founding. Such an assumption is made in KZ.

But if the unobserved state might be persistent over time,
the problem is a genuine partially-observed MDP (POMDP).
Marginal transition probabilities for the observed state will
not be Markovian in general. Medical applications, which
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frequently feature persistent unobserved variables, fall under
this category. As a result, existing bounds that target this
setting, such as NKYB, are more conservative. In this paper,
we focus on the case where the marginal problem is an
MDP and demonstrate enormous performance differences
compared to setting with persistent unobservables.

We derive an expression for the bias of common estimands
under confounding in the marginal MDP setting. We show
how to express OPE “direct methods” in this form. Then we
demonstrate how to adapt direct methods to give worst-case
bounds in the finite horizon case. Our method is sufficiently
generic that any approach which regresses a function against
states and actions can be plugged into our framework to get
bounds.

Finally, we show that model-based OPE methods provide
sharper lower bounds on the value function. We can com-
pute these bounds in a computationally efficient way by
combining techniques from the robust MDP literature with
sensitivity models from causal inference. A model-based ap-
proach provides a natural way for domain experts to provide
guidance on reasonable limits for the strength of confound-
ing on outcomes. We evaluate our methods with existing
OPE benchmarks.

2. Related Work

Off-policy evaluation There are several classes of popular
OPE algorithms. (Voloshin et al., 2019) provides a sum-
mary and empirically compares their performance. These
classes include: importance sampling (IS) (Precup, 2000;
Hanna et al., 2019), model-free direct methods like Fitted
Q-Evaluation (Le et al., 2019), model-based methods (Padu-
raru, 2012; Gottesman et al., 2019), and hybrid methods
(Thomas & Brunskill, 2016; Jiang & Li, 2016; Kallus &
Uehara, 2020). (Voloshin et al., 2019) shows that, typically,
either simple methods like FQE or hybrid methods have the
best performance in practice.

Recently, a variety of marginalized importance sampling
(MIS) methods (Liu et al., 2018; Uehara et al., 2020;
Nachum & Dai, 2020) have been developed, which have
the potential to solve the poor empirical performance of
standard IS. This approach is adopted by KZ.

Causal inference and sensitivity analysis

Estimating the causal effect of a treatment on some outcome
is the object of study in causal inference (Hernan & Robins,
2010; Imbens & Rubin, 2015; Pearl et al., 2009). The line of
work on dynamic treatment regimes (Murphy, 2003; Laber
et al., 2014) is the most relevant to RL. Work in this area
frequently assumes an unconfoundedness condition, which
guarantees that the causal effect of a treatment is identified.
For example, unconfoundedness will hold if the data come

from a randomized control trial.

If unconfoundedness might be violated, then a researcher
can assess the robustness of their causal estimates via sensi-
tivity analysis (Rosenbaum, 2002; Franks et al., 2019). In
recent work, (Yadlowsky et al., 2018; Kallus et al., 2019)
give bounds for treatment effects subject to a sensitivity
model. Other work develops bounds for the effectiveness
of a single-step policy in the presence of unobserved con-
founders (Kallus & Zhou, 2018; Jung et al., 2018).

Off-policy evaluation with unobserved confounders

Besides NKYB and KZ, most work in RL with unobserved
confounders assumes that the causal effects are identified,
i.e. assumptions are made about latent structure such that the
true effect of interest can be recovered (Bennett & Kallus,
2019; Oberst & Sontag, 2019). For POMDPs, (Tennenholtz
et al., 2020) analyze the bias for importance sampling in the
presence of confounders, and give some conditions under
which this bias can be corrected.

3. Problem Setting and Notation
3.1. Markov Decision Processes

Let (X, A, P,R,x,7) be an Markov decision process
(MDP) where X is the set of states and A is the set of
actions, which we assume are finite. Let P(.S) denote all
probability distributions ona set S. P : X x A — P(X)
is the transition function, R : X x A x X — R is the
reward function, x € P(X) is the initial state distribution,
and v € [0, 1) is the discount factor. A (stationary) policy
m: X — P(A) assigns probabilities to each action given a
state. We are interested in the expected value of policy 7:

T—1
> 7] ,
t=0

where 29 ~ X, ar ~ 7(|xt), xpp1 ~ P(|x,a), re =
R(xt,at,xt+1) and T < 0.

