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Abstract
Scientists and engineers are often interested in
learning the number of subpopulations (or com-
ponents) present in a data set. A common sug-
gestion is to use a finite mixture model (FMM)
with a prior on the number of components. Past
work has shown the resulting FMM component-
count posterior is consistent; that is, the posterior
concentrates on the true, generating number of
components. But consistency requires the assump-
tion that the component likelihoods are perfectly
specified, which is unrealistic in practice. In this
paper, we add rigor to data-analysis folk wisdom
by proving that under even the slightest model
misspecification, the FMM component-count pos-
terior diverges: the posterior probability of any
particular finite number of components converges
to 0 in the limit of infinite data. Contrary to in-
tuition, posterior-density consistency is not suffi-
cient to establish this result. We develop novel suf-
ficient conditions that are more realistic and easily
checkable than those common in the asymptotics
literature. We illustrate practical consequences of
our theory on simulated and real data.

1. Introduction
Mixture modeling is a mainstay of statistical machine learn-
ing. In applications where the number of mixture compo-
nents is unknown in advance, a principal inferential goal is
to estimate and interpret this number. For example, prac-
titioners might wish to find the number of latent genetic
populations (Pritchard et al., 2000; Lorenzen et al., 2006;
Huelsenbeck and Andolfatto, 2007; Tonkin-Hill et al., 2019),
gene tissue profiles (Yeung et al., 2001; Medvedovic and
Sivaganesan, 2002), cell types (Chan et al., 2008; Prab-
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hakaran et al., 2016), microscopy groups (Rubin-Delanchy
et al., 2015; Griffié et al., 2016), haplotypes (Xing et al.,
2006), switching Markov regimes in US dollar exchange
rate data (Otranto and Gallo, 2002), gamma-ray burst types
(Mukherjee et al., 1998), segmentation regions in an im-
age (e.g., tissue types in an MRI scan (Banfield and Raftery,
1993)), observed humans in radar data (Teklehaymanot et al.,
2018), basketball shot selection groups (Hu et al., 2020), or
communities in a social network (Geng et al., 2019; Legra-
manti et al., 2020).

A natural question then is: can we reliably learn the num-
ber of latent groups in a data set? To make this question
concrete, we focus on a Bayesian approach. Consider the
case where the true, generating number of components is
known. A natural check on a Bayesian mixture analysis
is to establish that the Bayesian posterior on the number
of components increasingly concentrates near the truth as
the number of data points becomes arbitrarily large. In the
remainder, we will focus on this check—though our work
has practical implications beyond Bayesian analysis.

A standard Bayesian analysis uses a component-count prior
with support on all strictly-positive integers (Miller and Har-
rison, 2018). Nobile (1994) has shown that the component-
count posterior of the resulting finite mixture model (FMM)
does concentrate at the true number of components. But
crucially, this result depends on the assumption that the
component likelihoods are perfectly specified. In every
application we have listed above, the true generating com-
ponent likelihoods do not take a convenient parametric form
that might be specified in advance. Indeed, some form of
misspecification, even if slight, is typical in practice. So we
must ask how the component-count posterior behaves when
the component likelihoods are misspecified.

Data science folk wisdom suggests that when component
likelihoods are misspecified, mixture models will tend to
overestimate the number of clusters; see, e.g., Section 7.1 of
Frühwirth-Schnatter (2006). This overestimation is appar-
ent in Figure 1, which shows the component-count posterior
of a Gaussian mixture model applied to two example gene
expression data sets (de Souto et al., 2008; Prabhakaran
et al., 2016). In fact, Figure 1 demonstrates an effect far
worse than just overestimation: the posterior distribution ap-
pears to concentrate for any (large enough) fixed amount of
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(a) Mouse single-cell RNA-seq data (b) Lung tissue gene expression data

Figure 1. Posterior probability of the number of components k for Gaussian mixture models, fit to (a) mouse cortex single-cell RNA
sequencing data and (b) lung tissue gene expression data. Details in Section 7.2.

data, but actually concentrates on increasing values as more
data are observed. Therefore, inference is unreliable; the
practitioner may draw quite different conclusions depending
on how large the data set is.

In the present paper, we add rigor to existing data science
folk intuition by proving that this behavior occurs in a wide
class of FMMs under arbitrarily small amounts of misspecifi-
cation. We examine FMMs with essentially any component
shape—where we make only mild, realistic, and checkable
assumptions on the component likelihoods. Notably, we
include univariate and multivariate Gaussian component
likelihoods in our theory, but do not restrict only to these
shapes. We show that under our assumptions and when
the component likelihoods are not perfectly specified, the
component-count posterior concentrates strictly away from
the true number of components. In fact, we go further to
show that the FMM posterior for the number of components
diverges: for any finite k ∈ N, the posterior probability that
the number of components is k converges to 0 almost surely
as the amount of data grows.

We start by introducing FMMs and stating our main result
in Section 2. We discuss our assumptions in more detail in
Section 3 and prove our result in Section 4. In Section 5 we
extend our main theorem to priors that may vary as the data
set grows. We discuss related work below and in Section 6.
The paper concludes in Section 7 with empirical evidence
that the FMM component-count posterior depends strongly
on the amount of observed data. Our results demonstrate
that, in practice, past estimates of component number may
have strongly depended on the size of a particular data set.

