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Abstract
We consider the zeroth-order optimization prob-
lem in the huge-scale setting, where the dimen-
sion of the problem is so large that performing
even basic vector operations on the decision vari-
ables is infeasible. In this paper, we propose a
novel algorithm, coined ZO-BCD, that exhibits fa-
vorable overall query complexity and has a much
smaller per-iteration computational complexity.
In addition, we discuss how the memory footprint
of ZO-BCD can be reduced even further by the
clever use of circulant measurement matrices. As
an application of our new method, we propose
the idea of crafting adversarial attacks on neural
network based classifiers in a wavelet domain,
which can result in problem dimensions of over
one million. In particular, we show that craft-
ing adversarial examples to audio classifiers in a
wavelet domain can achieve the state-of-the-art at-
tack success rate of 97.9% with significantly less
distortion.

1. Introduction
We are interested in problem (1) under the restrictive as-
sumption that one only has noisy zeroth-order access to f
(i.e. one cannot access the gradient,∇f)) and the dimension
of the problem, d, is huge, say d > 107.

minimize
x∈X⊂Rd

f(x). (1)

Such problems (with small or large d) arise frequently in do-
mains as diverse as simulation-based optimization in chem-
istry and physics (Reeja-Jayan et al., 2012), hyperparameter
tuning for combinatorial optimization solvers (Hutter et al.,
2014) and for neural networks (Bergstra & Bengio, 2012)
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and online marketing (Flaxman et al., 2005). Lately, algo-
rithms for zeroth-order optimization have drawn increasing
attention due to their use in finding good policies in re-
inforcement learning (Salimans et al., 2017; Mania et al.,
2018; Choromanski et al., 2020) and in crafting adversarial
examples given only black-box access to neural-network
based classifiers (Chen et al., 2017; Lian et al., 2016; Alzan-
tot et al., 2018; Cai et al., 2020b). We note that in all of these
applications queries (i.e. evaluating f at a chosen point) are
considered expensive, thus it is desirable for zeroth-order
optimization algorithms to be as query efficient as possible.

Unfortunately, it is known (Jamieson et al., 2012) that the
worst case query complexity of any noisy zeroth order algo-
rithm for strongly convex f scales linearly with d. Clearly,
this is prohibitive for huge d. Recent works have begun
to side-step this issue by assuming f has additional, low-
dimensional, structure. For example, (Wang et al., 2018;
Balasubramanian & Ghadimi, 2018; Cai et al., 2020a;b)
assume the gradients∇f are (approximately) s-sparse (see
Assumption 5) while (Golovin et al., 2019) and others as-
sume f(x) = g(Az) where A : Rs → Rd and s � d.
All of these works promise a query complexity that scales
linearly with the intrinsic dimension, s, and only logarith-
mically with the extrinsic dimension, d. However there is
no free lunch here; the improved complexity of (Golovin
et al., 2019) requires access to noiseless function evalua-
tions, the results of (Balasubramanian & Ghadimi, 2018)
only hold if the support of∇f(x) is fixed1 for all x ∈ X and
while (Wang et al., 2018; Cai et al., 2020a;b) allow for noisy
function evaluations and changing gradient support, both
solve a computationally intensive optimization problem as
a sub-routine, requiring at least Ω(sd log(d)) memory and
FLOPS per iteration.

1.1. Contributions

In this paper we provide the first zeroth-order optimization
algorithm enjoying a sub-linear (in d) query complexity
and a sub-linear per-iteration computational complexity. In
addition, our algorithm has an exceptionally small mem-
ory footprint. Furthermore, it does not require the repeated
sampling of d-dimensional random vectors, a hallmark of

1See Appendix A of (Cai et al., 2020b) for a proof of this.
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Figure 1. Left: Original image from ImageNet with true label
“scale”. Center: Wavelet perturbation crafted using ZO-BCD.
Right: The attacked image, constructed by adding the perturbation,
scaled down by 0.02, to the original image. Mis-classified as a
“switch”.

many zeroth-order optimization algorithms. With this new
algorithm, ZO-BCD, in hand we are able to solve black-
box optimization problems of a size hitherto unimagined.
Specifically, we consider the problem of generating adver-
sarial examples to fool neural-network-based classifiers,
given only black-box access to the model (as introduced
in (Chen et al., 2017)). However, we consider generating
these malicious examples by perturbing natural examples
in a wavelet domain. For image classifiers (we consider
Inception-v3 trained on ImageNet) we are able to
produce attacked images with a record low `2 distortion of
13.7 and a success rate of 96%, exceeding the state of the art.
For audio classifiers, switching to a wavelet domain results
in a problem dimension of over 1.7 million. Using ZO-BCD,
this is not an issue and we achieve a targeted attack success
rate of 97.93% with a mean distortion of −6.32 dB.

1.2. Relation to prior work

As mentioned above, the recent works (Wang et al., 2018;
Balasubramanian & Ghadimi, 2018; Cai et al., 2020b) pro-
vide zeroth-order algorithms whose query complexity scales
linearly with s and logarithmically with d. In order to ame-
liorate the prohibitive computational and memory cost as-
sociated with huge d, several domain-specific heuristics
have been employed in the literature. For example in (Chen
et al., 2017; Alzantot et al., 2019), in relation to adversar-
ial attacks, an upsampling operator D : Rp → Rd with
p� d is employed. Problem (1) is then replaced with the
lower dimensional problem: minimizez∈Rp f(D(z)). Sev-
eral other works (Alzantot et al., 2018; Taori et al., 2019; Cai
et al., 2020b) choose a low dimensional random subspace
Tk ⊂ Rd at each iteration and then restrict xk+1− xk ∈ Tk.
We emphasize that none of the aforementioned works prove
such a procedure will converge, and our work is partly mo-
tivated by the desire to provide this empirically successful
trick with firm guarantees of success.

