
ZO-BCD

A. Proofs for Section 2
Proof of Theorem 2.1. Consider the function f (j)(t) =
f(x + U (j)t). This function has gradient g(j) and Hes-
sian ∇2

jjf . By Assumption 5 ‖g(j)‖0 ≤ ‖g‖0 ≤ s while
‖∇2

jjf‖1 ≤ H from Assumption 6. Thus, f (j)(t) satisfies
the assumptions of Corollary 2.7 of (Cai et al., 2020b) so
Theorem 2.1 follows from this result.

Proof of Theorem 2.2. For notational convenience, for this
proof only we let s := sexact. Let gi1 , . . . , gik , . . . , gis de-
note the non-zero entries of g := g(x), after the permutation
has been applied. Let Yj be the random variable counting
the number of gik within block j:

Yj = #{ik : ik in block j}.

Thus, the random vector Y = (Y1, . . . , YJ) ∈ RJ obeys
the multinomial distribution. Observe

∑J
j=1 Yj = s and,

because the blocks are equally sized, E(Yj) = s
J .

By Chernoff’s bound, for ∆ > 0 and each Yj individually:

P
[∣∣∣Yj − s

J

∣∣∣ ≥ ∆
s

J

]
≤ 2e−

∆2E(Yj)

3 = 2e−
∆2s
3J .

Applying the union bound:

P
[
∃ j s.t.

∣∣∣Yj − s

J

∣∣∣ ≥ ∆
s

J

]
≤

J∑
j=1

P
[∣∣∣Yj − s

J

∣∣∣ ≥ ∆
s

J

]
≤ 2Je−

∆2s
3J ,

and so:

P
[
|Yj −

s

J
| ≤ ∆

s

J
, ∀j ∈ [1, · · · , J]

]
= 1− P

[
∃ j s.t.

∣∣∣Yj − s

J

∣∣∣ ≥ ∆
s

J

]
≥ 1− 2Je−

∆2s
3J .

This finishes the proof.

Proof of Corollary 2.3. From Theorem 2.2 we have that,
with probability at least 1− 2J exp(−0.01sexact

3J), ‖g(j)‖0 ≤
1.1sexact/J ≤ s. Assuming this is true, (5) holds with
probability 1 − (s/d)b2s. These events are independent,
thus the probability that they both occur is:(

1− 2J exp(
−0.01sexact

3J
)

)(
1− (s/d)b2s

)
Because s � d the term exponential in sexact/J is sig-
nificantly larger than (s/d)b2s. Expanding, and keeping
only dominant terms we see that this probability is equal to
1−O

(
J exp(−0.01sexact

3J)
)
.

We emphasize that Corollary 2.3 holds for all j. Before pro-
ceeding, we remind the reader that for fixed s the restricted
isometry constant of Z ∈ Rm×n is defined as the smallest
δ > 0 such that:

(1− δ)‖v‖22 ≤ ‖Zv‖22 ≤ (1 + δ)‖v‖22
for all v ∈ Rn satisfying ‖v‖0 ≤ s .The key ingredient to
the proof of Theorem 2.4 is the following result:
Theorem A.1 ((Krahmer et al., 2014, Theorem 1.1)). Let
z ∈ Rn be a Rademacher random vector and choose a ran-
dom subset Ω = {j1, . . . , jm} ⊂ {1, . . . , n} of cardinality
m = cδ−2s log2(s) log2(n). Let Z ∈ Rm×n denote the ma-
trix with rows 1√

m
Cji(z). Then δs(Z) < δ with probability

1− n− log(n) log2(s).

c is a universal constant, independent of s, n and δ. Similar
results may be found in (Mendelson et al., 2018) and (Huang
et al., 2018). In (Krahmer et al., 2014) a more general
version of this theorem is provided, which allows the entries
of z to be drawn from any sub-Gaussian distribution.

