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A. Proofs
Mathematical assumptions. To make formal what should be seen as implicit assumptions heretofore, we consider X and
Y Polish spaces, Y compact, ℓ : Y × Y → R continuous, H a separable Hilbert space, i measurable, and k continuous. We
also assume that for aG-almost every G ∈ X , and any ` ` a, that the pushforward measure i∗` |G has a second moment. This
is the sufficient setup in order to be able to define formally objects and solutions considered all along the paper.

Notations. Beside standard notations, we use #Y to design the cardinality of Y , and 2Y to design the set of subsets of Y .
Regarding measures, we use `X and ` |G respectively the marginal over X and the conditional accordingly to G of ` ∈ ΔX×Y .
We denote by `⊗= the distribution of the random variable (/1, · · · , /=), where the /8 are sampled independently according
to `. For � a Polish space, we consider Δ� the set of Borel probability measures on this space. For i : Y → H and ( ⊂ Y ,
we denote by i(() the set {i(H) | H ∈ (}. For a family of sets ((8), we denote by

∏
(8 the Cartesian product (1 × (2 × · · · ,

also defined as the set of points (H8) such that H8 ∈ (8 for all index 8, and by Y= the Cartesian product
∏
8≤= Y . Finally, for �

a subset of a vector space � ′, Conv � denotes the convex hull of � and Span(�) its span.

Abuse of notations. For readability sake, we have abused notations. For a signed measure `, we denote by E` [-] the
integral

∫
G d`(G), extending this notation usually reserved to probability measure. More importantly, when considering 2Y ,

we should actually restrict ourselves to the subspace S ⊂ 2Y of closed subsets of Y , as S is a Polish space (metrizable by
the Hausdorff distance) while 2Y is not always. However, when Y is finite, those two spaces are equals, 2Y = S.

A.1. Proof of Lemma 3

From Lemma 3 in Cabannes et al. (2021), we pulled the calibration inequality

R( 5=) −R( 5 ∗) ≤ 22k E
[
1‖6= (-)−6∗ (-) ‖>3 (6∗ (-) ,�) ‖6= (-) − 6∗ (-)‖

]
.

Where � is defined as the set of points b ∈ Conv i(Y) leading to two decodings

� =

{
b ∈ Conv i(Y)

����#argmin
I∈Y

〈k(I), b〉 > 1

}
,

and 3 is defined as the extension of the norm distance to sets, for b ∈ H

3 (b, �) = inf
b′∈�
‖b − b ′‖H .

Using that ‖6= (-) − 6∗ (-)‖ ≤


6= (-) − 6∗= (-)

 + 

6∗= (-) − 6∗ (-)

 and that, if 0 ≤ 1 + 2,

10>X0 ≤ 11+2>X1 + 2 ≤ 12 sup(1,2)>X2 sup 1, 2 = 2 sup
4∈1,2

14>X4 ≤ 211>X1 + 212>X2.

We get the refined inequality

R( 5=) −R(6∗) ≤ 42k E
[
12‖6= (-)−6∗= (-) ‖>3 (6∗ (-) ,�)



6= (-) − 6∗= (-)

 + 12‖6∗= (-)−6∗ (-) ‖>3 (6∗ (-) ,�) 

6∗= (-) − 6∗ (-)

] .
The first term is bounded with

E
[
12‖6= (-)−6∗= (-) ‖>3 (6∗ (-) ,�)



6= (-) − 6∗= (-)

] ≤ 

6= − 6∗=

!1 .

While for the second term, we proceed with

E
[
12‖6∗= (-)−6∗ (-) ‖>3 (6∗ (-) ,�)



6∗= (-) − 6∗ (-)

] ≤ 

6∗= − 6∗

!∞ P- (
2


6∗= (-) − 6∗ (-)

 > inf

G∈supp aX
3 (6∗ (-), �)

)
.

When weights sum to one, that is
∑=
8=1 U8 (-) = 1, both 6∗= (-) and 6∗ (-) are averaging of i(H) for H ∈ Y , therefore

6∗= − 6∗

!∞ ≤ 22i .

Finally, when the labels are a deterministic function of the input, 6∗ (-) = i( 5 ∗ (-)), and 3 (6∗ (-), �) ≤ supH∈Y 3 (i(H), �).
Defining X := supH∈Y 3 (i(H), �)/2, and adding everything together leads to Lemma 3.
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A.2. Implication of Assumptions 2 and 3

Assume that Assumption 2 holds, consider G ∈ supp aX , let us show that 5 ∗ (G) = HG and `∗ |G = XHG . First of all, notice that⋂
(;(∈supp a |G = {HG}; that XHG ` a |G , as it corresponds to c |G,( = XHG ∈ Δ( , for all ( in the support of a |G ; and that, because ℓ

is well-behaved,
inf
I∈Y

ℓ(I, HG) = ℓ(HG , HG) = 0.