In the reinforcement learning literature it is common to
evaluate the f(xk + zk,i) on parallel devices and send
the computed function value and the perturbation zk,i to
a central worker, which then computes xk+1. As x ∈ Rd

parametrizes a neural network, d can be extremely large,
and hence the communication of the zk,i between workers
becomes a bottle neck. (Salimans et al., 2017) overcomes
this with a “seed sharing” trick, but again this heuristic lacks
rigorous analysis. We hope ZO-BCD’s (particularly the ZO-
BCD-RC variant, see Section 3) intrinsically small memory
footprint will make it a competitive, principled alternative.

Finally, although two recent works have examined the idea
of wavelet domain adversarial attacks (Anshumaan et al.,
2020; Din et al., 2020) they are of a very different nature to
our approach. We discuss this further in Section 4.

1.3. Assumptions and notation

As mentioned, we will suppose the decision variables x
have been subdivided into J blocks of sizes d(1), . . . , d(J).
Following the notation of (Tappenden et al., 2016), we sup-
pose there exists a permutation matrix U ∈ Rd×d and a
division of U into submatrices U = [U (1), U (2), . . . , U (J)]

such that U (j) ∈ Rd×d(j)

and the j-th block is spanned
by the columns of U (j). Letting x(j) denote the decision
variables in the j-th block, we write x =

∑J
j=1 U

(j)x(j)

or simply x = (x(1), x(2), . . . , x(J)). We shall consistently
use the notation g(x) := ∇f(x), omitting x if it is clear
from context. By g(j) we mean the components of the gra-
dient corresponding to the j-th block, i.e. g(j) = ∇x(j)f ,
regarded as either a vector in Rd or in Rd(j)

. Finally, we
use Õ(·) notation to suppress logarithmic factors. Let us
now introduce some standard assumptions on the objective
function.

Assumption 1 (Block Lipschitz differentiability). f is con-
tinuously differentiable and for some fixed constant Lj

‖g(j)(x)− g(j)(x+ U (j)t)‖2 ≤ Lj‖t‖2

for all j = 1, . . . , J , x ∈ X and t ∈ Rd(j)

.

If f is L-Lipschitz differentiable then it is also block Lips-
chitz differentiable, with maxj Lj ≤ L.

Assumption 2 (Convexity). X is a convex set, and f(tx+
(1−t)y) ≤ tf(x)+(1−t)f(y) for all x, y ∈ X , t ∈ [0, 1].

Define the solution set X ∗ = arg minx∈X f(x). If this set
is non-empty we define the level set radius for x ∈ X as:

R(x) := max
y∈X

max
x∗∈X∗

{‖y − x∗‖2 : f(y) ≤ f(x)}. (2)

Assumption 3 (Non-empty solution set and Bounded level
sets). X ∗ is non-empty andR(x0) <∞.

Assumption 4 (Adversarially noisy oracle). f is only ac-
cessible through a noisy oracle: Ef (x) = f(x) + ξ, where
ξ is a random variable satisfying |ξ| ≤ σ.
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Assumption 5 (Sparse gradients). There exists a fixed inte-
ger 0 < sexact < d such that for all x ∈ Rd:

‖g(x)‖0 := |{i : gi(x) 6= 0}| ≤ sexact.

It is of interest to relax this assumption to an “approximately
sparse” assumption, such as in (Cai et al., 2020b). However,
it is unclear randomly chosen blocks (see Section 2.1) will
inherit this property. We leave the analysis of this case for
future work. Finally, let ∇2

jjf ∈ Rd(j)×d(j)

denote the j-th
block Hessian.

Assumption 6 (Weakly sparse block Hessian). f is twice
differentiable and, for all j = 1, . . . , J , x ∈ X we have
‖∇2

jjf(x)‖1 ≤ H for some fixed constant H .

Note that ‖ · ‖1 represents the element-wise `1-norm:
‖B‖1 =

∑
i,j |Bij |.

2. Gradient estimators
Randomized (block) coordinate descent methods are an
attractive alternative to full gradient methods for huge-scale
problems (Nesterov, 2012). ZO-BCD is a block coordinate
method adapted to the zeroth-order setting and conceptually
has three steps:

1. Choose a block, j ∈ {1, . . . , J} at random.

2. Use zeroth-order queries to find an approximation ĝ(j)
k

of the true block gradient g(j)
k .

3. Take a negative gradient step: xk+1 = xk − αĝ(j)
k .

We abuse notation slightly; the block gradient ĝ(j)
k is re-

garded as both a vector in Rd(j)

and a vector in Rd with
non-zeros in the j-th block only.

In principle any scheme for constructing an estimator of gk
could be adapted for estimating g(j)

k , as long as one is able
to bound ‖g(j)

k − ĝ
(j)
k ‖2 with high probability. As we wish

to exploit gradient sparsity, we choose to adapt the estimator
presented in (Cai et al., 2020b). Let us now discuss how
to do so. Fix a sampling radius δ > 0. Suppose the j-th
block has been selected and choose m sample directions
z1, . . . , zm ∈ Rd(j)

from a Rademacher distribution2. Con-
sider the finite difference approximations to the directional
derivatives:

yi =
1√
m

Ef (x+ δU (j)zi)− Ef (x)

δ
≈ 1√

m
z>i g

(j) (3)

Stack the yi into a vector y ∈ Rm, let Z ∈ Rm×(d/J) be
the matrix with rows z>i /

√
m and observe y ≈ Zg(j); an

2That is, the entries of zi are +1 or −1 with equal probability.

