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Abstract
Normalization is known to help the optimization
of deep neural networks. Curiously, different
architectures require specialized normalization
methods. In this paper, we study what normal-
ization is effective for Graph Neural Networks
(GNNs). First, we adapt and evaluate the existing
methods from other domains to GNNs. Faster
convergence is achieved with InstanceNorm com-
pared to BatchNorm and LayerNorm. We provide
an explanation by showing that InstanceNorm
serves as a preconditioner for GNNs, but such
preconditioning effect is weaker with BatchNorm
due to the heavy batch noise in graph datasets.
Second, we show that the shift operation in In-
stanceNorm results in an expressiveness degra-
dation of GNNs for highly regular graphs. We
address this issue by proposing GraphNorm with
a learnable shift. Empirically, GNNs with Graph-
Norm converge faster compared to GNNs using
other normalization. GraphNorm also improves
the generalization of GNNs, achieving better per-
formance on graph classification benchmarks.

1. Introduction
Recently, there has been a surge of interest in Graph Neu-
ral Networks (GNNs) for learning with graphs (Gori et al.,
2005; Scarselli et al., 2008; Hamilton et al., 2017; Kipf
& Welling, 2017; Velickovic et al., 2018; Xu et al., 2018;
Ying et al., 2021). GNNs learn node and graph represen-
tations by recursively aggregating and updating the node
representations from neighbor representations (Gilmer et al.,
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2017). Empirically, GNNs have succeeded in a variety of
tasks such as computational chemistry (Stokes et al., 2020),
recommendation systems (Ying et al., 2018), and visual
question answering (Santoro et al., 2017). Theoretically,
existing works have studied GNNs through the lens of ex-
pressive power (Keriven & Peyré, 2019; Xu et al., 2019;
Sato et al., 2019; Loukas, 2020; Ying et al., 2021), gener-
alization (Scarselli et al., 2018; Du et al., 2019b; Xu et al.,
2020), and extrapolation (Xu et al., 2021). However, the op-
timization of GNNs is less well understood, and in practice,
the training of GNNs is often unstable and the convergence
is slow (Xu et al., 2019).

In this paper, we study how to improve the training of GNNs
via normalization. Normalization methods shift and scale
the hidden representations and are shown to help the opti-
mization for deep neural networks (Ioffe & Szegedy, 2015;
Ulyanov et al., 2016; Ba et al., 2016; Salimans & Kingma,
2016; Xiong et al., 2020; Salimans et al., 2016; Miyato et al.,
2018; Wu & He, 2018; Santurkar et al., 2018). Curiously, no
single normalization helps in every domain, and different ar-
chitectures require specialized methods. For example, Batch
normalization (BatchNorm) is a standard component in com-
puter vision (Ioffe & Szegedy, 2015); Layer normalization
(LayerNorm) is popular in natural language processing (Ba
et al., 2016; Xiong et al., 2020); Instance normalization
(InstanceNorm) has been found effective for style transfer
tasks (Ulyanov et al., 2016) . This motivates the question:
What normalization methods are effective for GNNs?

We take an initial step towards answering the question above.
First, we adapt the existing methods from other domains,
including BatchNorm, LayerNorm, and InstanceNorm, to
GNNs and evaluate their performance with extensive ex-
periments on graph classification tasks. We observe that
our adaptation of InstanceNorm to GNNs, which for each
individual graph normalizes its node hidden representations,
obtains much faster convergence compared to BatchNorm
and LayerNorm. We provide an explanation for the suc-
cess of InstanceNorm by showing that the shift operation
in InstanceNorm serves as a preconditioner of the graph
aggregation operation. Empirically, such preconditioning
makes the optimization curvature smoother and makes the
training more efficient. We also explain why the widely used
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Figure 1. Overview. We evaluate and understand BatchNorm, LayerNorm, and InstanceNorm, when adapted to GNNs. InstanceNorm
trains faster than LayerNorm and BatchNorm on most datasets (Section 3.1), as it serves as a preconditioner of the aggregation of GNNs
(1a, Section 3.2). The preconditioning effect is weaker for BatchNorm due to heavy batch noise in graphs (1b, Section 3.3). We propose
GraphNorm with a learnable shift to address the limitation of InstanceNorm. GraphNorm outperforms other normalization methods for
both training speed (Figure 2) and generalization (Table 1, 2).