Filling a gap in the literature. While recent work has es-
tablished various asymptotic properties of mixture models,
we observe that our results here are not trivial extensions
of existing research. First note that, intuitively, as the num-
ber of data points grows, the posterior concentrates at the
generating density (Schwartz, 1965; Ghosh and Ramamoor-

thi, 2003; Ghosal and van der Vaart, 2017), which can be
well-approximated by an infinite mixture due in part to mis-
specification. However, posterior consistency for the density
alone is not enough to guarantee consistency for the model
parameters; parameter consistency may not hold under, for
instance, a discontinuous mapping from the component pa-
rameter to the component density.

Second, note that posterior divergence for the number of
components could, in principle, be obtained if parameter
consistency for the mixture holds. But existing results on
parameter consistency, such as Nguyen (2013), focus on
obtaining rates of contraction; thus these results rely on
stronger conditions that are typically verified for individ-
ual component families by imposing additional constraints,
such as (second-order) strong identifiability of the mixture
or a compact parameter space (Chen, 1995; Nguyen, 2013;
Heinrich and Kahn, 2018). But neither of these constraints
are satisfied by common families of interest such as Gaus-
sians with unknown mean and variance. By contrast, our
result uses the weakest notion of mixture identifiability (Te-
icher, 1961) along with a continuity condition on the com-
ponent family, and we relax the requirement of a compact
parameter space. To do so, we develop a novel theoretical
condition that requires the component family to have degen-
erate limits. Together, these advances ensure the applicabil-
ity of our theory to practical likelihood families including,
but not limited to, full Gaussians. In fact, the degenerate
limits condition and its use in our analysis may be useful
for extending other results on posterior asymptotics that
currently rely on compact parameter spaces.

Finally, Miller and Harrison (2013; 2014) have shown that
typical uses of Dirichlet process mixture models (DPMMs)
inconsistently estimate the true, generating number of com-
ponents. But Miller and Harrison (2013; 2014) focus on the
DPMM prior instead of the FMM and on perfectly speci-
fied likelihoods. The DPMM is misspecified in a different
sense than the one we focus on in the present paper: namely,
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the DPMM uses infinitely many components though we
assume finitely many generated the data. For this reason,
practitioners typically invoke the DPMM posterior on the
number of clusters (Pella and Masuda, 2006; Huelsenbeck
and Andolfatto, 2007), i.e., components represented in the
observed data, rather than the component-count posterior
directly. Indeed, Miller and Harrison (2018) recommend
using the FMM we study here to resolve the difficulties of
the DPMM. Finally, observe that the work of Miller and
Harrison (2018) demonstrates that nonparametrically esti-
mating component shape with a DPMM would not provide
a simple resolution of the FMM divergence issue.

2. Main result
We begin with a brief description of the finite mixture model
used in this work. In this section, we provide just enough
detail to state Theorem 2.1 and leave the precise proba-
bilistic details for Section 3. Let g be a mixing measure
g :=

∑k
j=1 pjδθj on a parameter space Θ with pj ∈ [0, 1]

and
∑k
j=1 pj = 1, and let Ψ = {ψθ : θ ∈ Θ} be a family

of component distributions dominated by a σ-finite measure
µ. We can express a finite mixture f of the components as

f =

∫
Θ

ψθdg(θ) =

k∑
j=1

pjψθj .

Consider a Bayesian model with prior distribution Π on the
set of all mixing measures G on Θ with finitely many atoms,
i.e., g ∼ Π, and likelihood corresponding to conditionally
i.i.d. data from f =

∫
ψθdg(θ). The model assumes the

likelihood is f , but the model is misspecified; i.e., the obser-
vationsX1:N := (X1, . . . , XN ) are generated conditionally
i.i.d. from a finite mixture f0 of distributions not in Ψ.

Our main result is that under this misspecification of
the likelihood, the posterior on the number of compo-
nents Π(k |X1:N ) diverges; i.e., for any finite k ∈ N,
Π(k |X1:N ) → 0 as N → ∞. We make only two re-
quirements of the mixture model to guarantee this result:
(1) the true data-generating distribution f0 must be arbitrar-
ily well-approximated by finite mixtures of Ψ, and (2) the
family Ψ must satisfy mild regularity conditions that hold
for popular mixture models (e.g., the family Ψ of Gaussians
parametrized by mean and variance). We provide precise
definitions of the assumptions needed for Theorem 2.1 to
hold in Section 3, and a proof in Section 4.

Theorem 2.1 (Main result). Suppose observations X1:N

are generated i.i.d. from a distribution f0 that is not a finite
mixture of Ψ. Assume that:

Assumption 3.1: f0 is in the KL-support of the prior Π,

Assumption 3.6: Ψ is continuous, is mixture-identifiable,
and has degenerate limits.

Then the posterior on the number of components diverges;
i.e., for all k ∈ N,

Π(k |X1:N )
N→∞−→ 0 f0-a.s. (1)

Note that the conditions of the theorem—although
technical—are satisfied by a wide class of models used
in practice. Assumption 3.1 requires that the prior Π places
enough mass on mixtures near the true generating distribu-
tion f0. Assumption 3.6 enforces regularity of the compo-
nent family and is satisfied by many popular models used in
practice, such as the multivariate Gaussian family.
Proposition 2.2. Let Ψ =

{
N (ν,Σ) : ν ∈ Rd, Σ ∈ Sd++

}
be the multivariate Gaussian family, where Sd++ := {Σ ∈
Rd×d : Σ = Σ>, Σ � 0} is the set of d × d symmetric,
positive definite matrices. Then Ψ satisfies Assumption 3.6.

