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Abstract
It is well-known that, for separable data, the reg-
ularised two-class logistic regression or support
vector machine re-normalised estimate converges
to the maximal margin classifier as the regular-
isation hyper-parameter λ goes to 0. The fact
that different loss functions may lead to the same
solution is of theoretical and practical relevance
as margin maximisation allows more straightfor-
ward considerations in terms of generalisation and
geometric interpretation. We investigate the case
where this convergence property is not guaranteed
to hold and show that it can be fully characterised
by the distribution of error terms in the latent
variable interpretation of linear classifiers. In par-
ticular, if errors follow a regularly varying dis-
tribution, then the regularised and re-normalised
estimate does not converge to the maximal margin
classifier. This shows that classification with fat
tails has a qualitatively different behaviour, which
should be taken into account when considering
real-life data.

Introduction
Margin maximisation, see for instance (Hastie et al., 2009;
Vapnik, 1998), is an important concept that defines a prop-
erty of finite sample optimality linked to separability be-
tween points from two different classes. However as the
sample size grows, this property is less relevant in the sense
that the dataset is unlikely to be separable.

But margin maximisation and separating hyperplanes are
still appealing for (at least) two reasons: first, they are an
intuitive concept and are a benchmark in any classification
task, and, second, using boosting or kernel SVM in a higher
dimensional space can enable separability.

(Rosset et al., 2003; 2004), building on previous work by
(Bartlett et al., 2006; Freund and Schapire, 1997; Fried-
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man et al., 2000; Schapire et al., 1997) and (Mangasarian,
1999), consider the case of a linear classifier (e.g., logistic
regression or support vector machine) and investigate the
convergence of a regularised estimator to a margin maximis-
ing hyperplane when data is separable. Intriguingly, they
established that under an apparently mild criterion (see Eq.
(3)) on the loss function, this convergence was guaranteed.
This was an important result from a couple standpoints: first,
it established a relationship between regularised classifiers
and margin maximisation, and, second, it showed that usual
loss functions shared that property, leading to the exact
choice of a link function being of second order.

The key results of our work are the (partial) answer to the
open question and conjecture in (Rosset et al., 2003), on
the one hand, and the link between the non convergence
to a margin maximising classifier and regular variation (cf.
(Bingham et al., 1987)) of the loss function, on the other
hand. While margin maximisation is quite specific to the
linear setting, deriving analytical properties of loss functions
that are also used in other settings, such as deep learning,
is particularly interesting to understand choices for loss
functions and their implications.

We establish a connection between this problem and heavy
tails; (Taleb, 2020) offers a wide-ranging review of heavy
tails in multiple applications, (Ibragimov et al., 2015) con-
sider more specifically the role of heavy tails in finance and
inference, and applications in supervised learning (mainly
regression) are described in (Brownlees et al., 2015; Hsu
and Sabato, 2016; Lugosi and Mendelson, 2019). Earlier
approaches such as (Chatterjee and Hadi, 1986; Huber and
Ronchetti, 2009; Wang et al., 2007) considered heavy tails
through the lens of robust estimation. Additional research
in classification tasks under a heavy-tail regime is warranted
to refine the current state of understanding.

Contributions Our contributions in this paper can be ar-
ticulated around three questions:

• Is there a converse statement to (Rosset et al., 2003)’s
sufficient condition? In other words, if a normalised
and regularised estimator converges to a margin-
maximising hyperplane, must the loss function sat-
isfy the same criterion? We show that, under some
additional assumptions, namely the convexity and dif-
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ferentiability of the loss function `, this indeed holds.

• If the ratio criterion is not verified, what can be said
about the loss function? Interestingly, we establish
that such losses can be shown to be in the class of
regularly varying functions under mild assumptions
(see (Bingham et al., 1987) for an introduction to the
theory of regularly varying functions).

• Is there a probabilistic interpretation of these analyt-
ical results? Using the latent interpretation of binary
classification models, we show that the distribution
of the latent variable must also be regularly varying,
loosely characterised by heavy tails.

While the starting point of this work has to do with linear
models and margin-maximising solutions, the characterisa-
tion of loss functions (and behaviour thereof) is of broad
interest.