Proof of Theorem 2.4. Let Z be the sensing matrix with
rows 1√

m
Cji(z). By appealing to Theorem A.1 with s = 4s,

n = d/J and δ = 0.3843 we get δ4s(Z) ≤ 0.3843, with
probability 1− (d/J)

log(d/J) log2(4s) From Theorem 2.2 we
have that, with probability at least 1− 2J exp(−0.01sexact

3J),
‖g(j)‖0 ≤ 1.1sexact/J ≤ s. Assuming δ4s(Z) ≤ 0.3843,
Theorem 2.4 follows by the same proof as in (Cai et al.,
2020b, Corollary 2.7). The events ‖g(j)‖0 ≤ s/J and
δ4s(Z) ≤ 0.3843 are independent, hence they both occur
with probability:(

1− 2J exp

(
−0.01sexact

3J

))(
1− (d/J)

log(d/J) log2(4s)
)

≥ 1− 2J exp

(
−0.01sexact

3J

)
− (d/J)

log(d/J) log2(4s)
.

(8)

Note that the third term in the right side of (8) is universal,
i.e. it holds for all x ∈ Rd, as it depends only on the choice
of Z, not the choice of x.

B. ZO-BCD for unequally-sized blocks
Using randomly assigned, equally-sized blocks is an im-
portant part of the ZO-BCD framework as it allows one
to consider a block sparsity ≈ s/J , instead of the worst
case sparsity of s. Nevertheless, there may be situa-
tions where it is preferable to use user-defined, unequally-
sized blocks. For such cases we recommend the fol-
lowing (we discuss the modifications here for ZO-BCD-
R, but with obvious changes it also applies to ZO-BCD-
RC). Let s(j) ≤ s be an upper estimate of the spar-
sity of the j-th block gradient: ‖g(j)(x)‖0 ≤ s(j). Let

ZO-BCD

m(j) = b1s
(j) log(D/J) (and use the analogous formula

for ZO-BCD-RC) and define mmax = maxjm
(j). When

initializing ZO-BCD-R, generate mmax Rademacher ran-
dom variables: z1, . . . , zmmax ∈ Rdmax

. At each iteration,
if block j is selected, randomly select i1, . . . , im(j) from
1, . . . ,mmax and for k = 1, . . . ,m(j) let z̃ik ∈ Rd(j)

de-
note the vector formed by taking the first d(j) components
of zik . Use {z̃ik}m

(j)

k=1 as the input to Algorithm 1. Note that
the {z̃ik}m

(j)

k=1 possess the same statistical properties as the
{zik}m

(j)

k=1 (i.e. they are i.i.d. Rademacher vectors) so using
them as sampling directions will result in the same bound
on ‖g(j)

k − ĝ
(j)
k ‖2 as Corollary 2.3.

C. Proofs for Section 3
Our proof utilizes the main result of (Tappenden et al., 2016).
This paper requires αk = 1

Ljk
, i.e. the step size at the k-th

iteration is inversely proportional to the block Lipschitz con-
stant. This is certainly ideal, but impractical. In particular,
if the blocks are randomly selected it seems implausible that
one would have good estimates of the Lj . Of course, since
Lj ≤ Lmax we observe thatLmax is a Lipschitz constant for
every block, and thus we may indeed take αk = α = 1

Lmax
.

This results in a slightly slower convergence resulted, re-
flected in a factor of Lmax in Theorem 3.1. Throughout this
section we shall assume f satisfies Assumptions 1–6. For
all j = 1, . . . , J define:

Vj(x, t) = 〈g(j)(x), t〉+
Lmax

2
‖t‖22,

so that, by Lipschitz differentiablity:

f(xk + U (j)t) ≤ f(xk) + Vj(xk, t).

Define t∗k,j := arg minVj(xk, t) := − 1
Lmax

g
(j)
k while let

t
′

k,j be the update step taken by ZO-BCD, i.e. t
′

k,j =
1

Lmax
ĝ

(j)
k .

Lemma C.1. Suppose f satisfies Assumptions 1–3. Then
f(x) − f∗ ≥ 1

2Lmax
‖g(j)(x)‖22 for any x ∈ Rd and any

j = 1, . . . , J .