Algorithm 1 Block Gradient Estimation
1: Input: x: current point; j: choice of block; s: gradient

sparsity level; δ: query radius; n: number of CoSaMP
iterations; {zi}mi=1: sample directions in Rd(j)

.
2: for i = 1 to m do
3: yi ← (Ef (x+ δU (j)zi)− Ef (x))/(

√
mδ)

4: end for
5: y← [y1, · · · , ym]T ; Z ← 1/

√
m[z1, · · · , zm]T

6: ĝ(j) ≈ arg min‖v‖0≤s ‖Zv − y‖2 by n iterations of
CoSaMP

7: Output: ĝ(j): estimated block gradient.

underdetermined linear system. If3 ‖g‖0 ≤ s (see Assump-
tion 5) then also ‖g(j)‖0 ≤ s. Thus, we approximate g(j)

by solving the sparse recovery problem:

ĝ(j) = arg min ‖Zv−y‖2 v ∈ Rd
(j)

and ‖v‖0 ≤ s. (4)

We propose solving Problem (4) using n iterations of
CoSaMP (Needell & Tropp, 2009), but other choices are
possible. This approach, presented as Algorithm 1, yields
an accurate gradient estimator (Cai et al., 2020b) using only
Õ(s) queries, assuming g(j) is sparse. In contrast, direct
finite differencing (Berahas et al., 2019) requires O(d(j))
queries.

Theorem 2.1. Suppose f satisfies Assumptions 1, 5 and 6.
Let g(j) be the output of Algorithm 1 with δ = 2

√
σ/H ,

s ≥ sexact and m = b1s log(d/J) Rademacher sample
directions. Then with probability at least 1− (s/d)b2s:

‖ĝ(j) − g(j)‖2 ≤ ρn‖g(j)‖2 + 2τ
√
σH. (5)

The constants b1 and b2 are directly proportional; more
sample directions results in a higher probability of recovery.
In our experiments we consider 1 ≤ b1 ≤ 4. The constant ρ
and τ arise from the analysis of CoSaMP. Both are inversely
proportional to b1. For our range of b1, ρ ≈ 0.5 and τ ≈ 10.

2.1. Almost equisparse blocks using randomization

Suppose f satisfies Assumption 5, so ‖g(x)‖0 ≤ sexact

for all x. In general one cannot improve upon the bound
‖g(j)(x)‖0 ≤ sexact; perhaps all non-zero entries of g lie
in the j-th block. However, by randomizing the blocks one
can guarantee, with high probability, the non-zero entries
of g are almost equally distributed over the J blocks. We
assume, for simplicity, equal-sized blocks (i.e. d(j) = d/J).

Theorem 2.2. Choose U uniformly at random. For any
∆ > 0, x ∈ Rd we have ‖g(j)(x)‖0 ≤ (1 + ∆)sexact/J for
all j with probability at least 1− 2J exp(−∆2sexact

3J ).

3Throughout, we assume s ≥ sexact is specified by the user.
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It will be convenient to fix a value of ∆, say ∆ = 0.1.
An immediate consequence of Theorem 2.2 is that one can
improve upon the query complexity of Theorem 2.1:

Corollary 2.3. Choose U uniformly at random. For fixed
x ∈ Rd the error bound (5) in Theorem 2.1 still holds,
now with probability 1−O

(
J exp(−0.01sexact

3J )
)
, for s :=

sblock ≥ 1.1sexact/J (and all other parameters the same).

This allows us to use approximately J times fewer queries
per iteration.

2.2. Further reducing the required randomness

As discussed in (Cai et al., 2020b), one favorable feature of
using a compressed sensing based gradient estimator is the
error bound (5) is universal. That is, it holds for all x ∈ Rd
for the same set of sample directions {zi}mi=1 ⊂ Rd/J . So,
instead of resampling new vectors at each iteration we may
use the same sampling directions for each block and each
iteration. Thus, only md/J = Õ(sexactd/J

2) binary ran-
dom variables need to be sampled, stored and transmitted in
ZO-BCD. Remarkably, one can do even better by choosing
as sample directions a subset of the rows of a circulant ma-
trix. Recall a circulant matrix of size d/J × d/J , generated
by v ∈ Rd/J , has the following form:

C(v) =


v1 v2 · · · vd/J
vd/J v1 · · · vd/J−1

...
. . . . . .

...
v2 · · · vd/J v1

 . (6)

Equivalently, C(v) is the matrix with rows Ci(v) where:

Ci(v) ∈ Rd/J and Ci(v)j = vi+j−1.

By exploiting recent results in signal processing, we show:

Theorem 2.4. Assign blocks randomly as in Corollary 2.3.
Let z ∈ Rd/J be a Rademacher random vector. Fix
s := sblock ≥ 1.1sexact/J . Choose a random subset
Ω = {j1, . . . , jm} ⊂ {1, . . . , d/J} of cardinality m =
b3s log2(s) log2(d/J) and let zi = Cji(z) for i = 1, . . . ,m.
Let δ = 2

√
σ/H . For fixed x ∈ Rd the error bound (5) in

Theorem 2.1 still holds, now with probability at least

1− 2J exp

(
−0.01sexact

3J

)
− (d/J)

log(d/J) log2(4s)
.

Hence, one only needs d/J binary random variables (to con-
struct z) and m = Õ (sexact/J) randomly selected integers
for the entire algorithm. Note (partial) circulant matrices
allow for a fast multiplication, further reducing the compu-
tational complexity of Algorithm 1.

