
Lenient Regret and Good-Action Identification in Gaussian Process Bandits

Supplementary Material
Lenient Regret and Good-Action Identification

in Gaussian Process Bandits (ICML 2021)

Xu Cai, Selwyn Gomes, and Jonathan Scarlett

A. Discussion on GP-UCB with Intersected Confidence Bounds
The reason that the lenient regret bounds in Theorem 1 grow unbounded as T → ∞ is that limt→∞ βt = ∞. For the
confidence bounds to remain valid uniformly across time, this appears to be unavoidable. On the other hand, one may
consider preventing the UCB and LCB scores from growing unbounded by using intersected confidence bound, defined as
follows:

ucbt(x) = min
t′≤t

ucbt′(x), (17)

lcbt(x) = max
t′≤t

lcbt′(x), (18)

with ucbt′(·) and lcbt′(·) given in Lemma 1. Since the original confidence bounds hold uniformly across time with high
probability, the same is true for these intersected confidence bounds. We note that this intersecting approach has previously
been used in works such as (Bogunovic et al., 2020; Sui et al., 2015).

Unfortunately, we expect that even when the UCB algorithm makes use of ucbt(·) instead of ucbt(x), either the lenient
regret still grows unbounded as t→∞, or it is very challenging the prove that it remains bounded. To understand why we
expect such difficulties, consider the scenario in which, in some relatively early round, the UCB score of some bad point
xbad reaches f(x∗) + ε for some extremely small ε > 0, and then remains there for a long time due to the intersecting done
in (17). After a long time, points near x∗ will have been sampled enough times for the UCB scores near x∗ to fall below
f(x∗) + ε, meaning the algorithm will return to sampling xbad (or some similar/nearby point). However, by this stage, βt
may have grown so large that it takes many samples of xbad for the UCB score to fall below f(x∗), incurring significant
regret.

One may envision overcoming this difficulty by showing that the these events of UCB scores falling just above f(x∗) (and
staying there) are unlikely enough to be incorporated into the overall error probability. However, this appears to be a highly
non-trivial modification to the analysis, and we make no attempt to do so.

Alternatively, following a similar approach (Bogunovic et al., 2020), one could multiply by βt by a factor of two in the
earlier rounds (e.g., for all t ≤ Nmax with Nmax defined in (12)), then revert to the original choice from Lemma 1 in the
later rounds, while still intersecting the confidence bounds across time. By doing this, the UCB scores of bad actions that are
slightly above f(x∗) with the doubled confidence bounds will fall below f(x∗) upon halving. This approach can be used to
establish a similar regret bound to that of Theorem 2, but it comes with the rather unnatural step of halving the confidence
width after a suitably-chosen number of rounds.

Finally, similar to the previous paragraph, one could adopt an explore-then-commit strategy (e.g., see Chapter 6 of (Lattimore
& Szepesvári, 2020)). While this could provide a bound on the indicator regret similar to Theorem 2, the hinge and large-gap
regrets would be significantly higher due to typically incurring Ω(1) regret for each bad action sampled. Specifically, the
dependence on ∆ would be 1

∆2 instead of the improved 1
∆ appearing in Theorem 2.

B. Proofs of Main Results
In this section, we prove Theorems 1, 2, and 3. We start with some auxiliary results for the upper bounds.

B.1. Auxiliary Results

The analyses of (Srinivas et al., 2010) and (Chowdhury & Gopalan, 2017) are based on first bounding the regret in terms

of
∑T
t=1 σt−1(xt), upper bounding this quantity by

√
T
∑T
t=1 σ

2
t−1(xt) via Cauchy-Schwartz, and then establishing that

Lenient Regret and Good-Action Identification in Gaussian Process Bandits∑T
t=1 σ

2
t−1(xt) ≤ O(γT). The following lemma gives a useful generalization of the latter statement.