Proof. Define hx : Rd(j) → R as hx(t) := f(x + U (j)t)
where U (j) is as described in Section 1. Since U (j) is a
linear transformation and f is convex, hx is also convex.
By Assumption 1 and Lj ≤ Lmax, hx is Lmax-Lipschitz
differentiable. From Assumption 3 it follows Y∗ =
arg mint hx(t) is non-empty, and h∗x := mint hx(t) ≥ f∗.
Thus, from (Bertsekas, 1997, Proposition B.3, part (c.ii)) ,
we have:

hx(t)−h∗x ≥
1

2Lmax
‖∇hx(t)‖22 =

1

2Lmax
‖g(j)(x+U (j)t)‖22

for all t. Choose t = 0, and use hx(0) = f(x) and f∗ ≤ h∗x
to obtain:

f(x)− f∗ ≥ hx(0)− h∗x ≥
1

2Lmax
‖g(j)(x)‖22.

This finishes the proof.

Lemma C.2. Let η = 2ρ2n and θ = 4τ2σH
Lmax

. For each
iteration of ZO-BCD

Vj(xk, t
′)− Vj(xk, t∗) ≤ η(f(xk)− f∗) + θ. (9)

with probability 1−O
(
J exp(− 0.01sexact

3J

)
for ZO-BCD-R

and with probability greater than

1− 2J exp

(
−0.01sexact

3J

)
− (d/J)

log(d/J) log2(4.4s/J)

for ZO-BCD-RC.

Proof. For notational convenience, we define t∗ := t∗k,j ,

t
′

:= t
′

k,j and e(j)
k := ĝ

(j)
k − g

(j)
k . By definition:

t′k,j = − 1

Lmax
ĝ

(j)
k = − 1

Lmax
(g

(j)
k + e

(j)
k).

Moreover:

Vj(xk, t
∗) = − 1

2Lmax
‖g(j)
k ‖

2
2

Vj(xk, t
′) = − 1

2Lmax
‖g(j)
k ‖

2
2 +

1

2Lmax
‖e(j)
k ‖

2
2,

and hence:

Vj(xk, t
′)− Vj(xk, t∗) ≤

1

2Lmax
‖e(j)
k ‖

2
2. (10)

Recall ĝ(j)
k is the output of GradientEstimation with gradient

sparsity level sblock = 1.1s/J . Using the error bound (5)
and replacing s with 1.1s/J :

‖e(j)
k ‖

2
2 ≤

(
ρn‖g(j)

k ‖2 + 2τ
√
σH
)2

≤ 2ρ2n‖g(j)
k ‖

2
2 + 4τ2σH. (11)

with the stated probabilities, as justified by Corollary 2.3 (for
ZO-BCD-R) and Theorem 2.4 (for ZO-BCD-RC) Finally,
from Lemma C.1 ‖g(j)

k ‖22 ≤ 2Lmax (f(xk)− f∗) for any
j = 1, · · · , J . Connecting this estimate with (10) and (11)
we obtain:

Vj(xk, t
′)− Vj(xk, t∗) ≤ 2ρ2n︸︷︷︸

=η

(f(xk)− f∗) +
4τ2σH

Lmax︸ ︷︷ ︸
=θ

.

This finishes the proof.

ZO-BCD

Proof of Theorem 3.1. Let pj denote the probability that
the j-th block is chosen for updating at the k-th iteration.
Because ZO-BCD chooses blocks uniformly at random,
pj = 1/J for all j. If (9) holds for all k then by (Tappenden
et al., 2016, Theorem 6.1) if:

η2 +
4θ

c1
< 1 where c1 = 2JLmaxR2(x0),

c1
2

(η +

√
η2 +

4θ

c1ζ
) < ε < f(x0)− f∗,

u :=
c1
2

(
η +

√
η2 +

4θ

c1

)
,

K :=
c1

ε− u
+

c1
ε− ηc1

log

(
ε− θc1

ε−ηc1

εζ − θc1
ε−ηc1

)
+ 2,

then P(f(xK)− f∗ ≤ ε) ≥ 1− ζ. Note that:

• Our η and θ are α and β in their notation.