This infimum is only achieved for I = HG , hence if we prove that `∗ |G = XHG , we directly have that 5 ∗ (G) = HG . Finally,
suppose that ` |G ` a |G charges H ≠ HG . Because H does not belong to all sets charged by a |G , ` |G should charge an other
H′ ∈ Y , and therefore

inf
I∈Y

E.∼` |G [ℓ(I, H)] ≥ inf
I∈Y

` |G (H)ℓ(I, H) + ` |G (H′)ℓ(I, H′) > 0.

Which shows that `∗ |G = XHG . We deduce that 6∗ (G) = HG .

Now suppose that Assumption 3 holds too, and consider two G, G ′ ∈ supp aX belonging to two different classes 5 (G) = H
and 5 (G ′) = H′. We have that 6∗ (G) = i(H) and 6∗ (G ′) = i(H′), therefore,

3 (G, G ′) ≥ 2−1 ‖i(H) − i(H′)‖H .

Define ℎ2 = inf H≠H′ 2
−1 ‖i(H) − i(H′)‖H. Let us now show that ℎ2 > 0. When Y is finite, this infimum is a minimum,

therefore, ℎ2 = 0, only if there exists a H ≠ H′, such that i(H) = i(H′), which would implies that ℓ(·, H) = ℓ(·, H′) and
therefore ℓ(H, H′) = ℓ(H, H) which is impossible when ℓ is proper.

A.3. Proof of Theorem 4

Reusing Lemma 3, we have

E ( 5=) ≤ 42k ED= ,-

[

6∗= (-) − 6= (-)

H]
+ 82k2i ED= ,-

[
1‖6∗= (-)−6∗ (-) ‖>X

]
.

We will first prove that
ED=

[
1‖6∗= (-)−6∗ (-) ‖>X

]
≤ exp

(
−=?

8

)
as long as : < =?/2. The error between 6∗ and 6= relates to classical supervised learning of 6∗ from samples (-8 , .8) ∼ `∗.
We invite the reader who would like more insights on this fully supervised part of the proof to refer to the several monographs
written on local averaging methods and, in particular, nearest neighbors, such as Biau & Devroye (2015). Because of class
separation, we know that, if : points fall at distance at most ℎ of G ∈ supp aX , 6∗= (G) = :−1

∑
8;-8 ∈N (G) i(H8) = i(HG) =

6∗ (G), where N (G) designs the :-nearest neighbors of G in (-8). Because the probability of falling at distance ℎ of G for
each -8 is lower bounded by ?, we have that

PD=
(6∗= (G) ≠ 6∗ (G)) ≤ P(Bernouilli(=, ?) < :).

This can be upper bound by exp(−=?/8) as soon as : < =?/2, based on Chernoff multiplicative bound (see Biau & Devroye,
2015, for a reference), meaning

ED= ,-

[
1‖6∗= (-)−6∗ (-) ‖≥X

]
≤ exp(−=?/8).

For the disambiguation part in


6= − 6∗=

!1 , we distinguish two types of datasets, the ones where for any input -8 its

:-neighbors at are distance at least ℎ, ensuring that disambiguation can be done by clusters, and datasets that does not verify
this property. Consider the event

D =

{
(-8)8≤=

���� sup
8

3 (-8 , -(:) (-8)) < ℎ
}

where -(:) (G) design the :-th nearest neighbor of G in (-8)8≤=. We proceed with

ED= ,-

[

6∗= (-) − 6= (-)

H]
≤ sup

-∈X



6∗= − 6=

∞ PD=
((-8) ∉ D) + ED= ,-

[

6∗= (-) − 6= (-)

H �� (-8) ∈ D]
,

Which is based on � [/] = P(/ ∈ �) E[/ |�] + P(/ ∉ �) E[/ |2�]. For the term corresponding to bad datasets, we can
bound the disambiguation error with the maximum error. Similarly to the derivation for Lemma 3, because 6∗= (G) and 6∗= (-),
are averaging of i(H), we have that

sup
G∈supp aX



6= (G) − 6∗= (G)

 ≤ 22i .
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Indeed, we allow ourselves to pay the worst error on those datasets as their probability is really small, which can be proved
based on the following derivation.

PD=
((-8)8≤= ∉ D) = P(-8) (sup

8

3 (-8 , -(:) (-8)) ≥ ℎ) = P(-8)
(
∪8≤=

{
3 (-8 , -(:) (-8)) ≥ ℎ

})
≤

=∑
8=1

P(-8)
(
3 (-8 , -(:) (-8)) ≥ ℎ

)
= =P-,D=−1

(
3 (-, -(:) (-)) ≥ ℎ

)
.