Lemma 2. (Bounding a Sum of Sampled Variances) For any sequence of sampled points x1, . . . ,xT and any subset
T ⊆ {1, . . . , T}, letting N = |T |, we have ∑

t∈T
σ2
t−1(xt) ≤ C2γN , (19)

where C2 = 2λ−1

log(1+λ−1) .

Proof. Denote the N points indexed by T (i.e., {xt}t∈T) as x̃1, . . . , x̃N , where the indexing is done in the order that
the points were sampled. For i = 1, . . . , N , let σ̃2

i (x) be the (hypothetical) GP posterior variance that would arise from
sampling x̃1, . . . , x̃i alone (note that posterior variance only depends on the sampled locations, not the observations
(Rasmussen, 2006)). It is well-known from (Srinivas et al., 2010) that

∑N
i=1 σ̃

2
i−1(x̃i) ≤ C2γN , so we only need to show

that
∑
t∈T σ

2
t−1(xt) ≤

∑N
i=1 σ̃

2
i−1(x̃i). Indexing the entries of T in order by t1, . . . , tN , the latter claim in turn holds as

long as σ2
ti−1(xti) ≤ σ̃2

i−1(x̃i) for all i = 1, . . . , N .

By definition, xti is precisely x̃i. Moreover, the posterior variance σ2
ti−1(·) is computed using ti − 1 sampled points,

i − 1 of which are x̃1, . . . , x̃i−1. In contrast, σ̃2
i−1(·) is computed based on x̃1, . . . , x̃i−1 alone. Since adding points to

the set of sampled points cannot increase the posterior variance in a GP model (Rasmussen, 2006), the desired claim
σ2
ti−1(xti) ≤ σ̃2

i−1(x̃i) follows, and the proof is complete.

B.2. Bounding the Number of Bad Actions for GP-UCB

Let Tbad denote the set of times at which GP-UCB chooses a bad action, and let N = |Tbad|. By Lemma 2, we have

1

N

∑
t∈Tbad

σ2
t−1(xt) ≤

C2γN
N

, (20)

where we multiplied by 1
N on both sides for convenience. Since the minimum is upper bounded by the average, it follows

that
min
t∈Tbad

σ2
t−1(xt) ≤

C2γN
N

. (21)

Now, letting τ denote the time index attaining the minimum in (21), and supposing that the high-probability confidence
bound event in Lemma 1 holds, we have

ucbτ (xτ) = lcbτ (xτ) + 2β1/2
τ στ−1(xτ) (22)

≤ f(xτ) + 2β1/2
τ στ−1(xτ) (23)

≤ f(x∗)−∆ + 2β1/2
τ στ−1(xτ) (24)

≤ f(x∗) + 2β
1/2
T

√
C2γN
N

−∆ (25)

≤ ucbτ (x∗) +

√
C1βT γN

N
−∆, (26)

where:

• (22) follows since the upper and lower confidence bounds differ by 2β
1/2
τ στ−1(xτ);

• (23) and (26) follow from the validity of the confidence bounds, and the latter also defines C1 = 4C2;

• (24) follows since f(xτ) ≤ f(x∗)−∆ due to xτ being a bad point;

• (25) applies (21), along with βτ ≤ βT due to monotonicity.

Since xτ is the point at time τ with the highest UCB score by definition, we observe from (26) that we must have√
C1βTγN

N −∆ ≥ 0 in order to avoid a contradiction. Re-arranging, we obtain the equivalent condition

N ≤ C1γNβT
∆2

. (27)

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

Since this was proved only assuming the validity of the confidence bounds in Lemma 1, which in turn holds with probability
at least 1− δ, the claim on R̃ind

T in Theorem 1 follows.