BatchNorm does not bring the same level of acceleration.
The variance of the batch-level statistics on graph datasets
is much larger if we apply the normalization across graphs
in a batch instead of across individual graphs. The noisy
statistics during training may lead to unstable optimization.

Second, we show that the adaptation of InstanceNorm to
GNNs, while being helpful in general, has limitations. The
shift operation in InstanceNorm, which subtracts the mean
statistics from node hidden representations, may lead to
an expressiveness degradation for GNNs. Specifically, for
highly regular graphs, the mean statistics contain graph
structural information, and thus removing them could hurt
the performance. Based on our analysis, we propose Graph-
Norm to address the issue of InstanceNorm with a learnable
shift (Step 2 in Figure 1). The learnable shift could learn to
control the ideal amount of information to preserve for mean
statistics. Together, GraphNorm normalizes the hidden rep-
resentations across nodes in each individual graph with a
learnable shift to avoid the expressiveness degradation while
inheriting the acceleration effect of the shift operation.

We validate the effectiveness of GraphNorm on eight popu-
lar graph classification benchmarks. Empirical results con-
firm that GraphNorm consistently improves the speed of
converge and stability of training for GNNs compared to
those with BatchNorm, InstanceNorm, LayerNorm, and
those without normalization. Furthermore, GraphNorm
helps GNNs achieve better generalization performance on

most benchmarks.

1.1. Related Work

Closely related to our work, InstanceNorm (Ulyanov et al.,
2016) is originally proposed for real-time image generation.
Variants of InstanceNorm are also studied in permutation
equivalent data processing (Yi et al., 2018; Sun et al., 2020).
We instead adapt InstanceNorm to GNNs and find it help-
ful for the training of GNNs. Our proposed GraphNorm
builds on and improves InstanceNorm by addressing its
expressiveness degradation with a learnable shift.

Few works have studied normalization in the GNN literature.
Xu et al. (2019) adapts BatchNorm to GIN as a plug-in
component. A preliminary version of Dwivedi et al. (2020)
normalizes the node features with respect to the graph size.
Our GraphNorm is size-agnostic and significantly differs
from the graph size normalization. More discussions on
other normalization methods are in Appendix E.

The reason behind the effectiveness of normalization has
been intensively studied. While scale and shift are the main
components of normalization, most existing works focus
on the scale operation and the “scale-invariant” property:
With a normalization layer after a linear (or convolutional)
layer, the output values remain the same as the weights are
scaled. Hence, normalization decouples the optimization of
direction and length of the parameters (Kohler et al., 2019),
implicitly tunes the learning rate (Ioffe & Szegedy, 2015;
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Hoffer et al., 2018; Arora et al., 2018b; Li & Arora, 2019),
and smooths the optimization landscape (Santurkar et al.,
2018). Our work offers a different view by instead showing
specific shift operation has the preconditioning effect and
can accelerate the training of GNNs.

2. Preliminaries
We begin by introducing our notations and the basics of
GNNs. Let G = (V,E) denote a graph where V =
{v1, v2, · · · , vn}, n is the number of nodes. Let the feature
vector of node vi be Xi. We denote the adjacency matrix of
a graph as A ∈ Rn×n with Aij = 1 if (vi, vj) ∈ E and 0
otherwise. The degree matrix associated with A is defined
as D = diag (d1, d2, . . . , dn) where di =

∑n
j=1Aij .

Graph Neural Networks. GNNs use the graph structure
and node features to learn the representations of nodes and
graphs. Modern GNNs follow a neighborhood aggregation
strategy (Sukhbaatar et al., 2016; Kipf & Welling, 2017;
Hamilton et al., 2017; Velickovic et al., 2018; Monti et al.,
2017; Ying et al., 2021), where the representation of a node
is iteratively updated by aggregating the representation of
its neighbors. To be concrete, we denote h(k)i as the repre-
sentation of vi at the k-th layer and define h(0)i = Xi. We
use AGGREGATE to denote the aggregation function in the
k-th layer:

h
(k)
i = AGGREGATE(k)

(
h
(k−1)
i ,

{
h
(k−1)
j : vj ∈ N (vi)