Vi =E

3.2. Confounded Off-policy Evaluation

In this paper, we consider MDPs with unobserved confound-
ing variables. Specifically, we assume the state space is
partitioned into observed state X and unobserved state I{.
The full-information MDP is (X x U, A, P, R, x,7).

In the confounded off-policy evaluation problem, we have
access to a dataset D,, = {;}_;, collected according to
a stationary behavior policy, m, : X X U — P(A). Each
7 = {(#},al, zi 1, 7)1/ o' denotes an observed trajectory
where (zg,ug) ~ X, ar ~ mp(-|ze, up), (o1, Urp1) ~
P(|z¢, ug, at), and rp = R(xy, at, xr41). Note that while
R is only a function of the observed state, it can still rely on
Uy Vid Tyyq.
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Our goal is to estimate the expected return V¢ for a sta-
tionary evaluation policy, 7, : X — P(A), which does not
depend on the unobserved state.

4. Two Types of Unobserved State

We begin by making a distinction between unobserved states
that are dependent over time, and unobserved states that are
drawn iid each time step.

Assumption 1 (IID Confounders). The unobserved state
u; is drawn iid for all ¢ > 0 and therefore the transition
dynamics can be factored as:

P, u'|z, u,a) = P(a'|2, u, a)p(u)

This corresponds to the “memoryless” unobserved con-
founding assumption in KZ. Under Assumption 1, the
marginal observed state transition probabilities are Marko-

vian:
P(2|z,a) = Zp(u)P(a:’\z,u,a)
uel

and the value of evaluation policy 7. in the true MDP
is equal to the value of 7. in the marginal MDP,
(X, A, P, R, x,7), where we abuse notation slightly to let
P and x denote the corresponding marginal quantities over
the observed state.

While we have reduced the problem to finding the value of
7. in the marginal MDP, this value is not identified given the
dataset D, because the unobserved state u affects both the
choice of action 7y, (a|x, u) and the transitions P(z’|x, u, a).
For example, any dataset collected under policy 7, will
be consistent with a set of many possible marginal tran-
sition probabilities P(z'|x,a). However, standard OPE
algorithms for MDPs can be adapted to this setting via some
strategy to control for confounding.

If the unobserved state is persistent, then the problem
is no longer a marginal MDP plus causal uncertainty.
Consider the simplest such scenario where ug is drawn
from some initial distribution and u; = wug,Vt. In this
setting, P(x¢41|2¢,a) is non-stationary in general and
P(xiq1|2e, ay, ..., o, ag) is not Markovian due to the de-
pendence via u induced by conditioning on x. Therefore,
the problem is a partially-observed MDP (POMDP).

For the POMDP case, even when m(a|z,u) =
my(alz,u'),Va,z,u, v (as in a randomized trial), many
OPE algorithms are biased because the observed state and
actions do not themselves constitute an MDP. A notable
exception is IS methods. When 7 (a|x, u) = mp(alz, u'),
the problem satisfies Assumption 1 in (Tennenholtz et al.,
2020) for POMDPs.

When the behavior policy varies over u, the value is not iden-
tified and one must further adapt IS methods as in NKYB.

However, as we will demonstrate, without Assumption 1
these bounds are too conservative for practical use - even
when confounding is limited to a single time step. Therefore,
in this paper, we develop lower bounds on the value of a
policy given Assumption 1, and show that the bounds are far
less sensitive to confounding. It is crucial to remember that
Assumption 1 is not reasonable in some settings, especially
medical ones, and given the substantial gap in performance,
we suspect that new algorithms or sensitivity models need to
be developed to make the persistent confounder case work
in practice.

5. Estimation with Unobserved Confounders
5.1. Bias due to Spurious Correlation

Under Assumption 1, we can explicitly quantify the bias due
to unobserved confounding. For comparison, we begin with
a quantity that is identified under confounding: the behavior
policy conditional on the observed state. Consider the naive
empirical estimate, 7, (a|x), for m(a|x) given Dy, .

Lemma 1. Under Assumption I, #t(a|x) is an unbiased
estimator of my(alx).

Proof.

Ep,, [f(alz)] = ) p(ulz)ms(alz, u)
ueU

= Zp(u)m,(am,u) =m(alz). O

ueU

On the other hand, consider estimating the expectation
of a function of z,a, and z’, conditional on z,a, i.e.
my(z,a) = E[f(z,a,z’)|z, a]. Define the corresponding
naive estimator, 12 (z, a) as above.