B.3. Bounding the Large Gap Regret for GP-UCB

Since R̃hinge
T ≤ R̃gap

T (see Figure 1), it suffices to upper bound R̃gap
T . We first write

R̃gap
T =

T∑
t=1

rt · 1(rt > ∆) =
∑
t∈Tbad

rt. (28)

Following the steps of (Srinivas et al., 2010), and again conditioning on the validity of the confidence bounds in Lemma 1,
we have

rt = f(x∗)− f(xt) (29)
≤ ucbt(x

∗)− lcbt(xt) (30)

= ucbt(x
∗)− ucbt(xt) + 2β

1/2
t σt−1(xt) (31)

≤ 2β
1/2
t σt−1(xt), (32)

where (30) uses the confidence bounds, (31) follows since the upper and lower confidence bounds differ by 2β
1/2
t σt−1(xt),

and (32) uses the fact that xt is the point with the highest UCB score.

Summing (32) over t ∈ Tbad, upper bounding βt ≤ βT , and applying the Cauchy-Schwartz inequality, we obtain

R̃gap
T ≤

√
4βT |Tbad|

∑
t∈Tbad

σ2
t−1(xt). (33)

Again letting N = |Tbad| denote the number of bad points selected, it follows from Lemma 2 that

R̃gap
T ≤

√
C1βTNγN . (34)

Since we already established that N satisfies (27) when the confidence bounds are valid, we can further bound

R̃gap
T ≤ C1βT γN

∆
. (35)

The bound on R̃gap
T in Theorem 1 follows by substituting N ≤ Nmax and using the monotonicity of γN .

B.4. Bounding the Number of Bad Actions for the Elimination Algorithm

Our analysis uses similar ingredients as in (Bogunovic et al., 2016; Contal et al., 2013; Srinivas et al., 2010). We first note
the well-known fact that as long as the confidence bounds in Lemma 1 are valid, the algorithm never eliminates x∗. This is
because having the UCB of x∗ be below another point’s LCB would contradict the optimality of x∗.

Suppose that the elimination algorithm has run up to some number of rounds N . Using Lemma 2 with T = {1, . . . , N}, we
have

1

N

N∑
t=1

σ2
t−1(xt) ≤

C2γN
N

, (36)

where we again divided both sides by N for convenience. Using the standard property that the GP posterior variance always
decreases as more points are selected, and noting the algorithm chooses the point with the highest variance, we find that
σ2
N−1(xN) is the smallest summand in (36), and hence

σ2
N−1(xN) ≤ C2γN

N
. (37)

Moreover, since xN is defined to maximize σ2
N−1(·), it follows that

max
x∈MN−1

σ2
N−1(x) ≤ C2γN

N
. (38)

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

That is, all non-eliminated points have posterior variance at most C2γN
N after time N .

We now fix an arbitrary non-eliminated bad point xbad, and note the following analogous steps to (22)–(26) (whose
explanations are similar and thus mostly omitted):

ucbN (xbad) = lcbN (xbad) + 2β
1/2
N σN−1(xbad) (39)

≤ f(xbad) + 2β
1/2
N σN−1(xbad) (40)

≤ f(x∗)−∆ + 2β
1/2
N σN−1(xbad) (41)

≤ lcbN (x∗)−∆ + 2β
1/2
N σN−1(xbad) + 2β

1/2
N σN−1(x∗) (42)

≤ lcbN (x∗) + 2

√
C1βNγN

N
−∆, (43)

where (43) applies (38) for both x ∈ {xbad,x
∗}.

Since (43) applies to an arbitrary non-eliminated bad point, we find that in order for any bad points to remain non-eliminated

after time N , it must be the case that 2
√

C1βTγN
N −∆ ≥ 0, or equivalently,

N ≤ 4C1γNβN
∆2

. (44)

In other words, all bad points are eliminated after time N ′max, with N ′max defined in (13). This proves the first part of
Theorem 2.