Setup and definitions We consider the case of binary
classification; we thus suppose that we have n observations
of a feature vector xi ∈ Rd and label yi ∈ {−1, 1}, for
i = 1, ..., n. The loss function ` : R→ R+ is supposed to
depend only on the margin, is monotonic, non-increasing,
non-negative and continuous, while the underlying model
g(x) = βTh(xi) is taken to be linear. We thus minimise
the empirical risk:

min
β∈R|H|

1

n

n∑
i=1

`(yiβ
Th(xi)), (1)

whereH = {h1(x), · · · } is a finite dictionary of functions.
The prediction at point x is simply sign

(
βTh(x)

)
. But, as

pointed out by (Rosset et al., 2003), when |H| is large, it is
required to add some regularisation to be able to control the
complexity of the classifier:

min
β∈R|H|

1

n

n∑
i=1

`(yiβ
Th(xi)) + λ‖β‖pp, (2)

for p ≥ 1. In the following, we denote by βλ (possible one
of) the solution(s) to Problem (2).

1. The sufficient condition
Let us start by recalling the main result from (Rosset et al.,
2003):

Theorem 1. (Theorem 2.1 in (Rosset et al., 2003)) Assume
that the data {xi, yi}ni=1 is separable (i.e., there exists β ∈
RH such that mini yiβ

Th(xi) > 0. Let ` be a monotone
non-increasing, non-negative loss function depending on
the margin only. If ∃T > 0 (possible T = +∞) such that

lim
t→T

`(t(1− ε))
`(t)

= +∞, (3)

for all ε ∈ (0, 1), then ` is margin maximising loss function
in the sense that any convergence point of the normalised so-
lutions βλ

‖βλ‖p
to the regularised problem (Eq. (2)) as λ→ 0

is an Lp margin maximising separating hyperplane. Con-
sequently, if the margin maximising hyperplane is unique,
then the solutions converge to it

lim
λ→0

βλ
‖βλ‖p

= arg max
β,‖βλ‖p=1

min
i
yiβ

Th(xi). (4)

1.1. Interpretation

The condition limt→T
`(t(1−ε))
`(t) = +∞ has a very natural

explanation to it. For the ratio condition in Eq. (3) to
hold, it must be that limt→T `(t) = 0 (otherwise the ratio
would be finite; the case limt→+T `(t) = +∞ implies that
`(t) = +∞ for all t given the non-increasingness of `).
Now, if we suppose that ` is differentiable and that `′ is
non-zero in a neigbourhood of T , we obtain by L’Hospital’s
rule, that

lim
t→T

`(t(1− ε))
`(t)

= (1− ε) lim
t→T

`′(t(1− ε))
`′(t)

, (5)

so that limt→T
−`′(t)

−`′(t(1−ε)) = 0. In other words, the
marginal utility of having a margin of size t versus a margin
of size t(1 − ε) goes to 0. Roughly speaking, this means
that datapoints with a smaller margin with contribute a lot
more to the empirical loss.

1.2. Usual loss functions

It is straightforward to verify that the usual loss functions
verify the criterion Eq. (3), such as the exponential loss
function `Exponential : t 7→ e−t (used implicity in AdaBoost,
cf. (Freund and Schapire, 1997; Friedman et al., 2000)), the
log-likelihood `Logistic : t 7→ log(1 + e−t) used in logistic
regression, or the hinge loss `SVM : t 7→ max(0, 1 − t),
which is central to support vector machines (see (Hastie
et al., 2009; Vapnik, 1998)). The case T < +∞ is only of
interest for hinge-type losses where a cut-off is applied.

1.3. The case of Probit regression

We can show that another well-known loss function,
namely the one used in Probit regression, not considered
in (Rosset et al., 2003), verifies the criterion Eq. (3).
In the case of Probit regression, the associated margin
loss function is defined as `Probit : t 7→ − log(Φ(t)),
where Φ is the standard Gaussian cumulative distribu-
tion function. Since limt→+∞ Φ(t) = 1 and Φ′(t) =
1√
2π
e−t

2/2, it comes that limt→+∞
`Probit(t(1−ε))

`Probitt)
= (1 −

ε) limt→+∞ e
t2

2 (1−(1−ε)2) = +∞, again by L’Hospital’s
rule.
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1.4. A seemingly universal result

Theorem 1 combined with the fact that the most frequently
used loss functions verify the criterion in Eq. (3) means
that if the data is separable and the margin maximising
hyperplane is unique, then the exact choice of loss function
does not matter as all usual loss functions lead to the same
end result. Our overall results and considerations in Section
5.3 somewhat qualify that statement.