Proposition 1. Under Assumption 1 and given a function
f:AXAXX =R,
:c,a] .

Proof sketch. Conditional on x and a, the distribution of u
in Dy, is p(u|z, a) and

mp(alx)

f(x7 a7 xl)

-F Al ol
@) =By | el )

mp(alz, u)
ulz,a) = ——————=p(u
p(ulz, a) (@) p(u)
by Bayes rule. Then reweight accordingly. O

As an immediate corollary of Proposition 1, 72 (x, a) is not,
in general, an unbiased estimator of m ¢ (z, a). For a relevant
example, let f(x,a,2’) = 1(2’ = i) for some i € X.
Then my(z,a) = P(i|z,a), the marginal probability of
transitioning to state ¢. Unless 7, (alz, u) = mp(alz, u’) or
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P(z'|z,a,u) = P(2'|x,a,u’), Yu, v, the naive estimator
of the transition probabilities is biased. Furthermore, since
my(alz,u) is unobserved, the observed data is consistent
with many possible P(z'|z, a).

5.2. Sensitivity Model

While estimands like P(z’|x, a) are not point-identified un-
der Assumption 1, it is possible to give upper and lower
bounds that are consistent with the observed data. How-
ever, without further assumptions these bounds are typically
vacuous. Therefore, we follow the sensitivity analysis ap-
proach and specify limits on the impact of the unobserved
state. The idea is that we will construct a worst-case esti-
mate given a fixed level of confounding and study how the
estimate changes as the degree of confounding is increased.

We control the dependence of the behavior policy on the
unobserved state via a parameter I'. This is a popular tech-
nique in the causal inference literature, described in (Rosen-
baum, 2002). In particular, we follow (Tan, 2006) and have
T" bound the odds ratio between the unobserved behavior
policy and the observed marginal behavior policy:

Assumption 2 (Policy Confounding Bound). Given I > 1,
forallz € X,u €U, and a € A:

mp(alx, u) my(alz)

r< () /(o) <°

Note that Assumption 2 implies the bounds:

a(z,a) < _my(alz)

< B(z,a)

mp(alz, w)

where

alz,a) = mp(alz) + %(1 — mp(alx))
B(z,a) =T+ mp(alz)(1 -T)

6. Policy Evaluation with Confounders

In this section, we will show how to compute worst-case
value estimates. As long as Assumption 1 holds, by Propo-
sition 1 we have an unbiased expression for regressing any
observed quantity f against x and a. This expression de-
pends on the unknown probabilities 7, (a|x, v) which we
can bound using Assumption 2. By choosing different func-
tions f, we can adapt most OPE direct methods as described
in (Voloshin et al., 2019). We illustrate this procedure for
Fitted Q Evaluation (FQE).

We begin with some notational details. We denote the state
and state-action value functions for a policy 7 and horizon

T as:

Vi(z)=E

T—1

Z 'ytrt’:co = l‘]

=0

QF(z,a) =FE [R(m,a,x’) + VT’ll(x’,u')’x,a]

respectively. Throughout the rest of the paper, we will use
the short-hand g(z, 7) == 3. 4 7(alx)g(x, a). Denote the
Bellman evaluation operator for a policy 7 as 7™, defined
as:

(T"g)(z,a) = E[T(.’I}, a,z’) +yg(', 7'(')‘.’11‘, a}

where ¢ is any function on X’ x A. The state-action value
function Q7 can be computed by applying 7™ to Q9 = 0, T-
times (Puterman, 2014). Furthermore, V' (z) = QF.(z, ),
and the expected value is simply the average of the value
function over the initial state distribution. Therefore, we can
easily compute estimates of the expected value using Q7.

6.1. Confounded FQE

FQE iteratively applies an empirical approximation of 7™
to compute 7. Let o = 0 and let H be some function
class. Given a dataset D, and an evaluation policy 7., FQE
computes

N T-1
1 o .
Q. = argmin — E g h(zt, al) — yi)?
het NT P t:O( ( t t) t)

where yz = r(aci, af;, xiﬂ) + 'ka,l(miﬂ, Te)-

Essentially, regression with the class H approximates the
conditional expectation of the function

f(xa a, xl) = ’I"(.’l?, a, LIJ/) + ’ka—l(x/a 7T€)

and T Qi—_1(x,a) = E[f(z,a,a’)|z,a]. With unob-
served confounding, regression using the data D, no longer
gives an unbiased estimate of 77 Q_1(z, a). Instead, we
can apply Proposition 1 with the function f defined above

to get:
x, a} .