B.5. Bounding the Large Gap Regret for the Elimination Algorithm

While we performed the analysis leading to (44) considering the number of pulls of ∆-suboptimal points, we can similarly
replace ∆ by any positive value ∆̃ and reach a similar conclusion. In the following, it is more convenient to rephrase (44) by

expressing ∆ in terms of N as ∆ ≤
√

4C1γNβN
N . Replacing ∆ by a generic value of ∆̃, and replacing N by a generic time

index t, it follows that after t iterations, all non-eliminated arms have regret upper bounded by ∆̃t, where

∆̃t =

√
4C1γtβt

t
. (45)

To bound the large gap regret, we simply sum the regret over all time indices up to N ′max, after which we already know from
the above analysis that no further (lenient) regret is incurred. We additionally treat t = 1 as a special case, noting that the
regret incurred is at most 2B since ‖f‖k ≤ B (and thus |f(x)| ≤ B for all x), yielding

R̃gap
T ≤ 2B +

N ′max∑
t=2

∆̃t−1 (46)

≤ 2B +

N ′max∑
t=1

∆̃t (47)

≤ 2B +

N ′max∑
t=1

√
4C1γtβt

t
(48)

≤ 2B +
√

4C1γN ′max
βN ′max

N ′max∑
t=1

1√
t

(49)

≤ 2B + 4
√
C1N ′maxγN ′max

βN ′max
, (50)

where (48) uses the definition of ∆̃t, (49) uses the monotonicity of γt and βt, and (50) uses the fact that
∑N
t=1

1√
t
≤

2
√
N . Finally, by definition in (13), we have N ′max ≤

4C1γN′max
βN′max

∆2 , and substituting into (50) yields R̃gap
T ≤ 2B +

8C1γN′max
βN′max

∆ , as desired.

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

B.6. Proofs of the Lower Bounds

Since our lower bounds follow in a fairly straightforward manner from the analysis in (Cai & Scarlett, 2021), we do not
attempt to give a self-contained analysis (which would require considerable repetition with (Cai & Scarlett, 2021; Scarlett
et al., 2017)), and instead only state the differences.

The analysis depends on a parameter ε > 0 that is initially arbitrary, and that we will set differently to (Cai & Scarlett, 2021)
to account for the different regret notion. A hard subset of functions {f1, . . . , fM} ∈ Fk(B/3) is constructed in a manner
such that any given action x ∈ D is ε-optimal for at most one function. It is shown in (Scarlett et al., 2017) that such a
subset exists with the following choices of M depending on the kernel:

• For the SE kernel, we can set

M =

⌊(
c1

√
log B(2πl2)d/4

ε

l

)d⌋
, (51)

where c1 is a universal positive constant, and l denotes the length-scale.

• For the Matérn kernel, we can set

M =
⌊(Bc3

ε

)d/ν⌋
, (52)

where c3 :=
(

1
ζ

)ν · (c
−1/2
2

2(8π2)(ν+d/2)/2

)
, and where ζ > 0 and c2 > 0 are constants.

Once the existence of this function class is established, the analysis in (Cai & Scarlett, 2021) shows that there exists a
function f ∈ Fk(B) and constant c0 such that when the time horizon satisfies

T <
(M − 1)σ2

2c0ε2
log

1

2.4δ
, (53)

it must hold with probability at least δ that ε-suboptimal actions are selected in at least T2 rounds.

We now turn to the part of the analysis that differs from (Cai & Scarlett, 2021). We first use the trivial fact that the cumulative
regret up to time T is lower bounded by that up to any T̃ ≤ T . We consider T̃ being slightly below the threshold in (53) (or
capped to T):

T̃ = min

{
T,
Mσ2

4c0ε2
log

1

2.4δ

}
, (54)

and since this choice is smaller than the right-hand side of (53), we know that ε-suboptimal actions must be played at least
T̃
2 times.

To lower bound the lenient regret in the case that Φ = Φind, we simply set ε = ∆, so that being ε-suboptimal is exactly
equivalent to being a bad action. In this case, the desired lower bounds follow directly by substituting (51) and (52) into (54)
and lower bounding the lenient regret by T̃

2 . Note that the assumption ∆
B = O(1) (with a small enough implied constant)

implies that (51) and (52) scale as Θ
((

log B
ε

)d/2)
and Θ

((
B
∆

)d/ν)
respectively.