• In (Tappenden et al., 2016) c1 = 2R2
`p−1(x0) where

R2
`p−1(x0)is defined as in (2) but using a norm ‖·‖`p−1

instead of ‖ · ‖2. These norms are related as:

‖x‖2`p−1 =

J∑
j=1

Lj
pj
‖x(j)‖22

(a)
=

J∑
j=1

JLmax‖x(j)‖22

= JLmax‖x‖22

where (a) follows as pj = 1/J for all j and we are
taking Lj = Lmax. Hence, c1 = 2JLmaxR2(x0) as
stated.

• K = Õ (J/ε).

Replace η and θ with the expressions given by Lemma C.2 to
obtain the expressions given in the statement of Theorem 3.1.
Because (9) holds with high probability at each iteration, by
the union bound it holds for all K iterations with probability
greater than

1−KO
(
J exp

(
−0.01sexact

3J

))
=1− Õ

(
J2

ε
exp

(
−0.01sexact

3J

))
for ZO-BCD-R and with probability greater than

1− 2JK exp

(
−0.01sexact

3J

)
− (d/J)log(d/J) log2(4.4s/J)

= 1− Õ
(
J2

ε
exp

(
−0.01sexact

3J

))
− (d/J)log(d/J) log2(4.4s/J)

(12)

Note the third term in (12) is universal, i.e. holds for all
iterations, and hence is not multiplied by K. In both cases

we use K = Õ(J/ε). As stated, if (9) holds for all k then
P(f(xK) − f∗ ≤ ε) ≥ 1 − ζ. Apply the union bound
again to obtain the probabilities given in the statement of
Theorem 3.1. ZO-BCD-R uses m = 1.1b1(s/J) log(d/J)
queries per iteration, all made by the GradientEstimation
subroutine, and hence makes:

mK = (1.1b1(s/J) log(d/J))K = Õ (s/ε)

queries in total, usingK = Õ (J/ε). On the other hand, ZO-
BCD-RC makes m = 1.1b3(s/J) log2(1.1s/J) log2(d/J)
queries per iteration. A similar calculation reveals that ZO-
BCD-RC also makes mK = Õ (s/ε) queries in total.

The computational cost of each iteration is dominated by
solving the sparse recovery problem using CoSaMP. It is
known (Needell & Tropp, 2009) that CoSaMP requires
O(nT) FLOPS, where T is the cost of a matrix-vector
multiply by Z. For ZO-BCD-R Z ∈ Rm×(d/J) is dense and
unstructured hence:

T = O
(
m
d

J

)
= O

(
s

J
log(d/J)

d

J

)
= Õ

(
sd

J2

)
.

As noted in (Needell & Tropp, 2009), n may be taken to
be O(1) (In all our experiments we take n ≤ 10). For ZO-
BCD-RC, as Z is a partial ciculant matrix, we may exploit a
fast matrix-vector multiplication via fast Fourier transform
to reduce the complexity to O(d/J log(d/J)) = Õ(d/J).

Finally, we note that for both variants the memory com-
plexity of ZO-BCD is dominated by the cost of storing Z.
Again, as Z is dense and unstructured in ZO-BCD-R there
are no tricks that one can exploit here, so the storage cost
is m(d/J) = Õ(sd/J2). For ZO-BCD-RC, instead of stor-
ing the entire partial circulant matrix Z, one just needs to
store the generating vector z ∈ Rd/J and the index set Ω.
Assuming we are allocating 32 bits per integer, this requires:

d

J
+ 32 · b3

s

J
log2

(s
J

)
log2

(
d

J

)
= O

(
d

J

)
.

This finishes the proof.

D. Experimental setup details
In this section, we provide the detailed experimental settings
for the numerical results provided in Section 5.