})
,

(1)

where N (vi) is the set of nodes adjacent to vi. Different
GNNs can be obtained by choosing different AGGREGATE
functions. Graph Convolutional Networks (GCN) (Kipf &
Welling, 2017) can be defined in matrix form as:

H(k) = ReLU
(
W (k)H(k−1)QGCN

)
, (2)

where ReLU stands for rectified linear unit, H(k) =[
h
(k)
1 , h

(k)
2 , · · · , h(k)n

]
∈ Rd(k)×n is the feature matrix at

the k-th layer where d(k) denotes the feature dimension,
and W (k) is the parameter matrix in layer k. QGCN =
D̂−

1
2 ÂD̂−

1
2 , where Â = A+In and D̂ is the degree matrix

of Â. In is the identity matrix.

Graph Isomorphism Network (GIN) (Xu et al., 2019) is
defined in matrix form as

H(k) = MLP(k)
(
W (k)H(k−1)QGIN

)
, (3)

where MLP stands for multilayer perceptron, ξ(k) is a learn-
able parameter and QGIN = A+ In + ξ(k)In.

For a K-layer GNN, the outputs of the final layer, i.e.,
h
(K)
i ,i = 1, · · · , n, will be used for prediction. For

graph classification tasks, we can apply a READOUT
function, e.g., summation, to aggregate node features
h
(K)
i to obtain the entire graph’s representation hG =

READOUT
({
h
(K)
i

∣∣ vi ∈ V
})

. A classifier can be ap-
plied upon hG to predict the labels.

Normalization. Generally, given a set of values
{x1, x2, · · · , xm}, a normalization operation first shifts
each xi by the mean µ, and then scales them down by
standard deviation σ: xi → γ xi−µ

σ + β, where γ and
β are learnable parameters, µ = 1

m

∑m
i=1 xi and σ2 =

1
m

∑m
i=1 (xi − µ)

2. The major difference among different
existing normalization methods is which set of feature val-
ues the normalization is applied to. For example, in com-
puter vision, BatchNorm normalizes the feature values in the
same channel across different samples in a batch. In NLP,
LayerNorm normalizes the feature values at each position
in a sequence separately.

3. Evaluating and Understanding
Normalization for GNNs

In this section, we first adapt and evaluate existing normal-
ization methods to GNNs. Then we give an explanation of
the effectiveness of the variant of InstanceNorm, and show
why the widely used BatchNorm fails to have such effec-
tiveness. The understanding inspires us to develop better
normalization methods, e.g., GraphNorm.

3.1. Adapting and Evaluating Normalization for GNNs

To investigate what normalization methods are effective for
GNNs, we first adapt three typical normalization methods,
i.e., BatchNorm, LayerNorm, and InstanceNorm, developed
in other domain to GNNs. We apply the normalization
after the linear transformation as in previous works (Ioffe
& Szegedy, 2015; Xiong et al., 2020; Xu et al., 2019). The
general GNN structure equipped with a normalization layer
can be represented as:

H(k) = F (k)
(
Norm

(
W (k)H(k−1)Q

))
, (4)

where F (k) is a function that applies to each node separately,
Q is an n× n matrix representing the neighbor aggregation,
and W (k) is the weight/parameter matrix in layer k. We can
instantiate Eq. (4) as GCN and GIN, by setting proper F (k)

and matrix Q. For example, if we set F (k) to be ReLU and
set Q to be QGCN (Eq. (2)), then Eq. (4) becomes GCN with
normalization; Similarly, by setting F (k) to be MLP(k) and
Q to beQGIN (Eq. (3)), we recover GIN with normalization.