To lower bound the lenient regret in the case that Φ = Φhinge, we notice from the definition of the hinge function that if
a 2∆-suboptimal point is selected, then the contribution to the lenient regret is still at least ∆. Hence, the desired lower
bounds follow by setting ε = 2∆, substituting (51) and (52) into (54), and lower bounding the lenient regret by T̃∆

2 . Finally,
the inequality R̃gap

T ≥ R̃hinge
T is trivial by definition (see Figure 1).

C. Additional Good-Action Identification Algorithms
C.1. Satisficing Thompson Sampling (STS)

Thompson sampling (TS) samples actions randomly according to the posterior probability of being optimal (Russo et al.,
2018). To adapt TS to the good-action identification problem, we follow an idea proposed in (Russo & Van Roy, 2018) for
multi-armed bandits, termed satisficing Thompson sampling (STS). In the finite-arm setting, the STS approach samples
according to the probability of being the good arm with the lowest index.

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

In our continuous-domain setting, there is no natural order over the arms, so we instead consider the following natural
analog: Seek the good action closest to some fixed point xc (with the default value being the domain center). The resulting
algorithm is as follows:

• Let f̃t be a sample from the GP posterior distribution given the first t− 1 observations;

• Choose xt to maximize the following acquisition function:

αSTS
t (x) =

{
−‖x− xc‖ f̃t(x) ≥ η
−∞ otherwise.

(55)

It may be that none of the points in the domain satisfy f̃t(x) ≥ η, in which case we simply let xt be a maximizer of f̃t (i.e.,
revert to regular TS).

This approach is primarily suited to scenarios where prior knowledge is available on the approximate location of the
maximizer or a good region (captured by xc). Since such knowledge is typically unavailable, we only investigate STS in
some proof-of-concept experiments here; further studies of TS-type methods for good-action identification is left for future
work. The experimental details are as described in Section 5, and the results shown in Figure 6.

For the Dropwave function the optimal action is precisely at the domain center (x∗ = 0), and accordingly, STS performs
much better than the other methods. For the Keane function it is near the center (x∗ = (1.39, 0) or (0, 1.39)), and STS
remains competitive with PG. Finally, when we shift the Dropwave function so that the good actions are near the boundary
(x∗ = (−5.12, 5.12)), we find that STS performs significantly worse. Thus, these experiments provide evidence that prior
knowledge of an approximate function maximizer (or at least a “good region”) is important for our version of STS to
perform well.

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS
STS

(a) Dropwave

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS
STS

(b) Keane

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
Fr
ac

tio
n

PG
EG
GS
STS

(c) Shifted Dropwave

Figure 6. Experimental results for good-action identification with Satisficing Thompson Sampling (STS).

C.2. Elimination Algorithm

We briefly mention that one can modify the elimination algorithm described in Section 2.4 by eliminating all actions whose
UCB score is below η, rather than those whose UCB is below the highest LCB. That is, we modify (11) as follows:

Mt =
{
x ∈Mt−1 : ucbt(x) ≥ η

}
. (56)

At the times of primary interest where no good action has been found yet, η will typically be significantly above the highest
LCB score, and hence, more bad actions will be eliminated earlier compared to when using (11). However, as discussed in
Section 3.2, elimination algorithms are susceptible to complete failure under kernel misspecification, and we thus do not
include this approach in our experiments, in which the kernel hyperparameters are learned online.

D. Additional Experiments
Here we present further experiments for good-action identification, adopting the same setup as described in Section 5.2
except where stated otherwise.

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(a) Ackley 6D with ξ = 1
400

.

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(b) Ackley 6D with ξ = 1
100

.

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(c) Ackley 6D with ξ = 1
50

.

Figure 7. Ackley 6D function for different values of η dictated by ξ ∈ (0, 1), the approximate proportion of points that are good.

D.1. Comparison of Different Threshold Values

We explore the effect of varying η using the Ackley function and the robot pushing function. For the Ackley function,
we consider choosing η such that roughly a fraction ξ of points are good, as detailed in Section 5.2. The results for
η ∈

{
1

400 ,
1

100 ,
1
50

}
are shown in Figure 7. For the robot pushing objective, we choose η ∈

{
4.0, 4.5, 4.75

}
, and the results

are shown in Figures 8 and 9 (3D and 4D versions, respectively).