Algorithm 2 ZO-BCD
1: Input: x0: initial point; s: gradient sparsity level; α:

step size; δ: query radius; J : number of blocks.
2: sblock ← 1.1s/J
3: Randomly divide x into J equally sized blocks.
4: if ZO-BCD-R then
5: m← b1sblock log(d/J)
6: Generate Rademacher random vectors z1, . . . , zm
7: else if ZO-BCD-RC then
8: m← b3sblock log2(sblock) log2(d/J)
9: Generate Rademacher random vector z.

10: Randomly choose Ω ⊂ {1, . . . , d/J} with |Ω| = m
11: Let zi = Cji(z) for i = 1, . . .m and ji ∈ Ω
12: end if
13: for k = 0 to K do
14: Select a block j ∈ {1, . . . , J} uniformly at random.
15: ĝ

(j)
k ←Gradient Estimation(x

(j)
k , sblock, δ, {zi}mi=1)

16: xk+1 ← xk − αĝ(j)
k

17: end for
18: Output: xK : estimated optimum point.

3. The proposed algorithm: ZO-BCD
Let us now introduce our new algorithm. We consider two
variants, distinguished by the kind of sampling directions
used. ZO-BCD-R uses Rademacher sampling directions.
ZO-BCD-RC uses Rademacher-Circulant sampling direc-
tions, as described in Section 2.2. For simplicity, we present
our algorithm for randomly selected, equally sized coor-
dinate blocks. With minor modifications our results still
hold for user-defined and/or unequally sized blocks (see
Appendix B). The following theorem guarantees both vari-
ants converge at a sublinear rate to within a certain error
tolerance. As the choice of block in each iteration is random,
our results are necessarily probabilistic. We say xK is an
ε-optimal solution if f(xK)− f∗ ≤ ε.
Theorem 3.1. Assume f satisfies Assumptions 1–6. Define:

Lmax = max
j
Lj and c1 = 2JLmaxR2(x0).

Assume 4ρ4n + 16τ2σH
c1Lmax

< 1. Choose sparsity s ≥ sexact,
step size α = 1

Lmax
and query radius δ = 2

√
σ/H . Choose

the number of CoSaMP iterations n and error tolerance ε
such that:

c1
2

(
2ρ2n +

√
4ρ4n +

16τ2σH

c1ζLmax

)
< ε < f(x0)− f∗.

With probability at least 1− ζ − Õ
(
J2

ε exp
(−0.01sexact

3J

))
ZO-BCD-R finds an ε−optimal solution in Õ (s/ε) queries,
requiring Õ(sd/J2) FLOPS per iteration and Õ(sd/J2)
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total memory. With probability at least

1−Õ
(
J2

ε
exp

(
−0.01sexact

3J

))
−(d/J)

log(d/J) log2(4.4s/J)

ZO-BCD-RC finds an ε−optimal solution using Õ (s/ε)
queries, Õ(d/J) FLOPS per iteration and O(d/J) total
memory.

Thus, up to logarithmic factors, ZO-BCD achieves the same
query complexity as ZORO (Cai et al., 2020b) with a much
lower per-iteration computational cost. We pay for the im-
proved computational and memory complexity of ZO-BCD-
RC with a slightly worse theoretical query complexity (by a
logarithmic factor) due to the requirements of Theorem 2.4.
First order block coordinate descent methods typically have
a probability of success 1− ζ, thus in switching to zeroth-
order this probability decreases by a factor which is negligi-
ble for truly huge problems (e.g. d ≈ 106 and sexact ≈ 104).
For smaller problems we find randomly re-assigning the de-
cision variables to blocks every J iterations is a good way
to increase ZO-BCD’s probability of success.

4. Sparse wavelet transform attacks
Adversarial attacks on neural network based classifiers is
a popular application and benchmark for zeroth-order opti-
mizers (Chen et al., 2017; 2019; Ilyas et al., 2018; Modas
et al., 2019). Specifically, let F (x) ∈ [0, 1]C denote the pre-
dicted probabilities returned by the model for input signal
x. Then the goal is to find a small distortion δ such that
that the model’s top-1 prediction on x+ δ is no longer cor-
rect: argmaxc=1,...,CFc(x + δ) 6= argmaxc=1,...,CFc(x).
Because we only have access to the logits, F (x), not the
internal workings of the model, we are unable to compute
∇F (x) and hence this problem is of zeroth order. Recently,
(Cai et al., 2020b) showed it is reasonable to assume the
attack loss function exhibits (approximate) gradient sparsity,
and proposed generating adversarial examples by adding
a distortion to the victim image that is sparse in the image
pixel domain. We extend this and propose a novel sparse
wavelet transform attack, which searches for an adversarial
distortion δ? in the wavelet domain:

δ? = arg min
δ

f(IWT(WT(x) + δ)) + λ‖δ‖0, (7)

where x is a given image/audio signal, f is the Carlini-
Wagner loss function (Chen et al., 2017), WT is the chosen
(discrete or continuous) wavelet transform, and IWT is
the corresponding inverse wavelet transform. As wavelet
transforms extract the important features of the data, we
expect the gradients of this new loss function to be even
sparser than those of the corresponding pixel-domain loss
function (Cai et al., 2020b, Figure 1). Moreover, the inverse
wavelet transform spreads the energy of the sparse pertur-
bation, resulting in more natural-seeming attacked signals,

as compared with pixel-domain sparse attacks (Cai et al.,
2020b, Figure 6).

1. Sparse DWT attacks. The discrete wavelet transform
(DWT) is a well-known method for data compression
and denoising (Mallat, 1999; Cai et al., 2012). Many
real-world media data are compressed and stored in the
form of DWT coefficients (e.g. JPEG-2000 for images
and Dirac for videos), thus attacking the wavelet do-
main is more direct in these cases. Since DWT does
not increase the problem dimension4, the query com-
plexity of sparse wavelet-domain attacks is the same as
sparse pixel-domain attacks. An interesting variation
is to only attack the important (i.e. large) wavelet coef-
ficients. We explore this further in Section 5. This can
reduce the attack problem dimension by 60%–80% for
typical image datasets. Nevertheless, for large, modern
color images, this dimension can still be massive.