2. The necessary condition
In this Section, we aim at answering an open question in
(Rosset et al., 2003) around the existence of a converse to
Theorem 1. In other words, if limλ→0

βλ
‖βλ‖p → β∗, where

β∗ is a margin maximising hyperplane with unit norm, is it
true that limt→T

`(t(1−ε))
`(t) = +∞ for all ε > 0?

We bring a partial positive answer to the question, and fo-
cus here on the case where T = +∞ and p = 2, and
make the additional assumptions that ` is decreasing with
limt→+∞ `(t) = 0, convex and differentiable with continu-
ous derivative `′. We thus consider the loss function to be
minimised:

L(β;λ) =
1

n

n∑
i=1

`
(
yiβ

Th(xi)
)

+ λβTβ. (6)

This section goes through a number of steps that were taken
to reach the result, and start from the assumption that the nor-
malised ”ridged” solution βλ/‖βλ‖2 converges to a margin
maximising hyperplane β∗ with unit norm.

First, we notice that we can give an expression for the nor-
malised regularised solution vector as a linear combination
of the feature vectors.

Proposition 1. For a given λ > 0, the normalised solution
vector βλ,1 = βλ

‖βλ‖2 can be expressed as

βλ,1 = Kλ

n∑
i=1

αi,λyih(xi),

where αi,λ =
`′(mi,λ)∑n
j=1 `

′(mj,λ)
≥ 0 for all i, and Kλ > 0

is a normalising constant such that ‖βλ,1‖2 = 1. In ad-
dition, it holds 0 < 1√

n
mini=1,··· ,n ‖h(xi)‖2 ≤ K−1λ ≤

maxi=1,··· ,n ‖h(xi)‖2, i.e.,Kλ is always bounded by upper-
and lower-bounds that are independent of λ.

Proof. The first-order condition of the problem reads
∂L
∂β = 1

n

∑n
i=1 `

′(mi,λ)yih(xi) + 2λβ, leading to βλ =

− 1
2λn

∑n
i=1 `

′(mi,λ)yih(xi). Since the loss function
` is decreasing, `′(t) < 0 for all t ∈ R, so that
αi,λ =

`′(mi,λ)∑n
j=1 `

′(mj,λ)
is positive for all i. Now, K2

λ =

1
‖
∑n
i=1 αi,λh(xi)‖22

; since
∑n
i=1 αi,λ = 1, it is well-known

that 1/n ≤
∑n
i=1 α

2
i,λ ≤ 1.

From now one, we can thus focus on the behaviour of the
weights αiλ specifically.

Proposition 2. Suppose that h(xj) is not a support vec-
tor of the limiting margin maximising hyperplane β∗, then
αj,λ → 0 as λ → 0. On the other hand, if h(xi) is a
support vector, then αi,λ is bounded by below.

Proof. Since βλ,1 converges to a margin-maximising hyper-
plane and by continuity of the minimal margin in β, this
entails that there exists λ > 0 such that for any λ < λ and
for all i = 1, · · · , n, mi,λ ≥ 0. Similarly, given that β∗ cor-
responds to a margin-maximising hyperplane, it holds that
β∗ = K∗

∑n
i=1 αi,∗yih(xi), where αi,∗ > 0 if h(xi) is a

support vector (in other words, on the boundary of the slab)
and αi,∗ = 0 otherwise (this can be obtained via the dual
approach to the margin maximisation problem, see (Vapnik,
1998) or Section 4.5.2. in (Hastie et al., 2009)).

By assumption and given the loss minimising property,
we have the convergence of the normalised solution vec-
tor to the margin-maximising weight vector β∗ as λ → 0:
βλ,1 → β∗. But this is equivalent to Kλαi,λ → K∗αi,∗. In
particular, for non support vectors, this means αj,λ → 0.