This last probability has already been work out when dealing with the fully supervised part, and was bounded as

P-,D=−1

(
3 (-, -(:) (-)) ≥ ℎ

)
≤ exp (−(= − 1)?/8) .

as long as : < (= − 1)?/2. Finally we have

sup
-∈X



6∗= − 6=

∞ PD=
((-8)8≤= ∉ D) ≤ 22i= exp (−(= − 1)?/8) .

For the expectation term, corresponding to datasets, D= ∈ D, that cluster data accordingly to classes, we have to make sure
that Ĥ8 = H∗8 is the only acceptable solution of Eq. (4), which is true as soon as the intersection of ( 9 , for G 9 the neighbors of
G8 , only contained H∗

8
. To work out the disambiguation algorithm, notice that



6= − 6∗=

!1 =

∫
X






 =∑
8=1

U8 (G)i( Ĥ8) − i(H∗8 )





daX (G) ≤ ∫

X
:−1

=∑
8=1

1-8 ∈N (G)


i( Ĥ8) − i(H∗8 )

daX (G)

= :−1
=∑
8=1

P- (-8 ∈ N (-))


i( Ĥ8) − i(H∗8 )

 ≤ 22i:

−1
=∑
8=1

P- (-8 ∈ N (-)) 1i ( Ĥ8)≠i (H∗8 ) .

Finally we have, after proper conditionning, considering the variability in (8 while fixing -8 first,

ED= ,-

[

6∗= (-) − 6= (-)

H �� (-8) ∈ D]
= 22i:

−1 E(-8)

[
=∑
8=1

P- (-8 ∈ N (-)) E((8)
[
1i ( Ĥ8)≠i (H∗8 )

��� (-8)] ����� (-8) ∈ D
]

= 22i:
−1 E(-8) ,-

[
=∑
8=1

1-8 ∈N (-) P((8)
(
i( Ĥ8) ≠ i(H∗8 )

�� (-8)) ����� (-8) ∈ D
]
.

We design D, because when this event holds, we know that the :-th nearest neighbor of any input -8 is at distance at most ℎ
of -8 , meaning the because of class separation, HG8 ∈ ( 9 for any - 9 ∈ N (-8). This mean that outputting ( Ĥ8) = (H∗8 ) and
I 9 = H 9 , will lead to an optimal error in Eq. (4). Now suppose that there is an other solution for Eq. (4) such that Ĥ8 ≠ H∗8 , it
should also achieve an optimal error, therefore it should verify I 9 = Ĥ 9 for all 9 as well as Ĥ 9 = Ĥ8 for all 9 such that - 9 is
one of the : nearest neighbors of -8 . This implies that Ĥ8 ∈ ∩ 9 ;- 9 ∈N (-8)( 9 , which happen with probability

P(( 9 ) 9;-9 ∈N (-8 ) (∃I ≠ H8 , I ∈ ∩ 9( 9 ) ≤ < P( 9 (I ∈ ( 9 ): ≤ <[: = < exp(−: |log([) |).

With < = #Y the number of element in Y . We deduce that

P((8)
(
i( Ĥ8) ≠ i(H∗8 )

�� (-8)) ≤ < exp(−: |log([) |).

And because
∑=
8=1 1-8 ∈N (-) = : , we conclude that

ED= ,-

[

6∗= (-) − 6= (-)

H �� (-8) ∈ D]
≤ 22i< exp(−: |log([) |).

Finally, adding everything together we get

E ( 5=) ≤ 82i2k exp
(
−=?

8

)
+ 82i2k= exp

(
− (= − 1)?

8

)
+ 82i2k< exp (−: |log([) |) .

as long as : < (= − 1)?/2, which implies Theorem 4 as long as = ≥ 2.
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Remark 9 (Other approaches). While we have proceed with analysis based on local averaging methods, other paths
could be explored to prove convergence results of the algorithm provided Eq. (4) and (5). For example, one could prove
Wasserstein convergence of

∑=
8=1 X (G8 ,Ĥ8) towards

∑=
8=1 X (G8 ,Ĥ∗8 ) , together with some continuity of the learning algorithm as a

function of those distributions.4 This analysis could be understood as tripartite:

• A disambiguation error, comparing Ĥ8 to H∗
8
.

• A stability / robustness measure of the algorithm to learn 5= from data when substituting H∗
8

by Ĥ8 .
• A consistency result regarding 5 ∗= learnt on (G8 , H∗8 ).

Our analysis followed a similar path, yet with the first two parts tackled jointly.

A.4. Proof of Proposition 6

Under the non-ambiguity hypothesis (Assumption 2), the solution of Eq. (3) is characterized pointwise by 5 ∗ (G) = HG for
all G ∈ supp aX . Similarly under Assumption 2, we have the characterization 5 ∗ (G) ∈ ∩(∈supp a |G(. With the notation of
Definition 5, since 5 ∗ (G) minimizes I → E.∼`( [ℓ(I,. )] for all ( ∈ supp a |G , it also minimizes I → E(∼a |G E.∼`( [ℓ(I,. )].