We then describe the concrete operations of the adaptations
of the normalization methods. Consider a batch of graphs
{G1, · · · , Gb} where b is the batch size. Let ng be the
number of nodes in graph Gg. We generally denote ĥi,j,g
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Figure 2. Training performance of GIN with different normalization methods and GIN without normalization in graph classification
tasks. The convergence speed of our adaptation of InstanceNorm dominates BatchNorm and LayerNorm in most tasks. GraphNorm
further improves the training over InstanceNorm especially on tasks with highly regular graphs, e.g., IMDB-BINARY (See Figure 5 for
detailed illustration). Overall, GraphNorm converges faster than all other methods.

as the inputs to the normalization module, e.g., the j-th
feature value of node vi of graph Gg, i = 1, · · · , ng, j =
1, · · · , d, g = 1, · · · , b. The adaptations take the general
form:

Norm
(
ĥi,j,g

)
= γ · ĥi,j,g − µ

σ
+ β, (5)

where the scopes of mean µ, standard deviation σ, and affine
parameters γ, β differ for different normalization methods.
For BatchNorm, normalization and the computation of µ
and σ are applied to all values in the same feature dimension
across the nodes of all graphs in the batch as in Xu et al.
(2019), i.e., over dimensions g, i of ĥi,j,g. To adapt Layer-
Norm to GNNs, we view each node as a basic component,
resembling words in a sentence, and apply normalization
to all feature values across different dimensions of each
node, i.e., over dimension j of ĥi,j,g. For InstanceNorm,
we regard each graph as an instance. The normalization is
then applied to the feature values across all nodes for each
individual graph, i.e., over dimension i of ĥi,j,g .

In Figure 2 we show training curves of different normal-
ization methods in graph classification tasks. We find that
LayerNorm hardly improves the training process in most
tasks, while our adaptation of InstanceNorm can largely
boost the training speed compared to other normalization
methods. The test performances have similar trends. We
summarize the final test accuracies in Table 1. In the follow-
ing subsections, we provide an explanation for the success
of InstanceNorm and its benefits compared to BatchNorm,
which is currently adapted in many GNNs.

3.2. Shift in InstanceNorm as a Preconditioner

As mentioned in Section 1.1, the scale-invariant property of
the normalization has been investigated and considered as
one of the ingredients that make the optimization efficient.
In our analysis of normalizations for GNNs, we instead
take a closer look at the shift operation in the normalization.
Compared to the image and sequential data, the graph is
explicitly structured, and the neural networks exploit the
structural information directly in the aggregation of the
neighbors, see Eq. (1). Such uniqueness of GNNs makes it
possible to study how the shift operation interplays with the
graph data in detail.

We show that the shift operation in our adaptation of In-
stanceNorm serves as a preconditioner of the aggregation
in GNNs and hypothesize this preconditioning effect can
boost the training of GNNs. Though the current theory of
deep learning has not been able to prove and compare the
convergence rate in the real settings, we calculate the con-
vergence rate of GNNs on a simple but fully characterizable
setting to give insights on the benefit of the shift operation.

fWe first formulate our adaptation of InstanceNorm in the
matrix form. Mathematically, for a graph of n nodes, denote
N = In− 1

n11
>. N is the matrix form of the shift operation,

i.e., for any vector z = [z1, z2, · · · , zn]> ∈ Rn, z>N =
z> −

(
1
n

∑n
i=1 zi

)
1>. Then the normalization together
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with the aggregation can be represented as1

Norm
(
W (k)H(k−1)Q

)
= S

(
W (k)H(k−1)Q

)
N, (6)

where S = diag
(

1
σ1
, 1
σ2
, · · · , 1

σ
d(k)

)
is the scaling, and Q

is the GNN aggregation matrix. Each σi is the standard
deviation of the values of the i-th features among the nodes
in the graph we consider. We can see that, in the matrix
form, shifting feature values on a single graph is equivalent
to multiplying N as in Eq. (6). Therefore, we further check
how this operation affects optimization. In particular, we
examine the singular value distribution of QN . The follow-
ing theorem shows that QN has a smoother singular value
distribution than Q, i.e., N serves as a preconditioner of Q.

Theorem 3.1 (Shift Serves as a Preconditioner of Q). Let
Q,N be defined as in Eq. (6), 0 ≤ λ1 ≤ · · · ≤ λn be
the singular values of Q. We have µn = 0 is one of the
singular values of QN , and let other singular values of QN
be 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn−1. Then we have

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn, (7)

where λi = µi or λi = µi−1 only if there exists one of the
right singular vectors αi of Q associated with λi satisfying
1>αi = 0.

The proof can be found in Appendix A.1.