Let us now show that for any support vector h(xi), its associ-
ated coefficient αi,λ is bounded for λ small enough. Indeed,
since Kλαi,λ → K∗αi > 0, then, for any δ > 0, there
exists λ′ such that, for any λ ≤ λ′, ‖Kλαi,λ −K∗αi,∗‖22 ≤
δ.

This distinction between support and non-support vectors
will now help us characterise the behaviour of the loss func-
tion.

Proposition 3. For any non-support vector h(xj) and any
support vector h(xi), it holds

`′(mj,λ)

`′(mi,λ)
→ 0, (7)

as λ→ 0.

Proof. Let us pick i such that h(xi) is a support vector and
j such that h(xj) is not a support vector. Then

αj,λ =
`′(mj,λ)∑n
k=1 `

′(mk,λ)

=
`′(mj,λ)

`′(mi,λ)
· `′(mi,λ)∑n

k=1 `
′(mk,λ)

=
`′(mj,λ)

`′(mi,λ)
αi,λ.
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Since αi,λ is bounded by below, αj,λ → 0 implies that
`′(mj,λ)
`′(mi,λ)

→ 0.

We are now in a position to characterise the limiting property
and tail behaviour of the ratio of the derivative of the loss
function.

Proposition 4. Consider a non-support vector h(xj) and
a support vector h(xi), with respective margins mj,∗,mi,∗
and let ε ∈ (0,

mj,∗−mi,∗
2 ). Then

lim
t→+∞

`′(t(1− µ))

`′(t)
= +∞, (8)

where µ =
mj,∗−mi,∗−2ε

mj,∗−ε ∈ (0, 1).

Proof. Observe that we can rewrite the margin as mk,λ =
‖βλ‖2ykβTλ,1h(xk) := ‖βλ‖2 ·mk,λ,1 for k = 1, · · · , n. In
other words, mk,λ,1 is the “normalised” margin. By conver-
gence of the normalised weight vector and by continuity of
the margin, we have that mk,λ,1 → mk,∗ := ykβ

T
∗ h(xk).

Since i is a support vector but j isn’t, it comes mi,∗ < mj,∗.
Hence, for any 0 < ε <

mj,∗−mi,∗
2 , there exists λ′′ > 0

such that for all λ ≤ λ′′,

0 < mi,∗ − ε ≤ mi,λ,1 ≤ mi,∗ + ε

< mj,∗ − ε ≤ mj,λ,1 ≤ mj,∗ + ε.

Since ` is convex, it comes that `′ is non-decreasing, hence
the key inequality:

0 ≤ `′(‖βλ‖2 · (mj,∗ − ε))
`′(‖βλ‖2 · (mi,∗ + ε))

≤ `′(mj,λ)

`′(mi,λ)
. (9)

But, as λ→ 0, ‖βλ‖2 → +∞ (since for λ < λ, all margins
are positive but `(t) > 0, ‖βλ‖2 must diverge as λ → 0)
and `′(mj,λ)

`′(mi,λ)
→ 0 thanks to Proposition 3. This now implies

that

lim
t→+∞

`′(t(mj,∗ − ε))
`′(t(mi,∗ + ε))

= 0.

By continuity of `′, this is equivalent to

lim
t→+∞

`′(t(1− µ))

`′(t)
= +∞, (10)

where µ =
mj,∗−mi,∗−2ε

mj,∗−ε ∈ (0, 1).

It now remains to derive a similar result for all µ ∈ (0, 1)
and for ` rather than `′.

Proposition 5. Under the assumptions of this section, it
holds

lim
t→+∞

`(t(1− µ))

`(t)
= +∞, (11)

for any µ ∈ (0, 1).

Proof. This result of Proposition 4 holds for any positive
margins mi,∗,mj,∗ such that 0 < mi,∗ < mj,∗ and any
0 < ε <

mj,∗−mi,∗
2 , hence, for any µ ∈ (0, 1), it must

hold that limt→+∞
`′(t(1−µ))

`′(t) = +∞. This is not quite
the desired result, but, since limt→+∞ `(t) = 0 and ` is
differentiable (and such that `′(t) 6= 0 for t > 0 given
that ` is decreasing), we can apply L’Hospital’s rule to get
limt→+∞

`(t(1−µ))
`(t) = (1−µ) limt→+∞

`′(t(1−µ))
`′(t) = +∞,

for any µ ∈ (0, 1).