We can then use Assumption 2 to bound the unobserved
my(alx, u). For example, we immediately get the following
naive bound.

mp(alx)

T Qr—1(v,a) =Ep f(x,a,z")

™ | mp(alx, u)

Proposition 2. Lety := f(x,a,z’). Under Assumptions 1
and 2, Forall x € X and a € A,

(TTQr—1)(x,0) >
Ep,, |(B(z;a)1(y <0) +az,a)l(y > 0))y

Jc,a].
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This naive bound is too conservative to use in practice, es-
pecially as the horizon grows. To get a better bound, we
can solve an optimization problem over all possible values
of my(alx, u) which are consistent with the observed data.
Fix z and a. Let m(alz) and P(z/|x,a) be the nominal
behavior policy and nominal transition probabilities respec-
tively. The basic unknown quantities are p(u), 7 (alz, u),
and P(-|z,u,a) € P(X),Vu. We have the following ob-
servable implications:

Lemma 2. Under Assumption 1,Vx € X,a € A, 2’ € X,

3" p(w)mp(alz, u) = n(alx), and

ueU

Z p(u)my(az, u) Pz’ |z, u,a) = w(alz) P(z'|z, ).
ueU

For a fixed x and a, let B, be the set of possible 7 (a|z, -)
such that Lemma 2 and Assumption 2 hold. Then:
x, a}

Unfortunately, when computing a regression in practice,
this requires introducing a new optimization variable for the
unknown values of u for every data point. Instead we use a
clever reparameterization to remove the dependence on u
that KZ introduced for MIS.

T Qr-1(z,a) 2

mp(alx)

f(x7 a7 ‘r,)

min Ep

mo(ale,)eBea ™ | my(alT,u)

6.2. Reparameterization

Define

g(-’E,U/,.’I}/) = Z (p(ux,a)P(xﬂx,u,a)) 1

U P(a'|z,a) my(alz, u)

and the corresponding set
gwa = {9(2177(1, ) : ﬂ—b(a|‘r>u) € BCEU«}'

The idea is that g(z,a, ') is equal to 1/m(alz,u) con-
volved with an unknown density. Since both m(alz, u)
and p(u|x, a)P(a'|z, u, a) are unknown, optimizing over
Baa is equivalent to optimizing over B,, where we replace
my(alx) /my(alx, u) with m,(alz)g(z, a,z’). We have the
following constraints:

Lemma 3. Under Assumptions 1 and 2,
Vee X,ac Az’ € X,

a(wv a) < ﬂ—b(a|x)g($7 a, ‘r/) < 5(*% a)v
and

Z wb(a\x)g(m,a,x’)ff’(xﬂx,a) =1L
z'eX

Now we are ready to state our confounded FQE bound:

Theorem 1. Under Assumptions I and 2,
Ve e X,a € A,

T Qr-1(x,a) >
f(xﬂ a? x/)

min
mp(alz, )EBga

) { ™ (alz)

m(alz, u)

T, a]

= min B EDW}) [Wb(a‘x)g(xvaaxl)f(mvaaxl)

g(w,a;)eBma

x,a}

For a given dataset D, this bound can be computed with
a simple linear program. Fix x and a, and for shorthand,
denote the naive estimates of the nominal behavior policy
and nominal transition probabilities as 7., € [0,1] and
P,, € [0,1]1%I respectively. The bound in Theorem 1 can
be estimated by the following LP:

min ¢ w
weRIX|
such that

. 1 . .
Tra + f(l —fizq) 2w T 47,1 -T)

and PLw =1,

where ¢(z') is the sample average of r + YQr_1 (', 7.)
conditional on x and a. Note that 7, me and c are all
observables estimated from the data, and I' is given. Only
the vector w is unknown.

Remark 1. Theorem 1 gives a lower bound for a single
application of 7. We get a lower bound on V, by ap-
plying 7™ k-times and then averaging over the initial state
distribution.

Remark 2.The reparameterized optimization problem in
Theorem 1 can in principle be used when regressing a wide
variety of functions f against x and a. This provides a
blueprint for adapting other OPE methods that solve a re-
gression problem.