2. Sparse CWT attacks. For oscillatory signals, the
continuous wavelet transform (CWT) with analytic
wavelets is preferred (Mallat, 1999; Lilly & Olhede,
2010). Unlike DWT, the dimension of the CWT coeffi-
cients is much larger than the original signal dimension.
For example, attacking even 1 second audio clips in
a CWT domain results in a problem of size d > 1.7
million (see Section 5.3)!

The idea of adversarial attacks on DWT coefficients was
also proposed in (Anshumaan et al., 2020), but they assume
a white-box model and study only dense attacks on discrete
Haar wavelets. (Din et al., 2020) considers a “stegano-
graphic” attack, where the important wavelet coefficents of
a target image are “hidden” within the wavelet transform
coefficients of a victim image. We appear to be the first to
connect (both discrete and continuous) wavelet transforms
to sparse zeroth-order adversarial attacks.

5. Empirical results
In this section, we first show the empirical advantages of
ZO-BCD with synthetic examples. Then, we demonstrate
the performance of ZO-BCD in two real-world applications:
(i) sparse DWT attacks on images, and (ii) sparse CWT
attacks on audio signals. We compare the two versions of
ZO-BCD (see Algorithm 2) against two venerable zeroth-
order algorithms—FDSA (Kiefer et al., 1952) and SPSA5

(Spall, 1998)—as well as three more recent contributions:
ZO-SCD (Chen et al., 2017), ZORO (Cai et al., 2020b) and

4When using periodic boundary extension. If another boundary
extension is used, the dimension of the wavelet coefficients may
increase slightly, depending on the size of the filters and the level
of the transform.

5SPSA using Rademacher sample directions coincides with
Random Search (Nesterov & Spokoiny, 2017).
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LM-MA-ES (Loshchilov et al., 2018). ZO-SCD is a zeroth-
order (non-block) coordinate descent method. ZORO uses
a similar gradient estimator as ZO-BCD, but computes the
full gradient. LM-MA-ES is a recently proposed extension
of CMA-ES (Hansen & Ostermeier, 2001) to the large-scale
setting. In Section 5.2, we consider ZO-SGD (Ghadimi &
Lan, 2013), a variance-reduced version of SPSA, as this
has empirically shown better performance on this task than
SPSA6. We also consider ZO-AdaMM (Chen et al., 2019),
a zeroth-order method incorporating momentum. The ex-
periments in Section 5.1 were executed from Matlab 2020b
on a laptop with Intel i7-8750H CPU and 32GB RAM. The
experiments in Sections 5.2 and 5.3 were executed on a
workstation with Intel i9-9940X CPU, 128GB RAM, and
two of Nvidia RTX-3080 GPUs. All code is available online
at https://github.com/YuchenLou/ZO-BCD.

5.1. Synthetic examples

We study the performance of ZO-BCD with noisy oracles on
the zeroth-order optimization problem minimizex∈Rd f(x)
for two selected objective functions:

(a) Sparse quadratic function: f(x) = 1
2x

TAx, where A
is a diagonal matrix with s non-zero entries.

(b) Max-s-sum-squared function: f(x) = 1
2

∑s
mi
x2
mi

,
where xmi

is the i-th largest-in-magnitude entry of
x. This problem is more complicated than (a) as mi

changes with x.

We use d = 20, 000 and s = 200 in both problems, so they
have high ambient dimension with sparse gradients.

As can be seen in Figure 2, both versions of ZO-BCD effec-
tively exploit the gradient sparsity, and have very competi-
tive performance in terms of queries. In particular, ZO-BCD
converges more stably than the state-of-the-art ZORO in
max-s-squared-sum problem while its computational and
memory complexities are much lower. SPSA’s query effi-
ciency is roughly the same as that of ZO-BCD and ZORO
when the gradient support does not change (see Figure 2a);
however, it is significantly worse when the gradient support
is allowed to change (see Figure 2b).

Number of blocks. We study the performance of ZO-
BCD with different numbers of blocks. The numerical
results are summarized in Figure 3 and Table 1. Note that
the runtime of each query can vary a lot between problems,
so we only count the empirical runtime excluding the time of
making queries. As a rule of thumb, we find that using fewer
blocks yields smoother convergence and a more accurate
final solution (see Figure 3), at the cost of a higher runtime

6Variance reduction did little to improve the performance of
SPSA in the experiments of Section 5.1.
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Figure 2. Function values v.s. queries for ZO-BCD (-R and -RC,
with 5 blocks) and four other representative zeroth-order methods.
ZO-BCD is fast and stable (while running faster with less memory).

(see Table 1). This phenomenon matches our theoretical
result in Theorem 3.1. Generally speaking, we recommend
using a mild number of blocks to balance between ZO-
BCD’s speed and convergence performance.

Scalability. Since ZO-BCD and ZORO are the only meth-
ods that have competitive convergences in the query com-
plexity experiments (see Figure 2), it is only meaningful to
compare their computational complexities with respect to
problem dimension d. We record the runtime of ZO-BCD
and ZORO for solving the sparse quadratic function with
varying problem dimensions, where the stopping condition
is set to be f(xk) ≤ 10−2 for all tests. Similar to the ex-
periment of varying numbers of blocks, we only count the
empirical runtime excluding the time of making queries in
this experiment. The test results are presented in Figure 4,
where one can see that ZO-BCD-R has significant speed
advantage over ZORO and ZO-BCD-RC is even faster, es-

https://github.com/YuchenLou/ZO-BCD
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Figure 3. Function values v.s. queries for ZO-BCD-R with differ-
ent numbers of blocks.

pecially when problem dimension is large.