Remark 1. Let us point out that the same analysis can be
conducted, albeit coordinate by coordinate, for any p > 1
(i.e., as long as the p-norm is differentiable).

3. Functional characterisation of the loss `
We have shown that the condition on the convergence to
infinity of the ratio `((1− ε)t)/`(t) was a necessary (under
strict assumptions) and sufficient (under mild assumptions)
condition for the convergence of the normalised regularised
estimator βλ,1 to a margin-maximising solution.

In this Section, we are however interested in understanding
the case where this ratio criterion in Eq. (3) does not hold
and the consequences in terms of loss function. From now
on, we thus suppose that there exists ε ∈ (0, 1), such that

lim
t→+∞

`((1− ε)t)
`(t)

= γ 6= +∞ (12)

We make the assumption, as in the previous section, that
for any a > 0, limt→+∞

`(at)
`(t) ∈ R+, i.e., the limit exist

but can be +∞ or a non-negative real. This assumption is
made for the sake of simplicity but can be very modified,
see Section 3.3.

For the sake of clarity, let us now denote η := 1− ε.

3.1. The ratio `(at)/`(t) has a limit for all a > 0

Proposition 6. For any n ∈ Z, limt→+∞
`(ηnt)
`(t) = γn.

Proof. Given that limt→+∞
`(ηt)
`(t) = γ ≥ 1, we also have

limt→+∞
`(t)
`(ηt) = 1

γ , and by continuity, limt→+∞
`(t/η)
`(t) =

1
γ . If we consider the case a = ηn, where n ∈ N∗, we can
write

`(at)

`(t)
=
`(ηnt)

`(t)
=

n−1∏
i=1

`(ηi+1t)

`(ηit)
.

But we observe that, by continuity, limt→+∞
`(ηi+1t)
`(ηit) =

limt→+∞
`(η·t)
`(t) = γ, thus leading to limt→+∞

`(ηnt)
`(t) =

γn. Bringing those two facts together, the result holds.
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Proposition 7. There exists a function ρ : R∗+ → R∗+ such
that

lim
t→+∞

`(at)

`(t)
= ρ(a). (13)

In particular, ρ(a) > 0 for any positive a.

Proof. For any 0 < a < η, there exists na ∈ N∗ such that
ηna+1 ≤ a < ηna , so that

`(ηnat)

`(t)
≤ `(at)

`(t)
≤ `(ηna+1t)

`(t)
.

Based on our previous results (and the earlier assump-
tion of the limit’s existence in R+), this implies that
γna ≤ limt→+∞

`(at)
`(t) ≤ γna+1. The case a ≥ η is

handled similarly, since there exists na ∈ N such that
η−na+1 ≤ a < η−na .

3.2. ` as regularly-varying function

To make use of this result, let us start by briefly recalling
some fundamentals of regularly varying function theory (see
(Bingham et al., 1987) for all results mentioned here related
to regularly-varying functions).

Definition 1. A (measurable) function L : R∗+ → R∗+ is
said to be slowly varying (at infinity) if, for all a > 0,

lim
t→+∞

L(at)

L(t)
= 1.

Similarly, we can introduce regularly varying functions:

Definition 2. A (measurable) function h : R∗+ → R∗+ is
said to be regularly varying (at infinity) if, for all a > 0,

lim
t→+∞

h(at)

h(t)
= ρ(a),

where ρ(a) is finite but non-zero for every a > 0.

This is exactly the setup that we established in the previ-
ous subsection, in particular in Proposition 7. One of the
cornerstones of the theory of regularly varying functions is
Karamata’s characterisation theorem.

Theorem 2. Every regularly varying function h : R∗+ →
R∗+ is of the form

h(t) = tζL(t),

where ζ ∈ R and L is a slowly varying function.

In particular, it comes directly that limt→+∞
h(at)
h(t) = aζ .

This implies that the limit function ρ is uniquely defined as
ρ(a) = aζ and can only be a power function. Note that a
closely related result is Karamata’s representation theorem,
giving a precise representation of slowly varying functions.