7. Sharper Bounds with Robust MDPs

Unobserved variables create bias when they are correlated
with both the behavior policy and the state transitions. The
sensitivity model in Assumption 2 limits the correlation
with the behavior policy. However, in the reparameteriza-
tion strategy above, we combine our unknowns, 7, (a|x, u)
and P(z'|z,u,a). Therefore, we cannot leverage any ad-
ditional information that limits the correlation between u
and the transitions. Consider the extreme case, where
P(z'|z,u,a) = P(2'|x,a),Vu. In this case, naive OPE
estimates will be unbiased even if I' in Assumption 2 is
large. While in observational studies, it is not possible to
rule out all correlation between unobservables and the dy-
namics, we might be able to use domain knowledge on
causal mechanisms to restrict the feasible transitions.
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One branch of the sensitivity analysis literature, exempli-
fied by (Rosenbaum & Rubin, 1983), suggests using three
sensitivity parameters. First, a bound on the correlation
between the unobserved confounder and the treatment. Sec-
ond, a bound on the correlation between the unobserved
confounder and the outcome. Third, a parameter represent-
ing the distribution of the unobserved confounder. (Rosen-
baum & Rubin, 1983) presents the case where v is a binary
variable. However, (Ding & VanderWeele, 2016) show that
for worst-case bounds, this is without loss of generality.
Therefore, we assume that / = {0, 1}.

Assumption 2 bounds the impact of v on 7. Following
(Rosenbaum & Rubin, 1983), we now introduce two addi-
tional parameters:

Assumption 3 (Transition Confounding Bound). Given
A>1,forallz e X,ac A, 2’ € X,andu € U:

P(z'|z,u,a)

1 P(m’|m,a)
A = (1—P(:E’|a:,u,a)>/<1—P(m’x,a)) =4

Assumption 4. Given a fixed p € [0, 1], p(u = 1) = p.

For any tuple of sensitivity parameters, (I', A, p), we will
give worst-case bounds on the value function V7 () using
a model-based approach. Each (I", A, p) has a correspond-
ing set of possible transition probabilities under Assump-
tions 2, 3, and 4, such that the observable implications in
Lemma 2 hold. Finding the worst-case value given an uncer-
tainty set for the dynamics has been extensively explored in
the Robust MDP literature (Nilim & El Ghaoui, 2005). The
standard approach is to separate the uncertainty over the
state-action pairs, assuming that the uncertainty sets across
x, a pairs are not linked. In our problem, this assumption
is violated because of the requirement that 7, (-|x, u) is a
probability distribution. In the language of robust MDPs,
our problem is “s-rectangular” instead of “s,a-rectangular”.

Fortunately, s-rectangular MDPs can also be solved ef-
ficiently (Wiesemann et al., 2013). Let G, denote the
set of feasible transition probabilities for a fixed x. Let
P, € RIAIXI¥] be the matrix whose rows are P(:|z, a) for
each a. Instead of the state-action value function, we itera-
tively solve for worst-case estimates of the value function:
Vi) = iy () Py

where y = (3, c 4 e(alz)R(x,a,-)) +yVi—1(-). When
optimizing over the unknown quantities P(2'|z, u,a) and
mp(a|z, w) for all 2/, a, and w, this problem has a linear ob-
jective with linear and bilinear equality constraints, so it can
be easily solved. We estimate V7* by letting ;) = 0, then
solving the above minimization problem 7'-times. As we
will show in our evaluation, for all values of the parameters
(T, A, p), the s-rectangular robust MDP formulation pro-

vides sharper bounds than the linear program corresponding
to Theorem 1.

8. Evaluation

We use the benchmarks from OPE-Tools (Voloshin et al.,
2019) for evaluation. In particular, we adapt their three
discrete environments, Graph, Discrete MC, and Gridworld,
together with a small toy problem. Note that the data gener-
ating processes do not strictly need to be confounded. Our
methods bound the worst possible confounded MDP that
could have generated the data. Therefore, the two relevant,
observable reference points are the value of the behavior pol-
icy and the nominal value of the evaluation policy. Nonethe-
less, for completeness we augment the environments with
unobserved confounding variables. Our approach takes an
existing behavior policy and transition matrix, and adds an
additional state variable u which induces a correlation be-
tween the policy and transitions based on either the rewards
or the optimal value function.

For each environment, we choose a behavior policy 7, and
evaluation policy 7, such that the value of 7, without con-
founding is greater than the value of 7. This way, it is
possible to find which level of confounding makes it impos-
sible to guarantee that 7. is superior to 7;,. Furthermore, the
impact of confounding can be compared relative to the dif-
ference in values between the two policies. See Table 1 for
a summary of the four test environments and the Appendix
for full details.