D.1. Settings for synthetic experiments

For both synthetic examples, we use problem dimension
d = 20, 000 and gradient sparsity s = 200. Moreover, we
use additive Gaussian noise with variance σ = 10−3 in
the oracles. The sampling radius is chosen to be 10−2 for
all tested algorithms. For ZO-BCD, we use 5 blocks with

ZO-BCD

uniform step size8 α = 0.9, and the per block sparsity is
set to be sblock = 1.05s/J = 42. Furthermore, the block
gradient estimation step runs at most n = 10 iterations of
CoSaMP. For the other tested algorithms, we hand tune the
parameters for their best performance, and same step sizes
are used when applicable. Note that SPSA must use a very
small step size (α = 0.01) in max-s-squared-sum problem,
or it will diverge.

Re-shuffling the blocks. Note that the max-s-squared-
sum function does not satisfy the Lipschitz differentiability
condition (i.e. Assumption 1). Moreover the gradient sup-
port changes, making this an extremely difficult zeroth-order
problem. To overcome the difficulty of discontinuous gradi-
ents, we apply an additional step that re-shuffles the blocks
every J iterations. This re-shuffling trick is not required for
the problems that satisfies our assumptions; nevertheless,
we observe very similar convergence behavior with slightly
more queries when the re-shuffling step was applied on the
problems that satisfy the aforementioned assumptions.

D.2. Settings for sparse DWT attacks on images

We allows a total query budget of 10, 000 for all tested algo-
rithms in each image attack, i.e. an attack is considered a
failure if it cannot change the label within 10, 000 queries.
We use a 3-level ‘db45’ wavelet transform. All the results
present in Section 5.2 use the half-point symmetric bound-
ary extension, hence the wavelet domain has a dimension
of 676, 353; slightly larger than the original pixel domain
dimension. For the interested reader, a discussion and more
results about other boundary extensions can be found in
Appendix E.

For all variations of ZO-BCD, we choose the block size to
be 170 with per block sparsity sblock = 10, thus m = 52
queries are used per iteration. Sampling radius is set to
be 10−2. The block gradient estimation step runs at most
n = 30 CoSaMP iterations, and step size α = 10.

D.3. Settings for sparse CWT attacks on audio signals

For both targeted and untargeted CWT attack, we use Morse
wavelets with 111 frequencies, which significantly enlarges
the problem dimension from 16, 000 to 1, 776, 000 per clip.
In the attack, we choose the block size to be 295 with per
block sparsity sblock = 9, thus m = 52 queries are used
per iteration. The sampling radius is δ = 10−3. The block
gradient estimation step runs at most n = 30 CoSaMP
iterations. In targeted attacks, the step size is α = 0.05 , and
Table 4 specifies the step size used in untargeted attacks.

8We note that using a line search for each block would maxi-
mize the advantage of block coordinate descent algorithms such as
ZO-BCD, but we did not do so here for fairness

In Table 4, we also include a result of voice domain attack
for the comparison. The parameter settings are same with
aforementioned untargeted CWT attack settings, but we
have to reduce step size to 0.01 for stability. Also, note that
the problem domain is much smaller in the original voice
domain, so the number of blocks is much less while we keep
the same block size.

E. More experimental results and discussion
E.1. Sparse DWT attacks on images

Periodic extension. As mentioned, when we use bound-
ary extensions other than periodic extension, the dimension
of the wavelet coefficients will increase, depending on the
size of wavelet filters and the level of the wavelet transform.
More precisely, wavelets with larger support and/or deeper
levels of DWT result in a larger increase in dimensional-
ity. On the other hand, using periodic extension will not
increase the dimension of wavelet domain. We provide test
results for both boundary extensions in this section for the
interested reader.

Compressed attack. As discussed in Section 4, DWT is
widely used in data compression, such as JPEG-2000 for
image. In reality, the compressed data are often saved in the
form of sparse (and larger) DWT coefficients after vanishing
the smaller ones. While we have already tested an attack on
the larger DWT coefficients only (see Section 5.2), it is also
of interest to test an attack after compression. That is, we
zero out the smaller wavelet coefficients (abs ≤ 0.05) first,
and then attack on only the remaining, larger coefficients.

We use the aforementioned parameter settings for these two
new attacks. We present the results in Table 6, and for
completeness we also include the results already presented
in Table 2. One can see that ZO-BCD-R(compressed) has
higher attack success rate and lower `2 distortion, exceeding
the prior state-of-the-art as presented in Table 2. We caution
that this is not exactly a fair comparison with prior works
however, as the compression step modifies the image before
the attack begins.