We hypothesize that precoditioningQ can help the optimiza-
tion. In the case of optimizing the weight matrix W (k), we
can see from Eq. (6) that after applying normalization, the
term Q in the gradient of W (k) will become QN which
makes the optimization curvature of W (k) smoother, see
Appendix A.5 for more discussions. Similar precondition-
ing effects are believed to improve the training of deep
learning models (Duchi et al., 2011; Kingma & Ba, 2015),
and classic wisdom in optimization has also shown that
preconditioning can accelerate the convergence of iterative
methods (Axelsson, 1985; Demmel, 1997). Unfortunately,
current theoretical toolbox only has a limited power on the
optimization of deep learning models. Global convergence
rates have only been proved for either simple models, e.g.,
linear models (Arora et al., 2018a), or extremely overparam-
eterized models (Du et al., 2018; Allen-Zhu et al., 2019; Du
et al., 2019a; Cai et al., 2019; Du et al., 2019b; Zou et al.,
2020). To support our hypothesis that preconditioning may
suggest better training, we investigate a simple but charac-
terizable setting of training a linear GNN using gradient
descent in Appendix A.2. In this setting, we prove that:

Proposition 3.1 (Concrete Example Showing Shift can Ac-
celerate Training (Informal)). With high probability over

1Standard normalization has an additional affine operation after
shifting and scaling. Here we omit it in Eq. 6 for better demonstra-
tion. Adding this operation will not affect the theoretical analysis.
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Figure 3. Singular value distribution of Q and QN for sampled
graphs in different datasets using GIN. More visualizations can be
found in Appendix D.1

randomness of data generation, the parameter wShift
t of the

model with shift at step t converges to the optimal parameter
wShift
∗ linearly:∥∥wShift

t −wShift
∗

∥∥
2
= O

(
ρt1
)
,

where ρ1 is the convergence rate.

Similarly, the parameter wVanilla
t of the vanilla model con-

verges linearly, but with a slower rate:∥∥wVanilla
t −wVanilla

∗
∥∥
2
= O

(
ρt2
)
and ρ1 < ρ2,

which indicates that the model with shift converges faster
than the vanilla model.

The proof can be found in Appendix A.2. To check how
much the matrix N improves the distribution of the spec-
trum of matrix Q in real practice, we sample graphs from
different datasets for illustration, as showed in Figure 3
(more visualizations for different types of graph can be
found in Appendix D.1). We can see that the singular value
distribution of QN is much smoother, and the condition
number is improved. Note that for a multi-layer GNN, the
normalization will be applied in each layer. Therefore, the
overall improvement of such preconditioning can be more
significant.

3.3. Heavy Batch Noise in Graphs Makes BatchNorm
Less Effective

The above analysis shows the adaptation of InstanceNorm
has the effect of preconditioning the aggregation of GNNs.
Then a natural question is whether a batch-level normaliza-
tion for GNNs (Xu et al., 2019) has similar advantages. We
show that BatchNorm is less effective in GNNs due to heavy
batch noise on graph data.

In BatchNorm, the mean µB and standard deviation σB are
calculated in a sampled batch during training, which can be
viewed as random variables by the randomness of sampling.
During testing, the estimated dataset-level statistics (running
mean µD and standard deviation σD) are used instead of the
batch-level statistics (Ioffe & Szegedy, 2015). To apply The-
orem 3.1 to BatchNorm for the preconditioning effect, one
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Figure 4. Batch-level statistics are noisy for GNNs. We plot the batch-level/dataset-level mean/standard deviation of models trained
on PROTEINS (graph classification) and CIFAR10 (image classification). We observe that the deviation of batch-level statistics from
dataset-level statistics is rather large for the graph task, while being negligible in image task.

could potentially view all graphs in a dataset as subgraphs in
a super graph. Hence, Theorem 3.1 applies to BatchNorm
if the batch-level statistics are well-concentrated around
dataset-level statistics, i.e., µB ≈ µD and σB ≈ σD. How-
ever, the concentration of batch-level statistics is heavily
domain-specific. While Shen et al. (2020) find the varia-
tion of batch-level statistics in typical networks is small for
computer vision, the concentration of batch-level statistics
is still unknown for GNNs.