Thus, provided that f0 is in the KL-support of the prior,
under a misspecified Gaussian mixture model, our main
result implies that the posterior number of components di-
verges. While Proposition 2.2 is stated for Gaussian compo-
nent distributions, we generalize it to mixture-identifiable
location-scale families Ψ in Proposition C.2.

Additionally, we note that the divergence of the posterior
given in Equation (1) is stronger than the behavior described
in Miller and Harrison (2013) for DPMMs: namely, Miller
and Harrison (2013) show that the posterior probability
converges to 0 at the true number of components. In contrast,
here we show that the posterior probability converges to 0
for any finite number of components. We conjecture that
posterior divergence also holds for DPMMs, but the proof
is outside of the scope of this paper.

Extension: Priors that vary with N . While the result of
Theorem 2.1 assumes that the model uses a fixed prior Π,
in practical modeling scenarios one may specify a prior ΠN

that depends on the observed data X1:N . For instance, these
priors can arise in empirical Bayes; see Sections 5 and 7
for examples. In Section 5 we show that if f0 satisfies a
modified KL-support condition with respect to the sequence
of priors ΠN , the number of components also diverges in
this setting.

Extension: Priors with an upper bound on the number
of components. Theorem 2.1 is designed for priors that
place full support on any positive integer number of com-
ponents. One might instead use a prior that has support on
at most k̃ components, with k̃ finite. In this case, the poste-
rior number of components will not diverge to infinity but
instead typically concentrate on the upper bound, k̃. A pre-
cise statement of this behavior appears in Theorem B.1 (in
Appendix B) as an analog of our Theorem 2.1. Theorem B.1
shows that posterior inference does not improve over the
baseline estimate of the number of components provided by
k̃. If k̃ is already a good estimate of the number components,
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posterior concentration at k̃ does not improve the estimate.
In practice k̃ is often chosen as some large upper bound of
convenience; then k̃ is not a good estimate of the number of
components, and concentration at k̃ is undesirable.

3. Precise setup and assumptions in
Theorem 2.1

This section makes the details of the modeling setup and
each of the conditions in Theorem 2.1 precise.

3.1. Notation and setup

Let X and Θ be Polish spaces for the observations and
parameters, respectively, and endow both with their Borel σ-
algebra. For a topological space (·), let C (·) be the bounded
continuous functions from (·) into R, and P(·) be the set of
probability measures on (·) endowed with the weak topol-
ogy metrized by the Lévy-Prokhorov distance d (Defini-
tion A.1). We use fi ⇒ f and fi ⇐⇒ f ′i to denote
limi→∞ d(fi, f) = 0 and limi→∞ d(fi, f

′
i) = 0, respec-

tively, for fi, f ′i , f ∈ P(·). We assume that the family of
distributions Ψ = {ψθ : θ ∈ Θ} is absolutely continuous
with respect to a σ-finite base measure µ, i.e., ψθ � µ for
all θ ∈ Θ, and that for measurable A ⊆ X, ψθ(A) is a
measurable function on Θ. Define the measurable mapping
F : P(Θ)→P(X) from mixing measures to mixtures of
Ψ, F (g) =

∫
ψθdg(θ). Let G be the set of atomic probabil-

ity measures on Θ with finitely many atoms, and let F be
the set of finite mixtures of Ψ.

In the Bayesian finite mixture model from Section 2, a
mixing measure g ∼ Π is generated from a prior measure
Π on G, and f = F (g) is a likelihood distribution.

The posterior distribution on the mixing measure is, for all
measurable A ⊆ G,

Π(A |X1:N ) =

∫
A

∏N
n=1

df
dµ (Xn) dΠ(g)∫

G
∏N
n=1

df
dµ (Xn) dΠ(g)

, (2)

where df
dµ is the density of f = F (g) with respect to µ.

This posterior on the mixing measure g ∈ G induces a
posterior on the number of components k ∈ N by counting
the number of atoms in g, and it also induces a posterior on
mixtures f ∈ F via the pushforward through the mapping F .
We overload the notation Π(· |X1:N ) to refer to all of these
posterior distributions and Π(·) to refer to prior distributions;
the meaning should be clear from context.

3.2. Model assumptions

The first assumption of Theorem 2.1 is that while the true
data-generating distribution f0 is not contained in the model
class f0 /∈ F, it lies on the boundary of the model class. In
particular, we assume f0 is in the KL-support of the prior

Π. Denote the Kullback-Leibler (KL) divergence between
probability measures f0 and f as

KL(f0, f) :=

{ ∫
log
(
df0
df

)
df0 f0 � f

∞ otherwise
.

Assumption 3.1. For all ε > 0, the prior distribution Π
satisfies

Π(f ∈ F : KL(f0, f) < ε) > 0.

We use Assumption 3.1 in the proof of Theorem 2.1 pri-
marily to ensure that the Bayesian posterior is consistent
for f0. Note that Assumption 3.1 is fairly weak in practice.
Intuitively, it just requires that the family Ψ is rich enough
so that mixtures of Ψ can approximate f0 arbitrarily well,
and that the prior Π places sufficient mass on those mixtures
close to f0. For Bayesian mixture modeling, Ghosal et al.
(1999, Theorem 3), Tokdar (2006, Theorem 3.2), Wu and
Ghosal (2008, Theorem 2.3), and Petralia et al. (2012, Theo-
rem 1) provide conditions needed to satisfy Assumption 3.1.