5.2. Sparse DWT attacks on images

We consider a wavelet domain, untargeted, per-image at-
tack on the ImageNet dataset (Deng et al., 2009) with
the pre-trained Inception-v3 model (Szegedy et al.,
2016), as discussed in Section 4. We use the famous ‘db45’
wavelet (Daubechies, 1992) with 3-level DWT in these at-
tacks. Empirical performance was evaluated by attacking
1000 randomly selected ImageNet pictures that were ini-
tially classified correctly. In addition to full wavelet domain
attacks using both ZO-BCD-R and ZO-BCD-RC, we exper-
iment with only attacking large wavelet coefficients, i.e. the
important components of the images in terms of the wavelet
basis. If we only attack wavelet coefficients greater than
0.05 in magnitude, the problem dimension is reduced by an
average of 67.3% for the tested images; nevertheless, the
attack problem dimension is still as large as ∼ 90, 000, so

Table 1. Runtime per iteration and the number of iterations to reach
tolerance for ZO-BCD-R with varying number of blocks (J).

Sparse Quadric. Max-s-squared-sum
J SEC/ITR ITR to 10−2 SEC/ITR ITR to 100

2 .1093 sec 8 .1362 sec 249
4 .0244 sec 20 .0358 sec 605
8 .0054 sec 45 .0116 sec 1651

12 .0026 sec 224 .0054 sec 3185
16 .0019 sec N/A .0042 sec 5090
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Figure 4. Runtime v.s. problem dimension for ZO-BCD (-R and
-RC, with 5 blocks) and ZORO.

ZO-BCD is still suitable for this attack problem.

The test results are summarized in Table 2. All three ver-
sions of ZO-BCD wavelet attack beat the other state-of-the-
art methods in both attack success rate and `2 distortion,
and the large-coefficients-only (i.e. we only attack wavelet
coefficients with abs ≥ 0.05) wavelet attack by ZO-BCD-R
achieves the best results. Furthermore, ZO-BCD is robust
to the choice of the number of blocks and sparsity, as sum-
marized in Table 3. We present a few visual examples of
these adversarial attacks in Figure 5. More examples, and
detailed experimental settings, can be found in Appendix D.

5.3. Sparse CWT attacks on audio signals

We consider targeted per-clip audio adversarial attacks on
the SpeechCommands dataset (Warden, 2018), which
consists of 1-second audio clips, each containing a one-word
voice command, e.g. “yes” or “left”. The audio sampling
rate is 16kHz thus each clip is a 16, 000 real valued vector.
Adversarial attacks against this data set have been consid-
ered in (Alzantot et al., 2018; Vadillo & Santana, 2019; Li
et al., 2020) and (Xie et al., 2020), although with the ex-
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Table 2. Results of untargeted adversarial attack on images using
various zeroth-order algorithms. Attack success rate (ASR), av-
erage final `2 distortion (on pixel domain), average iterations and
number of queries till 1st successful attack. ZO-BCD-R(large co-
eff.) stands for applying ZO-BCD-R to attack only large wavelet
coefficients (abs ≥ 0.05).

METHODS ASR `2 DIST QUERIES

ZO-SCD 78% 57.5 2400
ZO-SGD 78% 37.9 1590
ZO-AdaMM 81% 28.2 1720
ZORO 90% 21.1 2950
ZO-BCD-R 92% 14.1 2131
ZO-BCD-RC 92% 14.2 2090
ZO-BCD-R(large coeff.) 96% 13.7 1662

Table 3. Results of sparse DWT adversarial attack on images, using
ZO-BCD-R and different values of s (sparsity) and J (number of
blocks). ZO-BCD-R is robust to the particular choice of s and J .
Note d = 676, 353 is the problem dimension.

ZO-BCD-R ASR `2 DIST QUERIES

J = 2000, s = 0.05d 93% 15.3 2423
J = 4000, s = 0.05d 91% 14.0 2109
J = 8000, s = 0.05d 93% 14.8 2145
J = 12000, s = 0.05d 90% 13.8 1979
J = 4000, s = 0.01d 86% 22.6 2440
J = 4000, s = 0.025d 93% 16.5 2086
J = 4000, s = 0.1d 90% 13.1 2364

ception of (Alzantot et al., 2018) all these works consider
a white-box setting7. The victim model is a pre-trained, 5
layer, convolutional network called commandNet (The
MathWorks Inc., 2020). The architecture is essentially
as proposed in (Sainath & Parada, 2015). It takes as in-
put the bark spectrum coefficients of a given audio clip,
a transform closely related to the Mel Frequency trans-
form. The test classification accuracy of this model (on
un-attacked audio clips) is 94.46%. We use the Morse
(Olhede & Walden, 2002) continuous wavelet transform
with 111 frequencies, resulting in a problem dimension of
111 × 16, 000 = 1, 776, 000. As discussed in (Carlini &
Wagner, 2018), the appropriate measure of size for the at-
tacking distortion δ is relative loudness:

dBx(δ) := 20
(

max
i

log10(|xi|)−max
i

log10(|δi|)
)
.

The results are detailed in Table 5 and Figure 6. Overall, we
achieve a 97.93% ASR using a mean of 7073 queries. Our
attacking distortions have a mean volume of −6.32dB. As
can be seen, our proposed attack exceeds the state of the

7There are other subtle differences in the threat models consid-
ered in these works, as compared to ours (see Appendix E.2).