In our case, we can thus conclude that if ` does not verify
the ratio criterion, then ` is a regularly varying function, and
it is straightforward to infer that

ζ =
log(γ)

log(η)
. (14)

Since we have η ∈ (0, 1) and γ ≥ 1, ζ ≤ 0. Note that
ζ = 0 if and only if γ = 1, in which case the loss function
` is slowly varying. Since ζ is non-positive, we generally
consider ξ = −ζ rather than ζ directly. While the character-
isation and representation of the loss function are interesting
results in their own right, it is possible to make them more
intuitive by adopting a probabilistic viewpoint.

3.3. Discussion

Before moving forward, let us pause briefly to discuss the
assumption made to obtain this Section’s results. Our as-
sumption is that, for any a > 0, limt→+∞

`(at)
`(t) ∈ R+. This

is a global assumption which, coupled with Eq. 12, implies
that the limit must then be finite everywhere. However,
this assumption does not require any additional finiteness
condition. The global aspect of the assumption can be sig-
nificantly weakened if one posits that there exists at least
another point such that the limit exists and is finite. Our
result, in this case, is as follows:

Theorem 3. Let a1, a2 ∈ R∗+ − {1} such that log a1
log a2

/∈ Q
and limt→+∞

`(ait)
`(t) = ρ(ai) < +∞, for i = 1, 2, then for

any a > 0, limt→+∞
`(at)
`(t) = ρ(a), where, for any a > 0,

ρ(a) = aζ for some ζ ∈ R.

Proof. Given that ` is non-negative and non-increasing, we
can apply “Theorem K” in (Seneta, 2002) to the function g
defined as g(u) := log `(eu) for u ∈ R.

The condition log a1
log a2

/∈ Q may, however, not be obvious to
check. To summarise, the main takeaway is that Eq. 12, on
its own, is –in general– not enough to guarantee that ` is
regularly varying and an additional assumption is required.

4. Probabilistic interpretation of the
characterisation result

In this section, we recall the latent interpretation of binary
classification and in particular discuss the assumption of
symmetry of the latent variable and its inherent limitation.
This approach will then be applied to regularly varying
losses and distributions in the next section.

4.1. Latent interpretation of classification

It is sometimes useful to posit a threshold model whereby a
variable εi is unobservable but such that the observed class
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label yi ∈ {−1,+1} is given by

1{yi=−1} = 1{βTh(xi)+εi<0}. (15)

The component βTh(xi) is observed but the εi’s are random
perturbations (usually considered to be independent and
identically distributed). This leads directly to

P(yi = −1|xi, β) = F (−βTh(xi))

P(yi = +1|xi, β) = 1− F (−βTh(xi)),

with F the cumulative distribution function (”c.d.f.”) of ε.
In particular, under the assumption that F is symmetric
(whereby 1 − F (t) = F (−t) for all t ∈ R), then one can
succinctly rewrite the probability of observing class y as

P(y|xi, β) = F (yβTh(xi)), (16)

for y ∈ {−1,+1} and the likelihood of the sample is then

L({xi, yi}ni=1;β) =

n∏
i=1

F (yiβ
Th(xi)).

Hence, maximising the likelihood is equivalent to minimis-
ing

L({xi, yi}ni=1;β) =
1

n

n∑
i=1

− log
(
F (yiβ

Th(xi))
)
.

One can thus define in a straightforward way `(t) =
− log(F (t)). Now, given a loss function `, can we find
a corresponding c.d.f. F ?

4.2. Characterisation of losses with latent
interpretation

For F to be a valid c.d.f., F must be non-negative, right
continuous with left limits, non-decreasing and verify
limt→−∞ F (t) = 0, limt→+∞ F (t) = 1. These condi-
tions are guaranteed if ` is continuous, non-increasing and
has limit +∞ in −∞ and 0 in +∞. However, the key
assumption is that of symmetry, which is difficult to obtain.

Proposition 8. Under the assumptions of non-negativity,
non-increasingness and continuity, the loss function ` can
be expressed as a rescaled cumulative distribution function
if and only if it verifies the following functional equation:

2−
`(t)
`(0) + 2−

`(−t)
`(0) = 1, (17)

for all t ∈ R. In this case, F (t) = e−β`(t) with β = log 2
`(0) .