The second assumption of Theorem 2.1 is that the family of
component distributions Ψ is well-behaved. This assump-
tion has three stipulations. First, the mapping θ 7→ ψθ must
be continuous; this condition essentially asserts that sim-
ilar parameter values θ must result in similar component
distributions ψθ.
Definition 3.2. The family Ψ is continuous if the map θ 7→
ψθ is continuous.

Second, the family Ψ must be mixture-identifiable, which
guarantees that each mixture f ∈ F is associated with a
unique mixing measure G ∈ G.
Definition 3.3 (Teicher (1961; 1963)). The family Ψ is
mixture-identifiable if the mapping F (g) =

∫
ψθdg(θ) re-

stricted to finite mixtures F : G→ F is a bijection.

In practice, one should always use an identifiable mixture
model for clustering; without identifiability, the task of
learning the number of components is ill posed. And many
models satisfy mixture-identifiability, such as finite mixtures
of the multivariate Gaussian family (Yakowitz and Spragins,
1968), the Cauchy family (Yakowitz and Spragins, 1968),
the gamma family (Teicher, 1963), the generalized logistic
family, the generalized Gumbel family, the Weibull family,
and von Mises family (Ho and Nguyen, 2016, Theorem 3.3).
A number of authors (e.g. Chen, 1995; Ishwaran et al., 2001;
Nguyen, 2013; Ho and Nguyen, 2016; Guha et al., 2019;
Heinrich and Kahn, 2018) appeal to stronger notions of
identifiability for mixtures than Definition 3.3. But, to show
posterior divergence in the present work, we do not require
conditions stronger than Definition 3.3.

The third stipulation—that the family Ψ has degenerate lim-
its—guarantees that a “poorly behaved” sequence of param-
eters (θi)i∈N creates a likewise “poorly behaved” sequence
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of distributions (ψθi)i∈N. This condition allows us to rule
out such sequences in the proof of Theorem 2.1, and is the
essential regularity condition to guarantee that a sequence of
finite mixtures of at most k components cannot approximate
f0 arbitrarily closely.

Definition 3.4. A sequence of distributions (ψi)
∞
i=1 is µ-

wide if for any closed set C such that µ(C) = 0 and any
sequence of distributions (φi)

∞
i=1 such that ψi ⇐⇒ φi,

lim sup
i→∞

φi(C) = 0.

Definition 3.5. The family Ψ has degenerate limits if for
any tight, µ-wide sequence (ψθi)i∈N, we have that (θi)i∈N
is relatively compact.

The contrapositive of Definition 3.5 provides an intuitive
explanation of the condition: as i→∞, for any sequence
of parameters θi that eventually leaves every compact set
K ⊆ Θ, either the ψθi become “arbitrarily flat” (not tight)
or “arbitrarily peaky” (not µ-wide). For example, consider
the family Ψ of Gaussians on R with Lebesgue measure
µ. If the variance of ψθi shrinks as i grows, the sequence
of distributions converges weakly to a sequence of point
masses (not dominated by the Lebesgue measure). If either
the variance or the mean diverges, the distributions flatten
out and the sequence is not tight. We use the fact that these
are the only two possibilities when a sequence of parameters
is poorly behaved (not relatively compact) in the proof of
Theorem 2.1.

These three stipulations together yield Assumption 3.6.

Assumption 3.6. The mixture component family Ψ is con-
tinuous, is mixture-identifiable, and has degenerate limits.

4. Proof of Theorem 2.1
The proof has two essential steps. The first is to show that
the Bayesian posterior is weakly consistent for the mixture
f0; i.e., for any weak neighborhood U of f0 the sequence
of posterior distributions satisfies

Π(U |X1:N )
N→∞−→ 1, f0-a.s. (3)

By Schwartz’s theorem (Theorem A.4), weak consistency
for f0 is guaranteed directly by Assumption 3.1 and the fact
that Ψ is dominated by a σ-finite measure µ. The second
step is to show that for any finite k ∈ N, there exists a weak
neighborhood U of f0 containing no mixtures of the family
Ψ with at most k components. Together, these steps show
that the posterior probability of the set of all k-component
mixtures converges to 0 f0-a.s. as the amount of observed
data grows.

We provide a proof of the second step. To begin, note that
Assumption 3.1 has two additional implications about f0

beyond Equation (3). First, f0 must be absolutely continu-
ous with respect to the dominating measure µ; if it were not,
then there exists a measurable set A such that f0(A) > 0
and µ(A) = 0. Since µ dominates Ψ, any f ∈ F satisfies
f(A) = 0. Therefore KL(f0, f) = ∞, and the prior sup-
port condition cannot hold. Second, it implies that f0 can be
arbitrarily well-approximated by finite mixtures under the
weak metric, i.e., there exists a sequence of finite mixtures
fi ∈ F, i ∈ N such that fi ⇒ f0 as i → ∞. This holds

because
√

1
2KL(f0, f) ≥ TV(f0, f) ≥ d(f0, f).

Now suppose the contrary of the claim for the second step,
i.e., that there exists a sequence (fi)

∞
i=1 of mixtures of at

most k components from Ψ such that fi ⇒ f0. By mixture-
identifiability, we have a sequence of mixing measures gi
with at most k atoms such that F (gi) = fi. Suppose first
that the atoms of the sequence (gi)i∈N either stay in a com-
pact set or have weights converging to 0. More precisely,
suppose there exists a compact set K ⊆ Θ such that

gi
(
Θ \K

)
→ 0. (4)

Decompose each gi = gi,K + gi,Θ\K such that gi,K is
supported on K and gi,Θ\K is supported on Θ \K. Define
the sequence of probability measures ĝi,K =

gi,K
gi,K(Θ) for

sufficiently large i such that the denominator is nonzero.
Then Equation (4) implies

F
(
ĝi,K

)
⇒ f0.