In each experiment, we observe fairly similar behavior for each good-action threshold, but we find that increasing ξ (or
equivalently, decreasing η) naturally makes all algorithms find good points faster. A somewhat less obvious finding is that
this also tends to bring all of the curves closer together, suggesting that most “reasonable” algorithms can quickly find a
good action when sufficiently many of them exist.

D.2. Cases When No Good Action Exists

A potential concern of the good-action identification perspective is whether the algorithms can still be expected to behave in
a reasonable manner when no good actions exist. Here we provide evidence that, in fact, one can still maintain robustness,
in the sense that even when η > f(x∗), the algorithms introduced in Section 4 can still find an action with function value
close to f(x∗). To demonstrate this, we revert to the standard simple regret notion (since the “fraction found” notion used
previously will always be zero here).

Figure 10 plots the simple regret for the 3D Hartmann function (with f(x∗) = 3.863). In sub-figure (a), we consider both η

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(a) Robot Pushing 3D with η = 4.75

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(b) Robot Pushing 3D with η = 4.5

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(c) Robot Pushing 3D with η = 4.0

Figure 8. Robot Pushing 3D function for different values of η

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(a) Robot Pushing 4D with η = 4.75

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(b) Robot Pushing 4D with η = 4.5

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s
Fr
ac

tio
n

PI
EI
MES
GP-UCB
TS

0 20 40 60 80 100 120 140 160 180 200
Queries

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es

s
Fr
ac

tio
n

PG
EG
GS

(c) Robot Pushing 4D with η = 4.0

Figure 9. Robot Pushing 4D function for different values of η

Lenient Regret and Good-Action Identification in Gaussian Process Bandits

0 100 200 300 400 500
Queries

0.0

0.5

1.0

1.5

2.0

2.5
Si
m
pl
e
Re

gr
et

PG
EG
GS

0 100 200 300 400 500
Queries

0.0

0.5

1.0

1.5

2.0

2.5

Si
m
pl
e
Re

gr
et

PG
EG
GS

(a) Our algorithms with η = f(x∗) + 0.1 (Left) and η = f(x∗) + 0.5 (Right).

0 100 200 300 400 500
Queries

0.0

0.5

1.0

1.5

2.0

2.5

Si
m
pl
e
Re

gr
et

PI
EI
MES
GP-UCB
TS

(b) Standard optimization algorithms.

Figure 10. Simple regret plots for the 3D Hartmann function when no good action exists.

0 100 200 300 400 500
Queries

0

1

2

3

4

5

Si
m
pl
e
Re

gr
et

PG
EG
GS

0 100 200 300 400 500
Queries

0

1

2

3

4

5
Si
m
pl
e
Re

gr
et

PG
EG
GS

(a) Our algorithms with η = f(x∗) + 0.1 (Left) and η = f(x∗) + 0.5 (Right).

0 100 200 300 400 500
Queries

0

1

2

3

4

5

Si
m
pl
e
Re

gr
et

PI
EI
MES
GP-UCB
TS

(b) Standard optimization algorithms.

Figure 11. Simple regret plots for the Robot Pushing 3D function when no good action exists.

slightly above the threshold, and significantly above. Even in the latter case, PG and EG are able to attain simple regret
tending to zero, indicating their robustness in the case that no good points exist. While GS appears to be somewhat less
robust, this could potentially be remedied by modifying how the algorithm behaves when all acquisition functions are zero,
as discussed in Section 4.3.

An analogous plot for the robot pushing experiment is given in Figure 11, with similar findings. We note that the poor
performance of PI here is due to the existence of a small number of runs in which the algorithm gets stuck in a highly
suboptimal local minimum. These runs significantly impact the average regret, but only have a minor impact on the
cumulative fraction found in Figure 4 (due to occurring on few runs).