Defense tests. Finally, we also tested some simple mecha-
nisms for defending against our attacks; specifically har-
monic denoising. We test DWT with the famous Haar
wavelets, DWT with db45 wavelets which is also used for at-
tack, and the essential discrete cosine transform (DCT). The
defense mechanism is to apply the transform to the attacked
images and then denoise by zeroing out small wavelet coef-
ficients before transforming back to the pixel domain. We
only test the defense on images that were successfully at-
tacked. Tables 7 and 8 show the results of defending against
the ZO-BCD-R and ZO-BCD-R(large coeff.) attacks respec-
tively. Interestingly, using the attack wavelet (i.e. db45) in

ZO-BCD

Table 6. Results of untargeted image adversarial attack using vari-
ous algorithms. Attack success rate (ASR), average final `2 distor-
tion, and number of queries till first successful attack. ZO-BCD-
R(periodic ext.) stands for ZO-BCD-R applying periodic extension
for implementing the wavelet transform. ZO-BCD-R(compressed)
stands for applying ZO-BCD-R to attack only large wavelet coeffi-
cients (abs ≥ 0.05) and vanishing the smaller values. The other
methods are the same in Table 2.

METHODS ASR `2 DIST QUERIES

ZO-SCD 78% 57.5 2400
ZO-SGD 78% 37.9 1590
ZO-AdaMM 81% 28.2 1720
ZORO 90% 21.1 2950
ZO-BCD-R 92% 14.1 2131
ZO-BCD-RC 92% 14.2 2090
ZO-BCD-R(periodic ext.) 95% 21.0 1677
ZO-BCD-R(compressed) 96% 13.1 1546
ZO-BCD-R(large coeff.) 96% 13.7 1662

Table 7. Defense of image adversarial wavelet attack by ZO-BCD-
R. Defense recovery success rate under haar and db45 wavelet
filters, and discrete cosine transform (DCT) filter. Thresholding
values of 0.05, 0.10, 0.15, and 0.20 were considered.

DEFENCE METHODS 0.05 0.10 0.15 0.20

Haar 74% 75% 76% 75%
db45 74% 72% 71% 63%
DCT 72% 79% 75% 67%

defence is not a good strategy. We obtain the best defense
results by using a mismatched transform (i.e. DCT or Haar
defense for a db45 attack) and a small thresholding value.

More adversarial examples. In Figure 5, we presented
some adversarial images generated by the ZO-BCD-R and
ZO-BCD-R(large coeff.) attacks. For the interested reader,
we present more visual examples in Figure 7, and include
the adversarial attack results generated by all versions of
ZO-BCD.

E.2. Sparse CWT attacks on audio signals

Adversarial attacks on speech recognition is a more nebu-
lous concept than that of adversarial attacks on image clas-
sifiers, with researchers considering a wide variety of threat
models. In (Cisse et al., 2017), an attack on the speech-to-
text engine DeepSpeech (Hannun et al., 2014) is success-
fully conducted, although the proposed algorithm, Houdini,
is only able to force minor mis-transcriptions (“A great saint,
saint Francis Xavier” becomes “a green thanked saint fred-
stus savia”). In (Carlini & Wagner, 2018), this problem
is revisited, and they are able to achieve 100% success in
targeted attacks, with any initial and target transcription

Table 8. Defense of image adversarial wavelet attack by ZO-BCD-
R (large coeff.). Defense recovery success rate under Haar and
db45 wavelet filters, and discrete cosine transform (DCT) filter.
Thresholding values 0.05, 0.10, 0.15, and 0.20 were considered.

DEFENCE METHODS 0.05 0.10 0.15 0.20

Haar 75% 72% 78% 76%
db45 71% 70% 69% 63%
DCT 62% 74% 68% 58%

from the Mozilla Common Voices dataset (for example, “it
was the best of times, it was the worst of times” becomes
“it is a truth universally acknowledged that a single”). We
emphasize that both of these attacks are whitebox, meaning
that they require full knowledge of the victim model. We
also note that speech-to-text transcription is not a classifica-
tion problem, thus the classic Carlini-Wagner loss function
so frequently used in generating adversarial examples for
image classifiers cannot be straightforwardly applied. The
difficulty of designing an appropriate attack loss function is
discussed at length in (Carlini & Wagner, 2018).