The proof is very simple but this result is a negative one
in the sense that not all loss functions can be written as
`(t) = − log(F (t)) for a symmetric F . A counterexample
is the exponential loss function `Exponential, leading to F (t) =

e−e
−t

, which is a valid c.d.f. (namely that of a Gumbel
distribution) but is not symmetric.

5. Regularly varying latent distributions
5.1. Brief overview

A concept that is closely related to that of regularly vary-
ing functions is that of regularly varying distributions (see
(Cooke et al., 2014) for an introduction to the topic), which
its probabilistic equivalent insofar as it characterises the
tails of distributions.

Definition 3. A cumulative distribution function F is called
regularly varying at infinity with tail index ξ ∈ (0,+∞) if

lim
t→+∞

F (at)

F (t)
= a−ξ, (18)

for any a > 0, where F = 1− F is the survival function.

It is interesting to notice that for a > 1, limt→+∞
F (at)

F (t)
=

P(X > at|X > t), where X ∼ F .

5.2. Loss function and latent distribution tail
behaviours

Under the assumption that ` is differentiable (or equivalently
that F is differentiable, hence admits a probability density
function f ), we have

lim
t→+∞

`(at)

`(t)
= a · lim

t→+∞

`′(at)

`′(t)

= a · lim
t→+∞

F (t)

F (at)
· f(at)

f(t)

= a · lim
t→+∞

f(at)

f(t)
,

whence limt→+∞
f(at)
f(t) = a−(ξ+1). Similarly, since

F
′
(t) = −f(t), it comes

lim
t→+∞

F (at)

F (t)
= a · lim

t→+∞

−f(at)

−f(t)

= a−ξ,

In other words, we have shown that the loss function ` and
its associated latent distribution F have the same tail index.

Proposition 9. If F is regularly varying with tail index
ξ and is differentiable (i.e., admits a probability density
function f ), then f is regularly varying with tail index ξ + 1
and the associated loss function ` := − logF is regularly
varying with tail index ξ.

This is an important result linking the tail behaviour of
the loss function to that of the underlying latent variable.
One can understand the convergence (or not) towards a
margin maximiser in terms of the distributional properties of
unobservable individual noise. We have thus connected the
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problem of convergence to a separating margin maximising
hyperplane and heavy tails. Given Proposition 8, we can
now produce loss functions with different behaviours based
on different underlying tail indices.

5.3. Some examples

Let us now provide some concrete examples of latent dis-
tributions that are regularly varying. We restrict ourselves
to the class of elliptical distributions for the sake of clarity
(see (Anderson, 2004) for a textbook treatment), which still
covers the majority of known use cases. We illustrate in Fig-
ure 1 the evolution of the ratio `(at)/`(t) for different types
of distribution (with different tail behaviours); as per Figure
2, this is connected to tail behaviour of the underlying loss
function and distribution. The case of the Gaussian and
logistic distributions has already been tackled in Sections
1.2 and 1.3.

5.3.1. CAUCHY DISTRIBUTION

The probability density function of a (standard) Cauchy
distribution is given by

fCauchy(t) =
1

π(1 + t2)
.

Its c.d.f. is FCauchy(t) = 1
2 + 1

π arctan (t), hence

`Cauchy(t) = − log

(
1

2
+

1

π
arctan (t)

)
. (19)

From the fact that limt→+∞
fCauchy(at)
fCauchy(t)

= a−1, we infer that
ξCauchy = 0, i.e., the Cauchy distribution is slowly varying,
and so is `Cauchy.

5.3.2. STUDENT-t DISTRIBUTION

The Cauchy distribution is actually a particular case of a
Student-t distribution, whose p.d.f. reads

fStudent(t) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 +
t2

ν

)− ν+1
2

,

where ν ≥ 1 –the number of degrees of freedom– is a param-
eter governing the tail behaviour (ν = 1 corresponds to the
Cauchy case and ν = +∞ to the Gaussian one). We infer
that the Student-t distribution has tail index ξStudent = ν−1

2 ,
whence it has regularly varying tails for ν > 1. We also de-
duce that FStudent(t) = 1− 1

2Ix(t)
(
ν
2 ,

1
2

)
, and `Student(t) =

− log
(
1− 1

2Ix(t)
(
ν
2 ,

1
2

))
, where x(t) := ν

t2+ν and I is the
regularised incomplete beta function. Let us point out that
the heaviness of the Student-t distribution’s tails has been
found to be an interesting feature, for example by consid-
ered –as in (Shah et al., 2014)– Student-t processes instead
of Gaussian ones.

