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A. Background on posterior contraction

Weak topology and weak convergence. In this section, we review some definitions and results used in our work. Our
treatment follows Ghosal and van der Vaart (2017, Appendix A), and we refer to this chapter for additional details on the
topology of weak convergence.

Let X be a Polish space metrized by p. Below we define the Lévy-Prokhorov metric, which induces the weak topology on
Definition A.1. Let f, g € P (X). The Lévy-Prokhorov metric is defined as

d(f,9) = inf{e > 0: f(A) < g(A) + € 9g(A) < f(A) +¢},
where A€ := {y : p(x,y) < € for some x € A}.

The Portmanteau theorem characterizes equivalent notions of weak convergence, and below we include the relevant portions
of the Portmanteau theorem used in our proof. For a full statement of the theorem, see Ghosal and van der Vaart (2017,
Theorem A.2).

Theorem A.2 (Portmanteau (partial statement)). The following statements are equivalent for any f;, f € P (X):

1. fi = f,'

2. for all bounded, uniformly continuous h : X — R,

/ hdf; — / hdf;

3. for every closed subset C, limsup; f;(C) < f(C).
Prokhorov’s theorem (Ghosal and van der Vaart, 2017, Theorem A.4) characterizes (weakly) compact subsets of Z(X) in

terms of a tight subset of measures. A subset I' C (X)) is tight if for any e > 0, there exists a compact subset K, C X
such that forevery v € T, (K.) > 1 —e.

Theorem A.3 (Prokhorov). If X is a Polish space, then T' C 2 (X) is relatively compact if and only if T is tight.

Schwartz’s theorem for weak consistency. Below, we state a result for posterior consistency with respect to the weak
topology due to Schwartz (1965) (see also Ghosh and Ramamoorthi (2003, Theorem 4.4.2)). The result is a posterior
consistency theorem for the density, and thus relies on the assumption that the space of models I is dominated by a o-finite
measure /.
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Theorem A.4 (Schwartz). Let II be a prior on F and suppose fy is in the KL support of the prior 11. Then the posterior is
weakly consistent at fy: i.e., for any weak neighborhood U of fy the sequence of posterior distributions satisfies

N—oc0

H(Ule;N) — 1, fo-cl.S. (1)

The above result assumes that the prior I1 is fixed. Note that weak consistency also holds (with f-probability) for priors
that vary with IV, provided that the sequence 1 satisfies the KL support condition stated in Assumption 5.1 (Ghosal and
van der Vaart, 2017, Theorem 6.25).

B. Finite mixture models with an upper bound on the number of components

In this section we consider a modification of the setting from the main paper in which the prior II has support on only those
finite mixtures with at most & components. We start by stating and proving our main result in this finite-support case. Then
we discuss why our conditions have changed slightly from Theorem 2.1. Finally we demonstrate our finite-support theory in
practice with an experiment.

B.1. Result and proof

Let F(k) be the set of finite mixtures with exactly & components for k£ < k. We can apply the same proof technique in
Section 4 to the present case, provided that the mixture-density posterior concentrates on weak neighborhoods of some
compact subset of k-mixtures.

Theorem B.1. Suppose that the prior 11 has support on only those mixtures with at most k components. Assume that:

1. The posterior concentrates on weak neighborhoods of a weak-compact subset of ]F(];:), and

2. VU is continuous, is mixture-identifiable, and has degenerate limits.

Then the posterior on the number of components concentrates on k:

N —oc0

k| X1.xy) —1  fo-as. 2

Proof Sketch. By assumption, the posterior concentrates on weak neighborhoods of some weak-compact subset .4 C F(k).
It remains to show that there exists a weak neighborhood U of A that, for all & < k, contains no k-mixtures of the family
of U. Suppose the contrary, i.e., that every such neighborhood contains a mixture of strictly less than k components; then
we can construct a sequence (f;)$2 of mixtures of strictly less than & components such that f; = A (in the sense that the
infimum of the weak metric between f; and elements of A converges to 0). Let g; be the corresponding sequence of mixing
measures such that f; = F(g;). Now we follow step 2 of the proof of the main theorem, with some slight modifications to
account for the fact that f; converges weakly to a set rather than a single density. Suppose that g;(© \ K) — 0 for some
compact subset K C O. Then following the proof of the main theorem, we have that F - and G are compact, and so there
is a weak-convergent subsequence of F'(§; ) that converges to some fo; since A is weak-closed, fy € A. The remainder
of this branch of the proof then follows the proof main theorem directly. Now for the other branch, suppose g;(© \ K) 4 0
for any compact K C O. Then as in the main proof there is a sequence of parameters that is not relatively compact; so
the corresponding sequence of components ); is either not tight or not u-wide. Since A is weak-compact, by Prokhorov’s
theorem A is tight, so f; must be tight, so ¢); must be tight. On the other hand, ; also must be u-wide, since otherwise
replacing it with the singular sequence ¢; shows that f; would not converge weakly to .A. This concludes the second branch
of the proof, and the result follows. O

B.2. Discussion of the weak concentration condition

Our main result in Theorem 2.1 uses a KL support condition to guarantee weak concentration of the posterior. In contrast, in
Theorem B.1, we do not impose any KL support condition and instead just directly assume weak posterior concentration for
the mixture density. First we discuss why this assumption remains reasonable and then discuss why we chose to change the
condition.
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Figure B1. Well-specified and misspecified component families that use a prior with an upper bound on the number of components given
by k ~ Unif{1,...,6}. Posterior values for component counts k with k& > 6 are all zero, so we do not plot them.