Since Ψ is continuous and mixture-identifiable, the restric-
tion of F to the domain G is continuous and invertible; and
sinceK is compact, the elements of (ĝi,K)i∈N are contained
in a compact set GK ⊆ G by Prokhorov’s theorem (The-
orem A.3). Therefore F (GK) = FK is also compact, and
the map F restricted to the domain GK is uniformly contin-
uous with a uniformly continuous inverse by Rudin (1976,
Theorems 4.14, 4.17, 4.19). Next since F (ĝi,K) ⇒ f0,
the sequence F (ĝi,K) is Cauchy in FK ; and since F−1 is
uniformly continuous on FK , the sequence ĝi,K must also
be Cauchy in GK . Since GK is compact, ĝi,K converges
in GK . Lemma 4.1 below guarantees that the convergent
limit gK is also a mixing measure with at most k atoms;
continuity of F implies that F (gK) = f0, which is a con-
tradiction, since by assumption f0 is not representable as a
finite mixture of Ψ.

Lemma 4.1. Suppose φ, (φi)i∈N are Borel probability
measures on a Polish space such that φi ⇒ φ and
supi | suppφi| ≤ k ∈ N. Then | suppφ| ≤ k.

Proof. Suppose | suppφ| > k. Then we can find k + 1
distinct points x1, . . . , xk+1 ∈ suppφ. Pick any met-
ric ρ on the Polish space, and denote the minimum pair-
wise distance between the points 2ε. Then for each point
j = 1, . . . , k + 1 define the bounded, continuous function
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hj(x) = 0 ∨
(
1− ε−1ρ(x, xj)

)
. Since xj ∈ suppφ, we

have that
∫
hjdφ > 0. Weak convergence φi ⇒ φ there-

fore implies minj=1,...,k+1 lim infi→∞
∫
hjdφi > 0. But

the hj are nonzero on disjoint sets, and each φi only has k
atoms; the pigeonhole principle yields a contradiction.

Now we consider the remaining case: for all compact sets
K ⊆ Θ, gi(Θ \ K) 6→ 0. Therefore there exists a se-
quence of parameters (θi)

∞
i=1 that is not relatively compact

such that lim supi→∞ gi({θi}) > 0. By Assumption 3.6,
the sequence (ψθi)i∈N is either not tight or not µ-wide. If
(ψθi)i∈N is not tight then fi = F (gi) is not tight, and by
Prokhorov’s theorem fi cannot converge to a probability
measure, which contradicts fi ⇒ f0. If (ψθi)i∈N is not
µ-wide then fi = F (gi) is not µ-wide. Denote (φi)i∈N
to be the singular sequence associated with (fi)i∈N and
C to be the closed set such that lim supi→∞ φi(C) > 0,
µ(C) = 0, and φi ⇐⇒ fi per Definition 3.4. Since
f0 � µ, f0(C) = 0. But fi ⇒ f0 implies that φi ⇒ f0,
so lim supi→∞ φi(C) = f0(C) = 0 by the Portmanteau
theorem (Theorem A.2). This is a contradiction.

5. Extension to priors that vary with N

Our main result (i.e., Theorem 2.1) applies to the setting
of a fixed prior Π. However, it is often natural to specify
a prior distribution that changes with N (e.g., Roeder and
Wasserman, 1997; Richardson and Green, 1997; and Miller
and Harrison, 2018, Section 7.2.1). Corollary 5.2 below
demonstrates that a result nearly identical to Theorem 2.1
holds for priors that are allowed to vary with N , provided
that f0 is in the KL-support of the sequence of priors ΠN .
The only difference is that our result in this case is slightly
weaker: we show that the posterior number of components
diverges in probability rather than almost surely.

Assumption 5.1. For all ε > 0, the sequence of prior dis-
tributions ΠN satisfies

lim inf
N→∞

ΠN (f : KL(f0, f) < ε) > 0.

Corollary 5.2. Suppose in the setting of Theorem 2.1 we
replace Assumption 3.1 with Assumption 5.1. Then the poste-
rior on the number of components diverges in f0-probability:
i.e., for all k ∈ N,

Π(k |X1:N )
N→∞−→ 0 in f0-probability.

Proof. Since for any ε > 0, lim infN→∞ΠN (f :
KL(f0, f) < ε) > 0, Ghosal and van der Vaart (2017,
Theorem 6.17, Lemma 6.26, and Example 6.20) imply that
the posterior is weakly consistent at f0 in probability: i.e.,
for any weak neighborhood U of f0,

Π(U |X1:N )
N→∞−→ 1 in f0-probability.

Assumption 5.1 also implies that for sufficiently large N ,
f0 is a weak limit of finite mixtures in F. The remainder of
the proof is identical to that of Theorem 2.1.