For the second part of the proposition, we use the structured prediction framework of Ciliberto et al. (2020). De-
fine the signed measure `◦ defined as `◦X := aX and `◦ |G := E(∼a |G E.∼`( [X. ], and 5 ◦ : X → Y the solution
5 ◦ ∈ argmin 5 :X→Y E(-,. )∼`◦ [ℓ( 5 (-), . )] = argmin 5 :X→Y E(-,. )∼a

[
E.∼`( [ℓ( 5 (-), . )]

]
. The first part of the proposi-

tion tells us that 5 ◦ = 5 ∗ under Assumption 2. The framework of Ciliberto et al. (2020), tells us that 5 ◦ is obtained after
decoding, Eq. (9), of 6◦ : X → H, and that if 6◦= converges to 6◦ with the !1 norm, 5 ◦= converges to 5 ◦ in term of the
`◦-risk. Under Assumption 2 and mild hypothesis on `◦, it is possible to prove that convergence in term of the `◦-risk
implies convergence in term of the `-risk (for example through calibration inequality similar to Proposition 2 of Cabannes
et al. (2020)).

A.5. Ranking with Partial ordering is a well behaved problem

Here, we discuss about building directly b( to initialize our alternative minimization scheme or considering `( given by the
definition of well-behaved problem (Definition 5). Since the existence of `( implying b( defined as E.∼`( [i(. )], we will
only study when b( can be cast as a `(.

In ranking, we have that k = −i, which corresponds to “correlation losses”. In this setting, we have that Span(i(Y)) =
Span(k(Y)). More generally, looking at a “minimal” representation of ℓ, one can always assume the equality of those
spans, as what happens on the orthogonal of the intersection of those spans, does not modify the scalar product i(H)>k(I).
Similarly, b( can be restricted to Span(k(Y)), and therefore Span(i(Y)), which exactly the image by `→ E.∼` [i(. )] of
the set of signed measures, showing the existence of a `( matching Definition 5.

B. IQP implementation for Eq. (4)

In this section, we introduce an IQP implementation to solve for Eq. (4). We first mention that our alternative minimization
scheme is not restricted to well-behaved problem, before motivating the introduction of the IQP algorithm in two different
ways, and finally describing its implementation.

B.1. Initialization of alternative minimization for non well-behaved problem

Before describing the IQP implementation to solve Eq. (12), we would like to stress that, even for non well-behaved partial
labelling problems, it is possible to search for smart ways to initialize variables of the alternative minimization scheme. For
example, one could look at I (0)

8
∈ ∩ 9 ;G 9 ∈N:8

( 9 , where N: designs the : nearest neighbors of G8 in (G 9 ) 9≤=, and :8 is chosen
such that this intersection is a singleton.

4The Wasserstein metric is useful to think in term of distributions, which is natural when considering partial supervision that can be
cast as a set of admissible fully supervised distributions. This approach has been successfully followed by Perchet & Quincampoix (2015)
to deal with partial monitoring in games.



Disambiguation of weak supervision with exponential convergence rates

B.2. Link with Diffrac and empirical risk minimization

Our IQP algorithm is similar to an existing disambiguation algorithm known as the Diffrac algorithm (Bach & Harchaoui,
2007; Joulin et al., 2010).5 This algorithm was derived by implicitly following empirical risk minimization of Eq. (2). This
approach leads to algorithms written as

(H8) ∈ argmin
(H8) ∈�=

inf
5 ∈F

=∑
8=1

ℓ( 5 (G8), H8) + _Ω( 5 ),

for F a space of functions, and Ω : F → R+ a measure of complexity. Under some conditions, it is possible to simplify the
dependency in 5 (e.g., Xu et al., 2004; Bach & Harchaoui, 2007). For example, if ℓ(H, I) can be written as ‖i(H) − i(I)‖2
for a mapping i : X → Y , e.g. the Kendall loss detailed in Section 5.4,6 and the search of i( 5 ) : X → i(Y) is relaxed as
a 6 : X → H. With Ω and F linked with kernel regression on the surrogate functional space X → H, it is possible to solve
the minimization with respect to 6 as 6(G8) =

∑=
9=1 U 9 (G8)i(H8), with U given by kernel ridge regression (Ciliberto et al.,

2016), and to obtain a disambiguation algorithm written as

argmin
H8 ∈(8

=∑
8=1



 =∑
9=1

U 9 (G8)i(H 9 ) − i(H8)


2.