(a) ZO-BCD-R: “barbershop”
→ “flagpole”

(b) ZO-BCD-R (large coeff.):
“barbershop”→ “flagpole”

(c) ZO-BCD-R: “dumbbell”→
“computer keyboard”

(d) ZO-BCD-R (large coeff.):
“dumbbell”→ “computer key-
board”

Figure 5. Examples of wavelet attacked images by ZO-BCD-R
and ZO-BCD-R (attack restricted to only large coefficients, i.e.
abs ≥ 0.05), true labels and mis-classified labels.

art in attack success rate (ASR), surpassing even white-box
attacks! This is not to claim that our proposed method is
strictly better than others, as there are multiple factors to
consider when judging the “goodness” of an attack (ASR,
attack distortion, universality etc.), see Appendix E.2. The
attacking noise can be heard as a slight “hiss”, or white
noise in the attacked audio clips. The original keyword
however is easy for a human listener to make out. We
encourage the reader to listen to a few examples, available
at https://github.com/YuchenLou/ZO-BCD.

Out of curiosity, we also tested using ZO-BCD to craft un-
targeted adversarial attacks in the time domain (i.e. without
using a wavelet transform) for 1000 randomly selected audio
clips. The results are underwhelming; indeed the attacking
perturbation is on average significantly louder than the vic-
tim audio clip (see Table 4)! This suggests attacking in a
wavelet domain is much more effective than attacking in the
original signal domain.

6. Conclusion
We have introduced ZO-BCD, a novel zeroth-order optimiza-
tion algorithm. ZO-BCD enjoys strong, albeit probabilistic,
convergence guarantees. We have also introduced a new

https://github.com/YuchenLou/ZO-BCD
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Figure 6. Detailed results for targeted sparse wavelet attacks on
audio signals.

paradigm in adversarial attacks on classifiers: the sparse
wavelet domain attack. On medium-scale test problems the
performance of ZO-BCD matches or exceeds that of state-
of-the-art zeroth order optimization algorithms, as predicted
by theory. However, the low per-iteration computational and
memory requirements of ZO-BCD means that it can tackle
huge-scale problems that for other zeroth-order algorithms
are intractable. We demonstrate this by successfully using
ZO-BCD to craft adversarial examples, to both image and
audio classifiers, in wavelet domains where the problem size
can exceed 1.7 million.
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Table 4. Results for untargeted attacks on audio signals using ZO-
BCD-R in the time domain, in the wavelet domain using a step-size
of 0.02 and in the wavelet domain using a step-size of 0.05. Attack
success rate (ASR), average final Decibel distortion and average
number of queries to 1st successful attack.

DOMAINS ASR dB DIST QUERIES

Time 100% +1.5597 894
Wavelet (0.02) 99.9% -13.8939 3452
Wavelet (0.05) 100% -7.1192 2502

Table 5. Results of attacks on SpeechCommands dataset. A =
(Alzantot et al., 2018), V&S = (Vadillo & Santana, 2019), Li = (Li
et al., 2020), Xie = (Xie et al., 2020). Univ. = Universal.

METHOD ASR UNIV. BLACK-BOX TARGETED

A. 89.0% NO YES YES
V&S 70.4% YES NO NO
Li 96.8% YES NO YES
Xie 97.8% NO NO YES
ZO-BCD 97.9% NO YES YES

References
Alzantot, M., Balaji, B., and Srivastava, M. Did you hear

that? Adversarial examples against automatic speech
recognition. arXiv preprint arXiv:1801.00554, 2018.

Alzantot, M., Sharma, Y., Chakraborty, S., Zhang, H., Hsieh,
C.-J., and Srivastava, M. B. Genattack: Practical black-
box attacks with gradient-free optimization. In Proceed-
ings of the Genetic and Evolutionary Computation Con-
ference, pp. 1111–1119, 2019.

Anshumaan, D., Agarwal, A., Vatsa, M., and Singh, R.
Wavetransform: Crafting adversarial examples via input
decomposition. In Computer Vision – ECCV 2020 Work-
shops, pp. 152–168. Springer, Cham, 2020.

Balasubramanian, K. and Ghadimi, S. Zeroth-order (non)-
convex stochastic optimization via conditional gradient
and gradient updates. In Advances in Neural Information
Processing Systems, pp. 3455–3464, 2018.

Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg,
K. A theoretical and empirical comparison of gradient
approximations in derivative-free optimization. arXiv
preprint arXiv:1905.01332, 2019.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of machine learning
research, 13(2), 2012.

Bertsekas, D. P. Nonlinear programming. Journal of the
Operational Research Society, 48(3):334–334, 1997.



ZO-BCD

Cai, H., Mckenzie, D., Yin, W., and Zhang, Z. A one-
bit, comparison-based gradient estimator. arXiv preprint
arXiv:2010.02479, 2020a.

Cai, H., Mckenzie, D., Yin, W., and Zhang, Z. Zeroth-
order regularized optimization (ZORO): Approximately
sparse gradients and adaptive sampling. arXiv preprint
arXiv:2003.13001, 2020b.

Cai, J.-F., Dong, B., Osher, S., and Shen, Z. Image restora-
tion: Total variation, wavelet frames, and beyond. Journal
of the American Mathematical Society, 25(4):1033–1089,
2012.

Carlini, N. and Wagner, D. Audio adversarial examples:
Targeted attacks on speech-to-text. In 2018 IEEE Security
and Privacy Workshops (SPW), pp. 1–7. IEEE, 2018.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-
J. ZOO: Zeroth order optimization based black-box at-
tacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on
artificial intelligence and security, pp. 15–26, 2017.

Chen, X., Liu, S., Xu, K., Li, X., Lin, X., Hong, M., and
Cox, D. Zo-AdaMM: Zeroth-order adaptive momen-
tum method for black-box optimization. In Advances in
Neural Information Processing Systems, pp. 7204–7215,
2019.