6. Related work
In this work, we consider FMMs with a prior on the number
of components. In the broader Bayesian mixture model-
ing literature, posterior consistency for the mixture density
(Ghosal et al., 1999; Lijoi et al., 2004; Kruijer et al., 2010)
and the mixing measure (Nguyen, 2013; Ho and Nguyen,
2016; Guha et al., 2019) is well established. But poste-
rior consistency for the number of components is not as
thoroughly characterized. There are several results estab-
lishing consistency for the number of components in well-
specified FMMs. Nobile (1994, Proposition 3.5) and Guha
et al. (2019, Theorem 3.1a) demonstrate that FMMs exhibit
posterior consistency for the number of components when
the model is well specified and Ψ is mixture-identifiable.
The present work characterizes the behavior of the FMM
posterior on the number of components under component
misspecification. Under misspecification of the component
family or the support of the true mixing measure, Guha et al.
(2019, Theorem 4.1, Theorem 4.3) establish posterior rates
of contraction for the mixing measure for Gaussian and
Laplace location mixtures with compact parameter spaces.
Our results, which rely on posterior density consistency re-
sults, assume weaker conditions on the prior and hold for
more general classes of component families, such as multi-
variate Gaussians parameterized by a mean and covariance.

A related approach for handling a finite but unknown num-
ber of components is to specify a prior with a finite up-
per bound on the number of components (e.g. Ishwaran
et al., 2001; Chambaz and Rousseau, 2008; Rousseau and
Mengersen, 2011; Malsiner-Walli et al., 2016; Zhang et al.,
2018; Frühwirth-Schnatter and Malsiner-Walli, 2019). In
the setting of overfitted FMMs with well-specified compo-
nent densities, Rousseau and Mengersen (2011, Theorem 1)
show that under a stronger identifiability condition than
mixture-identifiability and additional regularity assumptions
on the model, the posterior will concentrate properly by
emptying the extra components. Ishwaran et al. (2001, The-
orem 1) consider the setting of estimating the number of
components with the assumption of a known upper bound
on the true number of components and well-specified com-
ponents, and show that the posterior does not asymptotically
underestimate the number of components when assuming a
stronger identifiability condition than mixture-identifiability
and a KL-support condition on the prior. Under a weaker
notion of (second-order) strong identifiability (Chen, 1995)
and a well-specified model, Chambaz and Rousseau (2008,
Theorem 4) provide upper bounds on the underestimation
and overestimation error of the number of components; fur-
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thermore, they show that their conditions are satisfied by uni-
variate Gaussians with bounded mean and variance (Cham-
baz and Rousseau, 2008, Corollary 1). Notably, all of these
methods with finite-support priors assume well-specified
component families. By contrast, we show in Theorem B.1
that even for these finite-support priors, misspecified com-
ponent families yield unreliable estimates of the number of
components.

Frühwirth-Schnatter (2006) provides a wide-ranging review
of methodology for finite mixture modeling. In (e.g.) Sec-
tion 7.1, Frühwirth-Schnatter (2006) observes that, in prac-
tice, the learned number of mixture components will gen-
erally be higher than the true generating number of com-
ponents when the likelihood is misspecified—but does not
prove a result about the number of components under mis-
specification. Similarly, Miller and Harrison (2018, Sec-
tion 7.1.5) discuss the issue of estimating the number of
components in FMMs under model misspecification and
state that the posterior number of components is expected to
diverge to infinity as the number of samples increases, but
no proof of this asymptotic behavior is provided.

Finally, a growing body of work is focused on develop-
ing more robust FMMs and related mixture models. In
order to address the issue of component misspecification,
a number of authors propose using finite mixture models
with nonparametric component densities, e.g. Gaussian-
mixture components (Bartolucci, 2005; Di Zio et al., 2007;
Malsiner-Walli et al., 2017) or overfitted-mixture compo-
nents (Aragam et al., 2020). However, for these finite mix-
ture models that have mixtures as components, the posterior
number of components and its asymptotic behavior have yet
to be characterized.

7. Experiments
In this section, we demonstrate one of the primary practical
implications of our theory: the inferred number of compo-
nents can change drastically depending on the amount of
observed data in misspecified finite mixture models. For all
experiments below, we use a finite mixture model with a
multivariate Gaussian component family having diagonal co-
variance matrices and a conjugate prior on each dimension.
In particular, consider number of components k, mixture
weights p ∈ Rk, Gaussian component precisions τ ∈ Rk×D+

and means θ ∈ Rk×D, labels Z ∈ {1, . . . , k}N , and data
X ∈ RN×D.

Then the probabilistic generative model is

k ∼ Geom(r) p ∼ Dirichletk(γ, . . . , γ)

τjd
i.i.d.∼ Gam(α, β) θjd

i.i.d.∼ N (m,κ−1
jd )

Zn
i.i.d.∼ Categorical(p) Xnd

ind∼ N (θznd, τ
−1
znd

),

where j ranges from 1, . . . , k, d ranges from 1, . . . , D,
and n ranges from 1, . . . , N . For posterior inference, we
use a Julia implementation of split-merge collapsed Gibbs
sampling (Neal, 2000; Jain and Neal, 2004) from Miller
and Harrison (2018).∗ The model and inference algorithm
are described in more detail in Miller and Harrison (2018,
Sec. 7.2.2, Algorithm 1). Note that we use this model pri-
marily to illustrate the problem of posterior divergence un-
der model misspecification; it should not be interpreted as
a carefully-specified model for the data examples that we
study. Also note that while the empirical examples below in-
volve Gaussian FMMs, our theory applies to a more general
class of component distributions.