Figure 1. Evolution of the ratio `(at)/`(t) as a function of t for
loss functions associated respectively with the normal, logistic,
Student (with ν = 2 degrees of freedom) and Cauchy distributions,
and a = 0.0001.

We can see (in Figure 1) that the ratio statistic t 7→
`(at)/`(t) explodes quickly in the Gaussian case, less
quickly in the logistic case and converges in the Student and
Cauchy examples. Heavy tails play a crucial role in robust-
ness in statistics and machine learning (cf. (Hsu and Sabato,
2016; Huber and Ronchetti, 2009)) and show that loss func-
tions may reveal different tail behaviours (cf. Figure 2) that
can have an impact on an algorithm’s performance.

6. Conclusion
The primary focus of the work (Freund and Schapire, 1997;
Friedman et al., 2000; Rosset et al., 2003; 2004; Schapire
et al., 1997) that spurred the present paper was the relation-
ship between support vector machines and regularisation,
and their respective benefits and drawbacks. To some extent,
the limiting criterion in Eq. (3) has been shown to be a
necessary condition too; but further research is warranted to
weaken assumptions.

More importantly, we have considered the margin maximisa-
tion property of classifiers (such as support vector machines
(Vapnik, 1998)) as a benchmark for classification tasks and
endeavoured to determine the properties of loss functions
that do not lead to the convergence of the normalised regu-
larised estimator to a margin maximising classifier.

Surprisingly, this is the case (under mild assumptions) if
and only if the loss function is regularly varying, which is
equivalent to the underlying latent distribution having heavy
tails. Our results, while giving a precise quantitative charac-
terisation, are more qualitative in nature, in the sense that
they highlight two possible regimes in terms of behaviour of
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Figure 2. Tail behaviours of the respective loss functions `(t) =
− logF (t), in the case of the normal, logistic, Student (with ν = 2
degrees of freedom) and Cauchy distributions.

the normalised and regularised classifier. While usual loss
functions that as the exponential, hinge, Probit or logistic
loss have a similar behaviour (in terms of convergence in
the separable case), heavy tailed loss functions have funda-
mentally different properties.

From a more practical perspective, it also shows that rely-
ing on usual loss functions may be actually less innocuous
than anticipated, in the sense that it assumes that there are
no heavy tails. This finding is not limited to purely linear
or dictionary learning models, but extends to all methods
using a margin-dependent loss function (i.e., the dictionary
H need not be fixed). Heavy tails are a growing and excit-
ing part of the recent machine learning literature (Hsu and
Sabato, 2016; Lugosi and Mendelson, 2019) and distribution
estimation (Ben-Hamou et al., 2017), and open interesting
perspectives for real-life data as the presence of heavy tails
is well-documented (Taleb, 2020). Some questions remain
around the application of these insights to multi-class classi-
fication and the impact of regularly varying loss functions
in other settings such as deep neural networks or Gaussian
Processes for classification.

Acknowledgements
The author wishes to acknowledge discussions with Dr An-
drea Macrina and suggestions made by the anonymous ref-
erees that have greatly contributed to improving this paper.

References
Theodore W. Anderson. An Introduction to Multivariate

Statistical Analysis. Wiley, third edition, 2004.

Peter Bartlett, Michael I. Jordan, and Jon D. McAuliffe.
Convexity, classification, and risk bounds. Journal of the
American Statistical Association, 101(473), 2006.

Anna Ben-Hamou, Stéphane Boucheron, and Mesrob I.
Ohannessian. Concentration inequalities in the infinite
urn scheme for occupancy counts and the missing mass,
with applications. Bernoulli, 23(1):249 – 287, 2017.

N. H. Bingham, C. M. Goldie, and J. L. Teugels. Reg-
ular Variation. Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1987. doi:
10.1017/CBO9780511721434.

Christian Brownlees, Emilien Joly, and Gábor Lugosi. Em-
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