Choromanski, K., Pacchiano, A., Parker-Holder, J., Tang, Y.,
Jain, D., Yang, Y., Iscen, A., Hsu, J., and Sindhwani, V.
Provably robust blackbox optimization for reinforcement
learning. In Conference on Robot Learning, pp. 683–696.
PMLR, 2020.

Cisse, M., Adi, Y., Neverova, N., and Keshet, J. Houdini:
Fooling deep structured visual and speech recognition
models with adversarial examples. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 6980–6990, 2017.

Daubechies, I. Ten lectures on wavelets. SIAM, 1992.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Din, S. U., Akhtar, N., Younis, S., Shafait, F., Mansoor, A.,
and Shafique, M. Steganographic universal adversarial
perturbations. Pattern Recognition Letters, 135:146–152,
2020.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. Online
convex optimization in the bandit setting: Gradient de-
scent without a gradient. In Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 385–394, 2005.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Golovin, D., Karro, J., Kochanski, G., Lee, C., Song, X.,
and Zhang, Q. Gradientless descent: High-dimensional
zeroth-order optimization. In International Conference
on Learning Representations, 2019.

Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G.,
Elsen, E., Prenger, R., Satheesh, S., Sengupta, S., Coates,
A., et al. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567, 2014.

Hansen, N. and Ostermeier, A. Completely derandomized
self-adaptation in evolution strategies. Evolutionary com-
putation, 9(2):159–195, 2001.

Huang, M., Pang, Y., and Xu, Z. Improved bounds for the
RIP of subsampled circulant matrices. arXiv preprint
arXiv:1808.07333, 2018.

Hutter, F., Hoos, H., and Leyton-Brown, K. An efficient
approach for assessing hyperparameter importance. In
International conference on machine learning, pp. 754–
762. PMLR, 2014.

Ilyas, A., Engstrom, L., Athalye, A., and Lin, J. Black-box
adversarial attacks with limited queries and information.
In International Conference on Machine Learning, pp.
2137–2146. PMLR, 2018.

Jamieson, K. G., Nowak, R. D., and Recht, B. Query com-
plexity of derivative-free optimization. In Proceedings of
the 25th International Conference on Neural Information
Processing Systems-Volume 2, pp. 2672–2680, 2012.

Kiefer, J., Wolfowitz, J., et al. Stochastic estimation of
the maximum of a regression function. The Annals of
Mathematical Statistics, 23(3):462–466, 1952.

Krahmer, F., Mendelson, S., and Rauhut, H. Suprema
of chaos processes and the restricted isometry property.
Communications on Pure and Applied Mathematics, 67
(11):1877–1904, 2014.

Li, Z., Wu, Y., Liu, J., Chen, Y., and Yuan, B. Advpulse:
Universal, synchronization-free, and targeted audio adver-
sarial attacks via subsecond perturbations. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1121–1134, 2020.

Lian, X., Zhang, H., Hsieh, C.-J., Huang, Y., and Liu, J. A
comprehensive linear speedup analysis for asynchronous
stochastic parallel optimization from zeroth-order to first-
order. arXiv preprint arXiv:1606.00498, 2016.



ZO-BCD

Lilly, J. M. and Olhede, S. C. On the analytic wavelet
transform. IEEE transactions on information theory, 56
(8):4135–4156, 2010.

Loshchilov, I., Glasmachers, T., and Beyer, H.-G. Large
scale black-box optimization by limited-memory matrix
adaptation. IEEE Transactions on Evolutionary Compu-
tation, 23(2):353–358, 2018.

Mallat, S. A wavelet tour of signal processing. Elsevier,
1999.

Mania, H., Guy, A., and Recht, B. Simple random search
of static linear policies is competitive for reinforcement
learning. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, pp.
1805–1814, 2018.

Mendelson, S., Rauhut, H., Ward, R., et al. Improved
bounds for sparse recovery from subsampled random
convolutions. The Annals of Applied Probability, 28(6):
3491–3527, 2018.

Modas, A., Moosavi-Dezfooli, S.-M., and Frossard, P.
Sparsefool: A few pixels make a big difference. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 9087–9096, 2019.

Needell, D. and Tropp, J. A. Cosamp: Iterative signal recov-
ery from incomplete and inaccurate samples. Applied and
computational harmonic analysis, 26(3):301–321, 2009.

Nesterov, Y. Efficiency of coordinate descent methods on
huge-scale optimization problems. SIAM Journal on
Optimization, 22(2):341–362, 2012.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, 17(2):527–566, 2017.

Olhede, S. C. and Walden, A. T. Generalized Morse
wavelets. IEEE Transactions on Signal Processing, 50
(11):2661–2670, 2002.

Reeja-Jayan, B., Harrison, K. L., Yang, K., Wang, C.-L.,
Yilmaz, A., and Manthiram, A. Microwave-assisted low-
temperature growth of thin films in solution. Scientific
reports, 2(1):1–8, 2012.

Sainath, T. N. and Parada, C. Convolutional neural networks
for small-footprint keyword spotting. In Sixteenth Annual
Conference of the International Speech Communication
Association, 2015.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever,
I. Evolution strategies as a scalable alternative to rein-
forcement learning. arXiv preprint arXiv:1703.03864,
2017.

Spall, J. C. An overview of the simultaneous perturbation
method for efficient optimization. Johns Hopkins apl
technical digest, 19(4):482–492, 1998.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Taori, R., Kamsetty, A., Chu, B., and Vemuri, N. Targeted
adversarial examples for black box audio systems. In
2019 IEEE Security and Privacy Workshops (SPW), pp.
15–20. IEEE, 2019.
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