7.1. Synthetic data

Gaussian and Laplace mixtures. Our first experiments
on synthetic data are inspired by Figure 3 of Miller and
Dunson (2019), which investigates the posterior of a mix-
ture of perturbed Gaussians. Here we study the effects
of varying data set sizes under both well-specified and
misspecified models. We generated data sets of increas-
ing size N ∈ {50, 200, 1000, 5000, 10000} from 1- and 2-
component univariate Gaussian and Laplace mixture models,
where the 1-component distributions have mean 0 and scale
1, and the 2-component distributions have means (−5, 5),
scales (1.5, 1), and mixing weights (0.4, 0.6). We gener-
ated the sequence of data sets such that each was a subset of
the next, larger data set in the sequence. Following Miller
and Harrison (2018, Section 7.2.1), we set the hyperpa-
rameters of the Bayesian finite mixture model as follows:
m = 1

2 (maxn∈[Ñ ]Xn+minn∈[Ñ ]Xn) where Ñ = 10,000,
κ = (maxn∈[Ñ ]Xn − minn∈[Ñ ]Xn)−2, α = 2, r = 0.1,
γ = 1, and β ∼ Gam(0.2, 10/κ). We refer to Miller and
Harrison (2018, Section 7.2.1) for additional details on the
choice of model hyperparameters and the sampling of β.
We ran a total of 100,000 Markov chain Monte Carlo itera-
tions per data set; we discarded the first 10,000 iterations as
burn-in.

The results of the simulations are shown in Figure 2. For the
data generated from the 1-component models, the posterior
on the number of components concentrates around 1 in the
case of Gaussian-generated data as the sample size increases
(Figure 2a), whereas the posterior on the number of compo-
nents diverges for the Laplace data (Figure 2d). We observe
similar behavior in the 2-component case, where the poste-
rior concentrates around the correct value in the Gaussian
case (Figure 2b) but not the Laplace case (Figure 2e).

Priors that vary with N . Next, we considered the
same finite Gaussian mixture model described above but
with a prior that varies with the data. Specifically, for

∗Code available at https://github.com/jwmi/BayesianMixtures.jl.
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(a) Gaussian data, 1 component (b) Gaussian data, 2 components (c) Gaussian data, varying prior

(d) Laplace data, 1 component (e) Laplace data, 2 components (f) Laplace data, varying prior

Figure 2. Top row (well-specified): Posterior probability of the number of components k for Gaussian mixture models with a fixed prior fit
to univariate data generated from (a, b) 1- and 2-component Gaussian mixture models, and (c) a varying prior with data generated from a
2-component Gaussian mixture model. Bottom row (misspecified): Posterior probability of the number of components k for Gaussian
mixture models with a fixed prior fit to univariate data generated from (c, d) 1- and 2-component Laplace mixture models, and (e) a
varying prior with data generated from a 2-component Laplace mixture model.

the prior on the means, we set the hyperparameters to
mN = 1

2 (maxn∈[N ]Xn + minn∈[N ]Xn) and κN =
(maxn∈[N ]Xn−minn∈[N ]Xn)−2, which is the setting con-
sidered by Miller and Harrison (2018, Section 7.2.1); the
other hyperparameters were otherwise set to the same values
above. We used the 2-component Gaussian and Laplace data
sets constructed above for the fixed prior case. The bottom
row of Figure 2 shows the results of the posterior number of
components under this prior for the well-specified and mis-
specified cases; again we observe that the posterior diverges
under model misspecification.

ε-contamination. Finally, in order to study the posterior
number of components under a very slight amount of mis-
specification, we applied the fixed-prior Gaussian mixture
model above to data generated with ε-contamination. That
is, we generated the data according to the ε-contaminated
distribution f0 = (1− ε)f + εq, where f is a 2-component
Gaussian mixture distribution with means (5, 10), variances
(1, 1.5), and mixing weights (0.4, 0.6), and q is a Laplace
distribution with location 0 and scale 1. We generated two
data sets: one with ε = 0.01 and one with ε = 0.1. In
Figure 3, we observe that even under very small amounts

of misspecification, the posterior number of components
diverges.

7.2. Gene expression data

Computational biologists are interested in classifying cell
types by applying clustering techniques to gene expression
data (Yeung et al., 2001; Medvedovic and Sivaganesan,
2002; McLachlan et al., 2002; Medvedovic et al., 2004;
Rasmussen et al., 2008; de Souto et al., 2008; McNicholas
and Murphy, 2010). In our next set of experiments, we
apply the Gaussian finite mixture model to two gene ex-
pression data sets: (1) single-cell RNA sequencing data
from mouse cortex and hippocampus cells (Zeisel et al.,
2015) with the same feature selection as Prabhakaran et al.
(2016) (N = 3008, D = 558, 11,000 Gibbs sampling steps
with 1,000 of those as burn-in) and (2) mRNA expression
data from human lung tissue (Bhattacharjee et al., 2001)
(N = 203, D = 1543, and 10,000 Gibbs sampling steps
with 1,000 of those burn-in). Our experiments here repre-
sent a simplified version of previous mixture model analyses
for these and other related data sets (de Souto et al., 2008;
Prabhakaran et al., 2016; Armstrong et al., 2001; Miller and
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(a) Data generated with ε = 0.01 (b) Data generated with ε = 0.1

Figure 3. Posterior probability of the number of components k for Gaussian mixture models with a fixed prior fit to data generated from
an ε-contaminated 2-component Gaussian mixture model, where ε is the proportion of data generated from a Laplace distribution.

Harrison, 2018).