A line of research more related to the current work is that of
attacking keyword classifiers. Here, the victim model is a
classifier; designed to take as input a short audio clip and
to output probabilities of this clip containing one of a small,
predetermined list of keywords (“stop”, “left” and so on).
Most such works consider the SpeechCommands dataset
(Warden, 2018). To the best of the author’s knowledge, the
first paper to consider targeted attacks on a keyword classifi-
cation model was (Alzantot et al., 2018), and they do so in a
black-box setting. They achieve an 87% attack success rate
(ASR) using a genetic algorithm, whose query complexity
is unclear. They do not report the relative loudness of their
attacks; instead they report the results of a human study
in which they asked volunteers to listen to and label the
attacked audio clips. They report that for 89% of the suc-
cessfully attacked clips human volunteers still assigned the
clips the correct (i.e. source) label, indicating that these clips
were not corrupted beyond comprehension. Their attacks
are per-clip, i.e. not universal.

In (Vadillo & Santana, 2019), universal and untargeted at-
tacks on a SpeechCommands classifier are considered.
Specifically, they seek to construct a distortion δ such that
for any clip x from a specified source class (e.g. “left”),
the attacked clip x+ δ is misclassified to a source class (e.g.
“yes”) by the model. They consider several variations on
this theme; allowing for multiple source classes. The results
we recorded in Section 5.3 (ASR of 70.3% at a remarkably
low mean relative loudness of −41.63 dB) were the best
reported in the paper, and were for the single-source-class
setting. This attack was in the white-box setting.

ZO-BCD

(a) ZO-BCD-R: “frying pan”→
“strainer”

(b) ZO-BCD-RC: “frying pan”
→ “strainer”

(c) ZO-BCD-R (periodic ext.):
“frying pan”→ “strainer”

(d) ZO-BCD-R (compressed):
“frying pan”→ “strainer”

(e) ZO-BCD-R (large coeff.):
“frying pan”→ “strainer”

(f) ZO-BCD-R: “strawberry”→
“pomegranate”

(g) ZO-BCD-RC: “strawberry”
→ “pomegranate”

(h) ZO-BCD-R (periodic ext.):
“strawberry”→ “pomegranate”

(i) ZO-BCD-R (compressed):
“strawberry”→ “pomegranate”

(j) ZO-BCD-R (large coeff.):
“strawberry”→ “pomegranate”

Figure 7. More examples of wavelet attacked images by ZO-BCD-R, ZO-BCD-RC, ZO-BCD-R(periodic ext.), ZO-BCD-R(compressed),
and ZO-BCD-R(large coeff.), with true labels and mis-classified labels.

Finally, we mention two recent works which consider very
interesting, but different threat models. (Li et al., 2020)
considers the situation where a malicious attacker wishes to
craft a short (say 0.5 second long) that can be added to any
part of a clean audio clip to force a misclassification. Their
attacks are targeted and universal, and conducted in the
white-box setting. They do not report the relative loudness
of their attacks. In (Xie et al., 2020), a generative model
is trained that takes as input a benign audio clip x, and
returns an attacked clip x+δ. The primary advantage of this
approach is that attacks can be constructed on the fly. In the
targeted, per-clip white-box setting they achieve the success
rate of 93.6% advertised in Section 5.3, at an approximate
relative loudness of −30 dB. They also consider universal
attacks, and a transfer attack whereby the generative model
is trained on a surrogate classification model.

In all the aforementioned keyword attacks, the victim model
is some variant of the model proposed in (Sainath & Parada,
2015). Specifically, the audio input is first transformed into
a 2D spectrogram using Mel frequency coefficients, bark
coefficients or similar. Then, a 3- to 5- layer convolutional
neural network is applied.