This IQP is a special case of the one we will detail. As such, our IQP is a generalization of the Diffrac algorithm, and this
paper provides, to our knowledge, the first consistency result for Diffrac.

B.3. Link with an other determinism measure

While we have considered the measure of determinism given by Eq. (2), we could have considered its quadratic variant

`★ ∈ argmin
``a

inf
5 :X→Y

E-∼aX
[
E.,. ′∼` |G [ℓ(.,. ′)]

]
.

This correspond to the right drawing of Figure 4. We could arguably translate it experimentally as

( Ĥ8) ∈ argmin
(H8) ∈�=

=∑
8, 9=1

U8 (G 9 )ℓ(H8 , H 9 ), (14)

and still derive Theorem 4 when substituting Eq. (4) by Eq. (14). When the loss is a correlation loss ℓ(H, I) = −i(H)>i(I).
This leads to the quadratic problem

( Ĥ8) ∈ argmin
(H8) ∈�=

−
=∑

8, 9=1

U8 (G 9 )i(H8)>i(H 9 ).

B.4. IQP Implementation

In order to make our implementation possible for any symmetric loss ℓ : Y × Y → R, on a finite space Y , we introduce the
following decomposition.
Proposition 10 (Quadratic decomposition). When Y is finite, any proper symmetric loss ℓ admits a decomposition with two
mappings i : Y → R< , k : Y → R< , for a < ∈ N and a 2 ∈ R, reading

∀ H, I ∈ Y , ℓ(H, I) = k(H)>k(I) − i(H)>i(I) with ‖i(H)‖ = ‖k(H)‖ = 2 (15)

Proof. Consider Y = H1, ·, H< and ! = (ℓ(H8 , H 9 ))8, 9≤< ∈ R<×< . ! is a symmetric matrix, diagonalizable as ! =
∑<
8=1 _8D8 ⊗ D8 , with

(D8) a orthonormal basis of R< , and _8 ∈ R its eigen values. We have, with (48) the Cartesian basis of R< ,

ℓ(H 9 , H: ) = ! 9 : =
〈
4 9 , !4:

〉
=

<∑
8=1

(_8)+
〈
4 9 , D8

〉
〈4: , D8〉 −

<∑
8=1

(_8)−
〈
4 9 , D8

〉
〈4: , D8〉 .

5The Diffrac algorithm was first introduced for clustering, which is a classical approach to unsupervised learning. In practice, it
consists to change the constraint set �= =

∏
(8 by a set of the type �= = argmax(H8) ∈Y=

∑=
8, 9=1 1H8≠H 9 in Eqs. (4) and (14), meaning that

(H8) should be disambiguated into different classes.
6Since ‖i(H)‖ is constant.
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We build the decomposition

k̃(H: ) =
(√
(_8)+ 〈4: , D8〉

)
8≤<

, and ĩ(H: ) =
(√
(_8)− 〈4: , D8〉

)
8≤<

.

It satisfies ℓ(H 9 , H: ) = k̃(H)>k̃(I) − ĩ(H)>ĩ(I). We only need to show that we can consider i of constant norm. For this, first consider
� = max8 |_8 |, we have



k̃(H: )

2 = ∑<
8=1 (_8)+ 〈D8 , 4: 〉

2 ≤ �∑<
8=1 〈D8 , 4: 〉

2 = � ‖4: ‖2 = � The last equalities being due to the fact that

(D8) is orthonormal. Now, introduce the correction vector b : Y → R< , b (H8) =
√
� −



k̃(H)

248 . And consider i =
(ĩ
b

)
, k =

(k̃
b

)
. By

construction, k is of constant norm being equal to � and that ℓ(H, I) = k(H))k(I) − i(H))i(I). Finally, because ℓ(H, I) = 0, we also
have i of constant norm. �

Using the decomposition Eq. (15), Eq. (14) reads, with y = (H8)

ŷ ∈ argmin
y∈�=

=∑
8=1

U8 (G 9 )k(H8)k(H 9 ) −
=∑
8=1

U8 (G 9 )i(H8)i(H 9 ).

By defining the matrix � = (U8 (G 9 ))8 9≤= ∈ R=×=, Ψ(y) = (k(H8))8≤= ∈ R=×< and Φ(y) = (i(H8))8≤= ∈ R=×< , we cast it as

ŷ ∈ argmin
y∈�=

Tr
(
�Ψ(y)Ψ(y)>

)
− Tr

(
�Φ(y)Φ(y)>

)
.

Objective convexification. As U8 (G 9 ) is a measure of similarity between G8 and G 9 , � is usually symmetric positive definite,
making this objective convex in Ψ and concave in Φ. However, recalling Eq. (15), we have TrΦΦ> = TrΨΨ> = =2,
therefore considering the spectral norm of �, we convexify the objective as

ŷ ∈ argmin
y∈�=

Tr
(
(‖�‖∗ � + �)Ψ(y)Ψ(y)>

)
+ Tr

(
(‖�‖∗ � − �)Φ(y)Φ(y)>

)
.