As these gene expression data sets contain counts, we first
transformed the data to real numerical values. In particular,
we used a base-2 log transform followed by standardization—
such that each dimension of the data had zero mean and unit
variance—per standard practices (e.g., Miller and Harrison
(2018)). Then to examine the effect of increasing data set
size on inferential results, we randomly sampled subsets of
increasing size without replacement; each smaller subset
was contained in the next larger data set. For both data sets,
we used hyperparameters α = 1, β = 1, m = 0, κjd = τjd,
r = 0.1, and γ = 1.

For the single-cell RNAseq data set, the posterior on the
number of components is shown in Figure 1a. Here the
ground truth number of clusters is captured when the data
set size is N = 100. But as predicted by our theory, as we
increase the number of data points, the posterior number of
components diverges.

The posterior on the number of components for the lung
gene expression data is shown in Figure 1b. Again we find
that on the smallest data subsets, the posterior appears to
capture the ground truth number of clusters, but that as we
examine more and more data, the posterior diverges.

The diagonal covariance Gaussian components are a par-
ticularly simple form of cluster shape. But no matter how
complex the component model, one could wonder whether
an even-more complex model might solve the issue that the
number of components diverge. In the typical real-world
situation that the component model cannot be specified in
absolute perfection, our theory confirms that the divergence
problem will remain. Thus, these examples suggest the need
for more robust analyses.

8. Discussion
We have shown that the posterior distribution for the number
of components in finite mixtures diverges when the mixture
component family is misspecified. Since misspecification is
almost unavoidable in real applications, it follows that finite
mixture models are typically unreliable for estimating the
number of components. In practice, our conclusion implies
that inferences on the number of components can change
drastically depending on the size of the data set, calling into
question the usefulness of these counts in application.

Since our analysis is inherently asymptotic, it is possible
that the Bayesian component-count posterior may still pro-
vide useful inferences for a finite sample—for instance if
care is taken to account for the dependence of inferential
conclusions on data set size. Indeed, a number of authors
have recently proposed robust Bayesian inference methods
to mitigate likelihood misspecification (Woo and Sriram,
2006; 2007; Rodriguez and Dunson, 2011; Grünwald and
van Ommen, 2017; Miller and Dunson, 2019; Bissiri et al.,
2016; Wang et al., 2017; Holmes and Walker, 2017; Jewson
et al., 2018; Huggins and Miller, 2019; Knoblauch et al.,
2019; Rigon et al., 2020); it remains to better understand
connections between our results and these methods.

Acknowledgements
We thank Jeff Miller for helpful conversations and com-
ments on a draft. D. Cai was supported in part by a Google
Ph.D. Fellowship in Machine Learning. T. Campbell was
supported by a National Sciences and Engineering Re-
search Council of Canada (NSERC) Discovery Grant and
an NSERC Discovery Launch Supplement. T. Broderick
was supported in part by ONR grant N00014-17-1-2072, an
MIT Lincoln Laboratory Advanced Concepts Committee
Award, a Google Faculty Research Award, the CSAIL–MSR
Trustworthy AI Initiative, and an ARO YIP award.



Finite mixture models do not reliably learn the number of components

References
B. Aragam, C. Dan, E. P. Xing, and P. Ravikumar. Iden-

tifiability of nonparametric mixture models and Bayes
optimal clustering. Annals of Statistics, 48(4):2277–2302,
2020.

S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters,
M. L. d. Boer, M. D. Minden, S. E. Sallan, E. S. Lan-
der, T. R. Golub, and S. J. Korsmeyer. MLL translo-
cations specify a distinct gene expression profile that
distinguishes a unique leukemia. Nature Genetics, 30(1):
41, 2001.

J. D. Banfield and A. E. Raftery. Model-based Gaussian
and non-Gaussian clustering. Biometrics, 49(3):803–821,
1993.

F. Bartolucci. Clustering univariate observations via mix-
tures of unimodal normal mixtures. Journal of Classifica-
tion, 22(2):203–219, 2005.

A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li,
S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno,
M. Gillette, M. Loda, G. Weber, E. Mark, E. Lander,
W. Wong, B. Johnson, T. Golub, D. Sugarbaker, and
M. Meyerson. Classification of human lung carcinomas
by mRNA expression profiling reveals distinct adenocar-
cinoma subclasses. Proceedings of the National Academy
of Sciences, 98(24):13790–13795, 2001.

P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general
framework for updating belief distributions. Journal of
the Royal Statistical Society. Series B, Statistical method-
ology, 78(5):1103, 2016.

A. Chambaz and J. Rousseau. Bounds for Bayesian order
identification with application to mixtures. The Annals of
Statistics, 36(2):938–962, 2008.

C. Chan, F. Feng, J. Ottinger, D. Foster, M. West, and T. B.
Kepler. Statistical mixture modeling for cell subtype
identification in flow cytometry. Cytometry Part A, 73(8):
693–701, 2008.

J. Chen. Optimal rate of convergence for finite mixture
models. The Annals of Statistics, 23(1):221–233, 1995.

M. C. de Souto, I. G. Costa, D. S. de Araujo, T. B. Ludermir,
and A. Schliep. Clustering cancer gene expression data: a
comparative study. BMC Bioinformatics, 9(1):497, 2008.

M. Di Zio, U. Guarnera, and R. Rocci. A mixture of mixture
models for a classification problem: The unity measure
error. Computational Statistics & Data Analysis, 51(5):
2573–2585, 2007.
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