8.1. Lower Bounds with Confounding

For our first experiment, we collect trajectories from each
of the four environments using their respective behavior
policies. For each environment, we collect 30,000/horizon
trajectories, keeping the number of data points the same
across environments. Then, we compute our confounded
FQE and robust MDP lower bounds for values of I" and A
ranging between 1.1 (barely confounded) and 10 (highly
confounded). For the robust MDP bounds, we fix the param-
eter p = 0.5, i.e. each period the unobserved state is equally
likely to be u = 0 or u = 1. The robust MDP bounds are
not very sensitive to this parameter and this choice doesn’t
impact the qualitative results, although corroborating re-
sults are in the Appendix. Our lower bounds for the four
environments are plotted in Figure 1.

The confounded FQE bounds are the black curve at the bot-
tom of each plot. Without any additional restrictions of the
transition dynamics, these bounds degrade the quickest as
I" increases. This curve intersects the value of 7, atI' = 6
for ope-graph, and I' < 3 for the remaining environments.
Qualitatively, this means strong requirements on confound-
ing are required for the FQE bounds to guarantee that the
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Environment | Horizon \ States \ Actions \ Vre \ Vie \ Sparse Rewards?
toy 5 3 2 0.3397 0.4990 No
ope-graph 4 8 2 -0.1786 0.7174 No
ope-mc 20 22 2 -18.1890 | -15.7381 Yes
ope-gridworld 8 16 4 -0.4994 | -0.3569 No

Table 1. Characteristics of the four test environments.

evaluation policy is better than the behavior policy. Com-
pare this, for example, to the other curves in ope-graph and
ope-mc which are greater than V'™ for all values of T

The curves above the confounded FQE curve correspond to
our robust MDP bounds. In all cases as A grows, the corre-
sponding lower bounds get worse. As mentioned previously,
for ope-graph and ope-mc, any value of A guarantees that
V7 > V™. For toy and ope-gridworld, consider the A = 2
curve, which is third from the top. For the toy environment,
assuming A = 2 substantially increases the I" at which the
curve crosses the dotted 7, line compared to the FQE curve.
For ope-gridworld, the A = 2 curve lies above V™ for all
I'. These examples highlight the qualitative and quantitative
importance of limiting the degree of confounding on the
transition probabilities.
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Figure 1. Lower bounds on the expected value of 7. For reference,
in each environment, we plot the value of 7. without confounding
(the dotted line at the top) and the value of 7 (the dotted line
below). The black line at the bottom is the confounded-FQE
bound. Each other line corresponds to a robust MDP bound for a
single value of the transition confounding parameter A, with light
to dark lines going from 1.1 to 10.

8.2. Tightness

Our confounded FQE and robust MDP methods provide
lower bounds on the expected value subject to their respec-
tive sensitivity models. A natural question is: how far are
these bounds from the infimum over all full-information
MDPs consistent with the observed data, subject to the
given sensitivity model? We split our analysis of tightness
into two parts, the single-step case and the multi-step case.

A single iteration of our bounds requires solving a minimiza-
tion problem. The tightest possible bound on V[ is the min-
imum over all valid full-information MDPs. But our robust
MDP solution produces candidate transition probabilities
P(2'|x, u,a) and behavior policy mp(a|x, u) corresponding
to some valid full-information MDP. Therefore, since it is
a lower bound, it must achieve the true minimum and so a
single iteration of the robust MDP approach is tight.

On the other hand, our confounded FQE bound solves a
minimization problem separately for each state-action pair
without enforcing that 7, (+|«, u) be a density across actions.
We quantify the impact on performance by comparing the
FQE bound to our robust MDP bound as A goes to infinity.
We present results for the ope-graph and ope-mc environ-
ments in Figure 2. The qualitative findings for the other
environments are similar so we defer these results to the
Appendix.
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Figure 2. Lower bounds on the expected value as A grows large.
The black line at the bottom is the confounded FQE bound. The
upper dashed line is value of 7. with no confounding. The lower
dashed line is the value of 7.