Considering

� =

(
‖�‖∗ � + � 0

0 ‖�‖∗ � − �

)
and Ξ(y) =

(
Ψ(y)
Φ(y)

)
,

allow to simplify this objective as
ŷ ∈ argmin

y∈�=
Tr

(
�Ξ(y)Ξ(y)>

)
.

When parametrized by b = Ξ(y), this is an optimization problem with a convex quadratic objective and “integer-like”
constraint b ∈ Ξ(�=), identifying to an integer quadratic program (IQP).

Relaxation. IQP are known to be NP-hard, several tools exists in literature and optimization library implementing
them. The most classical approach consists in relaxing the integer constraint b ∈ Ξ(�=) into the convex constraint
b ∈ Conv(Ξ(�=)), solving the resulting convex quadratic program, and projecting back the solution towards an extreme
of the convex set. Arguably, our alternative minimization approach is a better grounded heuristic to solve our specific
disambiguation problem.

C. Example with graphical illustrations
To ease the understanding of the disambiguation principle (2), we provide a toy example with a graphical illustration,
Figure 4. Since Eq. (2) decorrelates inputs, we will consider X to be a singleton, in order to remove the dependency to X .
In the following, we consider Y = {0, 1, 2}, with the loss given by

! = (ℓ(H, I))H,I∈Y =
©­«
0 1 1
1 0 2
1 2 0

ª®¬ .
This problem can be represented on a triangle through the embedding of probability measures reading b : ΔY → R3; `→
`(0)41 + `(1)42 + `(2)43, and onto the triangle

{
I ∈ R3

+
�� I>1 = 1

}
. Note that b can be extended from any signed measure
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Figure 4. Exposition of a pointwise problem in the simplex ΔY , with Y = {0, 1, 2} and a proper symmetric loss defined by ℓ(0, 1) =
ℓ(0, 2) = ℓ(1, 2)/2. (Left) Representation of the decision regions 'I =

{
` ∈ ΔY

�� I ∈ argminI′∈Y E.∼` [ℓ(I, H)]
}
. for I ∈ Y . (Middle

Left) Representation of 'a =
{
` ∈ ΔY

�� ` ` a} for a = (5X{0,1,2} + X{2} + X{0,2} + X{1,2})/8 (Middle Right) Level curves of the
piecewise function ΔY → R; ` → minI∈Y E.∼` [ℓ(I,. )] corresponding to Eq. (2). (Right) Level curves of the quadratic function
ΔY → R; `→ E.,. ′∼` [ℓ(.,. ′)]. Our disambiguation (2) corresponds to minimizing the concave function represented on the middle
right drawing on the convex domain represented on the middle left drawing.

of total mass normalized to one onto the plane
{
I ∈ R3

�� I>1 = 1
}
, as well as the drawings Figure 4 can be extended onto

the affine span of the represented triangles. The objective (2) reads pointwise as ΔY → R; ` → min8≤3 4>8 !b (`), while
its quadratic version reads ΔY → Y; `→ b (`)>!b (`). Note that while ! is not definite negative, one can check that the
restriction of R3 → R; I → I>!I to the definition domain

{
I ∈ R3

�� I>1 = 1
}

is concave, as suggested by the right drawing
of Figure 4.

It should be noted that (ℓ, a) being a well-behaved partial labelling problem can be understood graphically, as having the
intersection of the decision regions ∩I∈('I non-empty for any set ( in the support of a. As such, it is easy to see that our toy
problem is well-behaved for any distribution a. Formally, to match Definition 5, we can define `{4} = X4 for 4 ∈ {0, 1, 2}
and

`{0,1} = .5X0 + .5X1 , `{0,2} = .5X1 + .5X2, `{1,2} = X1 + X2 − X0 , `{0,1,2} = .5X1 + .5X2 .
Graphically b (`{0,1}) can be chosen as any points on the horizontal dashed line on the middle right drawing of Figure 4
(similarly for b`{0,2}), while b (`{0,1,2}) has to be chosen has the intersection .542 + .543, and while b (`{1,2}) has to be
chosen outside the simplex on the half-line leaving .542 + .543 supported by the perpendicular bisector of [42, 43] and not
containing 41.

D. Experiments
While our results are much more theoretical than experimental, out of principle, as well as for reproducibility, comparison
and usage sake, we detail our experiments.