Reasonableness of the condition. Note that the new weak-concentration assumption is actually weaker than the KL
condition in the main paper—albeit potentially substantially more difficult to verify. As a simple example of why this
assumption is reasonable, suppose we obtain data generated from a Laplace distribution, and we use a mixture model with
Gaussian components and a prior that asserts that the mixture has at most 10 components. Then we expect the posterior to
concentrate on mixture densities that have exactly 10 components, and in particular, the set of KL-closest mixture densities
to the Laplace. Although many examples will have a single closest such density, we state Theorem B.1 in such a way that it
allows for the case where the posterior concentrates on a compact set of densities (usually due to symmetry in the model).

Why change the condition. In the main text, we assume—via the KL support condition, Assumption 3.1—that the
infimum of the KL divergence from the data generating distribution f; to mixture distributions from the model is 0. In other
words, we must be able to approximate f, arbitrarily well using mixture distributions from the model. However, in the
setting with a bounded number of components, this assumption typically does not hold. In particular, the infimum KL from
the data-generating distribution fy to mixture distributions in the model is nonzero. For example, in the previous Laplace
versus Gaussian mixture example, we require an unbounded number of components to achieve a vanishing KL divergence.
If we are limited to 10 components, the infimum KL is nonzero.

Demonstrating weak consistency with a reasonable amount of generality when the KL support condition does not hold is
challenging; see for instance, Kleijn (2003, Lemma 2.8) and Ramamoorthi et al. (2015, Remark 4). Thus, we opt to require
that weak concentration be verified directly for each particular applied setting of interest, rather than attempting to develop a
general set of sufficient conditions. The fact that we directly require weak convergence also means that we do not need to
make any stipulations about how data are generated. Therefore, in contrast to the main theorem, we do not impose any such
assumptions.

B.3. Experiments

Now we demonstrate that the asymptotic behavior described by our theory occurs in practice. In order to the study both
the well-specified and misspecified cases, we consider the same 2-component Gaussian and Laplace data described in
Section 7.1. Here, we set the prior on the number of components to be a uniform distribution on {1, ...,6}. The resulting
posterior number of components appears in Figure B1. Here the well-specified model (Gaussian data) is consistent and
concentrates on the true generating number of components as N grows (Rousseau and Mengersen, 2011). On the other
hand, in the misspecified model (Laplace data), the posterior concentrates on the largest possible number of components
under the prior, in this case given by k=6.

C. Proof of Proposition 2.2

Consider the multivariate Gaussian family ¥ = {N (v, %) : v € R, ¥ € S? } with parameter space © = R? x S¢ ,
equipped with the topology induced by the Euclidean metric. Let (A, (X)) ?21 denote the eigenvalues of the covariance matrix
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¥ € S, thatsatisfy oo > A\1(X) > ... > Ag(X) > 0. Since the family of Gaussians is continuous and mixture-identifiable
(Yakowitz and Spragins, 1968, Proposition 2), the main condition we need to verify is that the family has degenerate limits
(Definition 3.5). A useful fact is that if a sequence of Gaussian distributions is tight, then the sequence of means and the
eigenvalues of the covariance matrix is bounded.

Lemma C.1. Let (v;);en be a sequence of Gaussian distributions with mean v; € R? and covariance ¥; € Si L If
(v;)ien is a tight sequence of measures, then the sequences (V;);en and (A (%;))ien are bounded.

Proof. Let Y; denote a random variable with distribution ;. For each covariance matrix X;, consider its eigenvalue
decomposition ; = U;A;U,", where U; € R4 is an orthonormal matrix and A; € R%*? is a diagonal matrix. Then

the random variable Z; = U,"Y; has distribution N'(U," v;, A;). If either ||v;||2 = ||U," v;||2 is unbounded or ||A;| F is
unbounded, then Z; is not tight (Billingsley, 1986, Example 25.10). Since Z; and Y] lie in any ball centered at the origin
with the same probability, Y; is not tight. O

We now show that the multivariate Gaussian family has degenerate limits.

Proof of Proposition 2.2. If the parameters (6;);cn are not a relatively compact subset of ©, then either some coordinate
of the sequence of means v; diverges, A1 (X;) — 0o, or Ag(X;) — 0. If some coordinate of the mean v; diverges or the
maximum eigenvalue diverges, i.e., A1 (X;) — oo, then the sequence (1)y,) is not tight by Lemma C.1. On the other hand,
if \q(X;) — 0asi — oo, then vy, converges weakly to a sequence of degenerate Gaussian measures that concentrate on
C;={z eR?: (x — v;) "ua; = 0}, where ug,; is the d™ eigenvector of ¥;. Note that 11(C;) = 0 for Lebesgue measure
u; so if we define C' = U;C; in the setting of Definition 3.4, the sequence is not y-wide. O

We can generalize Proposition 2.2 beyond multivariate Gaussians to mixture-identifiable location-scale families, as shown in
Proposition C.2. Examples of such families include the multivariate Gaussian family, the Cauchy family, the logistic family,
the von Mises family, and generalized extreme value families. The proof is similar to that of Proposition 2.2.

Proposition C.2. Suppose ¥V is a location-scale family that is mixture-identifiable and absolutely continuous with respect
to Lebesgue measure i, i.e.,

dv 1 _1
= e (2 m) veriz est, |
where ¢ : R? — R is a probability density function. Then U satisfies Assumption 3.6.

D. Additional related work

Priors for microclustering behavior have been a recent focus in the Bayesian nonparametrics literature (Zanella et al., 2016;
Klami and Jitta, 2016). Since having a fixed number of components across dataset sizes N would be incompatible with
sublinear growth (in V) of cluster size across all clusters, we expect divergence issues similar in flavor to those in Miller
and Harrison (2013; 2014).
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