For the ope-graph environment, the gap between the FQE
bound (the black line at the bottom) and the robust MDP
bounds for large A are negligible until I" > 8, at which
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env \F:Z,A:Z\F:lO,A:lO\
toy < le-8 < le-8
ope-graph < le-8 < le-8
ope-mc < le-8 < le-8
ope-gridworld T=28 2.03e-3 3.06e-2
ope-gridworld T=208 4.75e-3 2.87e-2
ope-gridworld T=508 2.65e-5 2.97e-4

Table 2. The difference between our robust MDP bound and the
value of 7. in the candidate MDP defined by the transition proba-
bilities from the last iteration of our bound. The first three environ-
ments use the default horizons given in Table 1.

point the gap grows. For the ope-mc environment, the gap
begins substantial and grows slightly larger as I" grows. For
this particular environment, the robust MDP lower bounds
always guarantee that the evaluation policy is at least as good
as the behavior policy. However, the FQE lower bound can
only provide this same guarantee for I' < 3. Therefore, it
appears that enforcing the density constraint across actions
can matter in practice, so for cases where we do not wish
to make any assumptions on the transitions, we prefer our
robust MDP bounds with very large values of A.

When confounding occurs in more than one time step, our
robust MDP bound is computed iteratively with different
minimization problems solved at each time step. The candi-
date transitions and behavior policy that correspond to each
minima may differ, so the lower bounds are potentially loose.
Theoretically, the looseness of our bound is characterized
by Theorem 4 of (Nilim & El Ghaoui, 2005). In particular,
as the horizon goes to infinity, our lower bound converges
to the best possible lower bound - the rate of convergence
can be found in the proof of the theorem.

To test this empirically, we use the full-information tran-
sitions and behavior policy from the final iteration of our
robust MDP method as a candidate. Because the candidate
MDP is consistent with the observed data subject to the
sensitivity model, if the value of this MDP matches our
lower bound, than our lower bound must be tight. For the
toy, ope-graph, and ope-mc environments, we use the same
experimental setup as we did for the results in Figure 1.
The gap between the candidate MDP value and our lower
bounds are reported in Table 2. For these environments, the
value of the candidate MDP differs by less than 108 from
our lower bound. For the ope-gridworld environment, we
find our lower bound is not tight at small horizons, so we
ran experiments with a short, medium, and long horizon. As
predicted by the theory, the bound improves for large 7" as
value iteration approaches its fixed point.

8.3. Assumption 1 and Comparison with NKYB

Assumption 1 - that the unobserved state is drawn iid each
period - is crucial to the quality of the bounds above. We
demonstrate this by comparing our bounds to those in
NKYB, which do not assume iid confounders. In order
to compare to NKYB, we have to alter the experimental
setup above in two ways. First, NKYB only supports con-
founding that occurs in a single time step. The initial time
step is confounded, but for the remainder of the horizon, the
behavior policy only uses the observed state. We compute
the analogue for our robust MDP algorithm by computing
T — 1 iterations of unconfounded value iteration followed
by a single iteration of our lower bound.

Second, NKYB uses a similar but more restrictive sensitiv-
ity model. Our sensitivity parameter restricts the odds ratio
between the confounded policy for a given value of u and
the policy averaged over all u. Their sensitivity parameter
restricts the odds ratio for the confounded policy between
any values of u, which grows roughly like the square of
ours. For this comparison, we can calculate the true sensi-
tivity parameters for each confounded environment under
the different sensitivity models. We provide a performance
comparison using the true sensitivity parameters for each
environment in Table 3. Even with confounding restricted to
a single time step, the NK'YB bounds, which do not assume
iid confounders, are enormously conservative.

This is a key result. Even for a single time-step, policy
evaluation is highly sensitive to persistent unobserved vari-
ables. The ability of our robust MDP bounds to guarantee
improvement over the behavior policy in Figure 1, even
over longer horizons, depends crucially on our Assumption
1. In turn, this highlights the fact that off-policy evaluation
with confounding in settings where Assumption 1 fails is far
more difficult and requires a different algorithmic approach.
As mentioned in the introduction, while iid confounders
are feasible in certain settings - like unobserved oil supply
shocks for macroeconomic policy - Assumption 1 is not
reasonable for many applications, especially in medicine.

The results in Table 3 might hinge on the different sensitiv-
ity models, so we perform a robustness check which uses
identical values of I' and which should therefore be very
favorable for the NKYB bounds. The toy and ope-graph
NKYB bounds improve, but the ope-mc and ope-gridworld
bounds remain unusable - see the Appendix for details.