D.1. Interval regression - Figure 1

Figure 1 corresponds to the regression setup consisting of learning 5 ∗ : [0, 1] → R; G → sin(lG), with l = 10 ≈ 3c. The
dataset represented on Figure 1 is collected in the following way. We sample (G8)8≤= with = = 10, uniformly at random on
X = [0, 1], after fixing a random seed for reproducibility. We collect H8 = 5 (G8). We create (B8) by sampling D8 uniformly
on [0, 1], defining A8 = A − W log(D8), with A = 1 and W = 3−1, sampling 28 uniformly at random on [0, A8], and defining
B8 = H8 + sign(H8) · 28 + [−A8 , A8]. The corruption is skewed on purpose to showcase disambiguation instability of the baseline
(13) compared to our method. We solve Eq. (4) with alternative minimization, initialized by taking H (0)

8
at the center

of B8 , and stopping the minimization scheme when
∑
8≤= |H

(C+1)
8
− H (C)

8
| < Y for Y a stopping criterion fixed to 10−6. For

G ∈ X , the inference Eqs. (5) and (13) is done through grid search, considering, for 5= (G), 1000 guesses dividing uniformly
[−6, 6] ⊂ Y = R. We consider weights U given by kernel ridge regression with Gaussian kernel, defined as

U(G) = ( + =_�)−1 G ∈ R=,  = (: (G8 , G 9 ))8, 9≤= ∈ R=×=,  G = (: (G8 , G))8≤= ∈ R=, : (G, G ′) = exp

(
− ‖G − G

′‖2

2f2

)
,

with _ a regularization parameter, and f a standard deviation parameter. In our simulation, we fix f = .1 based on simple
considerations on the data, while we consider _ ∈ [10−1, 10−3, 10−6]. The evaluation of the mean square error between 5=
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Figure 5. Ranking setting. We consider X an interval of R, and Y =S< with < = 4 on the figure. (Right) To create a ranking dataset, we
sample randomly < lines in R2, embedding a value, or equivalently a score, associated to each items as a function of the input G. (Left)
By ordering those lines, we create preferences between items as a function of G. On the figure, when G is small, the “red” item is prefered
over the “orange” item, itself prefered over the “blue” item, itself prefered over the “green” item. While when G is big, “green” is prefered
over “blue”, prefered over “orange”, prefered over “red”. We create a partial labelling dataset by sampling (G8) ∈ X =, and providing only
partial ordering that the (H8) follow. For example, for a small G, we might only give the partial information that “red” is prefered over
“blue”.

and 5 ∗, which is equivalent to evaluating the risk with the regression loss ℓ(H, I) = ‖H − I‖2, is done by considering 200
points dividing uniformly X = [0, 1] and evaluating 5= and 5 ∗ on it. The best hyperparameter _ is chosen by minimizing
this error. It leads to _ = 10−1 for the baseline (13), and _ = 10−6 for our algorithm (4) and (5). This difference in _ is
normal since both methods are not estimating the same surrogate quantities. The fact that _ is smaller for our algorithm is
natural as our disambiguation objective (4) already has a regularization effect on the solution.7 Note that we used the same
weights U for Eq. (4) and Eq. (5), which is suboptimal, but fair to the baseline, as, consequently, both methods have the
same number of hyperparameters.

D.2. Classification - Figure 2

Figure 2 corresponds to classification problems, based on real dataset from the LIBSVM datasets repository. At the time
of writing, the datasets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
multiclass.html. We present results on the “Dna” and “Svmguide2” datasets, that both have 3 classes (< = 3), and
respectively have 4000 samples with 180 features (= = 4000,3 = 180) and 391 samples with 20 features (= = 391, 3 = 20).

In term of complexity, when Y = È1, <É = {1, 2, · · · , <}, and weights based on kernel ridge regression with Gaussian
kernel as described in the last paragraph the complexity of performing inference for Eqs. (5) and (13) can be done in $ (=<)
in time and $ (= + <) in space, where = is the number of training samples (Nowak-Vila et al., 2019; Cabannes et al., 2020).
The disambiguation (4) performed with alternative minimization is done in $ (2=2<) in time and in $ (=(= + <)) in space,
with 2 the number of steps in the alternative minimization scheme. In practice, 2 is really small, which can be understood
since we are minimizing a concave function and each step leads to a guess on the border of the constraint domain.

Based on the dataset (G8 , H8), we create (B8) by sampling it accordingly to WX{H8 } + 1− WX{H,H8 }, with H the most present labels
in the dataset (indeed we choose the two datasets because they were not too big and presenting unequal labels proportion),
and W ∈ [0, 1] the corruption parameter represented in percentage on the G-axis of Figure 2. This skewed corruption allows
to distinguish methods and invalidate the simple approach consisting to averaging candidate (AC) in set to recover H8 from
B8 , which works well when data are missing at random (Heitjan & Rubin, 1991). We separate (G8 , B8) in 8 folds, consider
f ∈ 3 · [1, .1, .01], where 3 is the dimension of X , and _ ∈ =−1/2 · [1, 10−3, 10−6], where = is the number of data. We test
the different hyperparameter setup and reported the best error for each corruption parameter on Figure 2. Those errors are
measured with the 0-1 loss, computed as averaged over the 8 folds, i.e. cross-validated, which standard deviation represented
as errorbars on the figure. The best hyperparameter generally corresponds to f = .1 and _ = 10−3 when the corruption is
small and f = 1, _ = 10−3 when the corruption is big. Differences between cross-validated error and testing error were
small, and we presented the first one out of simplicity.

In term of energy cost, the experiments were run on a personal laptop that has two processors, each of them running

7Moreover, the analysis in Cabannes et al. (2020) suggests that the baseline is estimating a surrogate function in X → 2R, while our
method is estimating a function in X → R, which is a much smaller function space, hence needing less regularization. However, those
reflections are based on upper bounds, that might be sub-optimal, which could invalidate those considerations.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html


Disambiguation of weak supervision with exponential convergence rates

50 60 70 80 90 100

Corruption (p.d.u.)

L
os

s

Ranking, m=10
DF IL AC

Figure 6. Performance of our algorithm for ranking with partial ordering. This figure is similar to Figure 2, but is based on the ranking
problem illustrated on Figure 5. For this figure, we consider < = 10, as it is arguably the limit where the LP relaxation provided by
Cabannes et al. (2020) of the NP-hard minimum feedback arcset problem still performs well. The corruption parameter corresponds to the
proportion of coordinates lost in the Kendall embedding when creating B8 from H8 . Because the Kendall embedding satisfies transitivity
constraints, a corruption smaller than 50% is almost ineffective to remove any information. In this figure, we observe a similar behavior
for ranking to the one observed for classification on Figure 2, suggesting that those empirical findings are not spurious.

2.3 billion instructions per second. During experiments, all the data were stored on the random access memory of 8GB.
Experiments were run on Python, extensively relying on the NumPy library (Harris et al., 2020). The heaviest computation
is Figure 2. Its total runtime, cross-validation included, was around 70 seconds. This paper is the results of experimentations,
we evaluate the total cost of our experimentations to be three orders of magnitude higher than the cost of reproducing the
final computations presented on Figure 1, 2 and 3. The total computational energy cost is very negligible.

D.3. Semi-supervised learning - Figure 3

On Figure 3, we review a semi-supervised classification problem with Y = È1, 4É, X = [−4.5, 4.5]2, `X only charging{
G = (G1, G2) ∈ R2

�� G21 + G22 ∈ N∗} and the solution 5 ∗ : X → Y being defined almost everywhere as 5 ∗ (G) = G21 + G22. We
collect a dataset (G8 , B8), by sampling 2000 points \8 uniformly at random on [0, 1], as well as A8 uniformly at random in
È1, 4É = {1, 2, 3, 4}, before building G8 = A8 · (cos(2c\8), sin(2c\8)) ∈ X , and B8 = Y . We add four labelled points to this
dataset G2001 = (−2

√
3, 2) with B2001 = {4}, G2001 = (1,−2

√
2) with B2002 = {3}, G2001 = (−

√
3,−1) with B2003 = {2} and

G2001 = (−1, 0) with B2004 = {1}. We designed the weights U in Eq. (4) with :-nearest neighbors, with : = 20, and solve
this equation with a variant of alternative minimization, leading to the optimal solution H̃8 = H∗8 . In order to be able to
compute the baseline (13), we design weights U for the inference task based on Nadaraya-Watson estimators with Gaussian
kernel, defined as U8 (G) = exp

(
‖G − G8 ‖2 /ℎ

)
, with ℎ = .08. We solve the inference task on a grid of X composed of 2500

points, and artificially recreate the observation to make them neat and reduce the resulting pdf size. Note that it is possible to
design weights U that capture the cluster structure of the data, which, in this case, will lead to a nice behavior of the baseline
as well as our algorithm. Arguably, this experiment showcase a regularization property of our algorithm (4).

D.4. Ranking with partial ordering

To conclude this experiment section, we look at ranking with partial ordering. We refer to Section 5.4 for a clear
description of this instance of partial labelling. We provide to the reader eager to use our method, an implementation of
our algorithm, available online at https://github.com/VivienCabannes/partial_labelling. It is based
on LP relaxation of the NP-hard minimum feedback arcset problem. This relaxation was proven exact when < ≤ 6 by
Cabannes et al. (2020). The LP implementation relies on CPLEX (IBM, 2017). As complementary experiments, we will not
provide much reproducibility details, those details would be really similar to the previous paragraphs, and the curious reader
could run our code instead. We present our ranking setup on Figure 5 and our results on Figure 6.

https://github.com/VivienCabannes/partial_labelling