8.4. Horizon and Comparison with KZ

Many of the details above depend on the horizon. For ex-
ample, our robust MDP bounds become tight as the horizon
increases and NKYB restricts confounding to a single time-
step. Therefore, in this section we assess how our lower
bounds change as the horizon increases. This also provides
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env \ Nominal \ NKYB \ Ours ‘
toy 0.5189 0.0436 0.25372
ope-graph 0.7008 0.0280 0.3994
ope-mc -15.6941 | -64.5040 | -15.9647
ope-gridworld | -0.3588 -2.3914 | -04112

Table 3. The value of 7. without confounding and the correspond-
ing lower bounds from NKYB and our robust MDP procedure. For
each bound and each environment, we use the true parameter value
for the respective sensitivity models.

a convenient setting to compare with the infinite horizon
bounds in KZ.

Comparing with KZ requires modification of our initial ex-
perimental setup. We use the ope-graph and ope-gridworld
environments. In order to generate a non-trivial steady-state
distribution, we remove the terminating states and alter the
transition probabilities accordingly. Furthermore, to match
KZ’s approach, we modify the rewards to only depend on
the current state. We then calculate our bounds for 1 to 200
time steps. For both environments, 7" = 200 is long enough
to spend a majority of the time close to steady-state. We
also adopt a discount rate of v = 0.95 so that T' = 200 is
well beyond the effective horizon. We produce bounds for
I' = 1.5,2, and 10 using our robust MDP method with A
set to 1,000,000.

Since we use the same marginal sensitivity model, we can
use KZ’s method to calculate infinite horizon bounds for the
same values of I'. Their method computes bounds on the
long-run average value, i.e. the expectation of the rewards
with respect to the steady-state distribution, instead of the
discounted value. Therefore we use the discounted sum of
rewards as the per-state reward for KZ’s method. The results
are plotted in Figure 3. The dotted black curve at the top is
the value of 7, without confounding at each horizon. The
curves below are the lower bounds for I' = 1.5, 2, and 10
respectively. The dots on the far right are the corresponding
KZ infinite horizon bounds. In all cases, the gap between
our bounds and the unconfounded value grow at the horizon
increase. This is not because our bounds are loose - as value
iteration reaches its fixed point, our bounds are provably
tight as mentioned - but because confounding over many
time periods is a more difficult problem. This phenomenon
is especially pronounced for I' = 10: at long horizons, a
smaller value of the sensitivity parameters becomes much
more valuable.

The infinite horizon bounds follow roughly the same quali-
tative behavior as ours but are much looser. This is presum-
ably due to the fact that the long-run average of discounted
rewards is a different estimand than the average discounted
sum of rewards. With no confounding, the difference is
small (compared the uppermost line and uppermost dot).

But as the level of confounding increases, the long-run
average becomes more sensitive. The magnitude of the dif-
ference is surprising and perhaps worth studying in future
work.
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Figure 3. Robust MDP lower bounds as the horizon grows. The
dotted curve is the nominal value of 7. The dots on the right are
KZ’s infinite horizon bounds.

9. Conclusion

To summarize: our first key contribution is to develop a
method for computing finite horizon lower bounds for policy
evaluation with unobserved confounders that are drawn iid
each period. We find that our model-based robust MDP ap-
proach can give substantially sharper bounds by leveraging
assumptions about the transition probabilities. To be clear
on this point: the argument is not that a plug-in estimator
using a model of the dynamics is inherently more efficient.
When using observational data to estimate a dynamic causal
effect, understanding the dynamics of the system and the
causal mechanisms are critically important. Quantitatively,
we illustrate this by showing that sharp partial identification
of the value of a policy requires restricting the set of possible
transition probabilities. In practice, such an approach relies
on domain-expertise. Practitioners must have enough mech-
anistic understanding of the dynamics that they are able to
specify bounds, A, on potential confounding in order to get
a reasonable estimate of the expected value.

Our second key contribution is to demonstrate that policy
evaluation is far more challenging when there are persistent
unobserved confounders. This is responsible for the sub-
stantial performance gap between our bounds and those in
NKYB. These results are especially relevant for medical
applications where unobserved variables are likely to be
persistent. For example, any patient variable that may not
be recorded, but doesn’t change between treatment choices
like socio-economic status or undocumented chronic illness.
Work published after this paper was completed (Kwon et al.,
2021) has taken an initial step to tackle this setting without
confounding. An important next step will be to achieve
similar results in the observational causal setting.
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