We study how the batch-level statistics µB , σB deviate from
the dataset-level statistics µD, σD. For comparison, we train
a 5-layer GIN with BatchNorm on the PROTEINS dataset
and train a ResNet18 (He et al., 2016) on the CIFAR10
dataset. We set batch size to 128. For each epoch, we record
the batch-level max/min mean and standard deviation for the
first and the last BatchNorm layer on a randomly selected
dimension across batches. In Figure 4, pink line denotes
the dataset-level statistics, and green/blue line denotes the
max/min value of the batch-level statistics. We observe that
for image tasks, the maximal deviation of the batch-level
statistics from the dataset-level statistics is negligible (Fig-
ure 4) after a few epochs. In contrast, for the graph tasks, the
variation of batch-level statistics stays large during training.
Intuitively, the graph structure can be quite diverse and the a
single batch cannot well represent the entire dataset. Hence,
the preconditioning property also may not hold for Batch-
Norm. In fact, the heavy batch noise may bring instabilities
to the training. More results may be found in Appendix D.2.

4. Graph Normalization
Although we provide evidence on the indispensability and
advantages of our adaptation of InstanceNorm, simply nor-
malizing the values in each feature dimension within a graph
does not consistently lead to improvement. We show that in
some situations, e.g., for regular graphs, the standard shift
(e.g., shifting by subtracting the mean) may cause informa-
tion loss on graph structures.

We consider r-regular graphs, i.e., each node has a degree
r. We first look into the case that there are no available
node features, then Xi is set to be the one-hot encoding
of the node degree (Xu et al., 2019). In a r-regular graph,
all nodes have the same encoding, and thus the columns
of H(0) are the same. We study the output of the standard
shift operation in the first layer, i.e., k = 1 in Eq. (6).
From the following proposition, we can see that when the
standard shift operation is applied to GIN for a r-regular
graph described above, the information of degree is lost:

Proposition 4.1. For a r-regular graph with one-hot en-
codings as its features described above, we have for GIN,
Norm

(
W (1)H(0)QGIN

)
= S

(
W (1)H(0)QGIN

)
N = 0,

i.e., the output of normalization layer is a zero matrix with-
out any information of the graph structure.

Such information loss not only happens when there are
no node features. For complete graphs, we can further
show that even each node has different features, the graph
structural information, i.e., adjacency matrix A, will always
be ignored after the standard shift operation in GIN:

Proposition 4.2. For a complete graph (r = n − 1), we
have for GIN, QGINN = ξ(k)N , i.e., graph structural in-
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Figure 5. Comparison of GraphNorm and InstanceNorm on
different types of graphs. Top: Sampled graphs with different
topological structures. Bottom: Training curves of GIN/GCN
using GraphNorm and InstanceNorm.

formation in Q will be removed after multiplying N .

The proof of these two propositions can be found in Ap-
pendix A. Similar results can be easily derived for other ar-
chitectures like GCN by substituting QGIN with QGCN. As
we can see from the above analysis, in graph data, the mean
statistics after the aggregation sometimes contain structural
information. Discarding the mean will degrade the expres-
siveness of the neural networks. Note that the problem
may not happen in image domain. The mean statistics of
image data contains global information such as brightness.
Removing such information in images will not change the
semantics of the objects and thus will not hurt the classifica-
tion performance.

This analysis inspires us to modify the current normaliza-
tion method with a learnable parameter to automatically
control how much the mean to preserve in the shift oper-
ation. Combined with the graph-wise normalization, we
name our new method Graph Normalization, i.e., Graph-
Norm. For each graph G, we generally denote value ĥi,j
as the inputs to GraphNorm, e.g., the j-th feature value of
node vi, i = 1, · · · , n, j = 1, · · · , d. GraphNorm takes the
following form:

GraphNorm
(
ĥi,j

)
= γj ·

ĥi,j − αj · µj
σ̂j

+ βj , (8)

where µj =
∑n

i=1 ĥi,j

n , σ̂2
j =

∑n
i=1(ĥi,j−αj ·µj)

2

n , and γj , βj
are the affine parameters as in other normalization methods.

By introducing the learnable parameter αj for each feature
dimension j, we are able to learn how much the information
we need to keep in the mean. It is easy to see that Graph-
Norm has stronger expressive power than InstanceNorm.
Formally, we have the following fact:

Fact 1 (GraphNorm is strictly more expressive than
InstanceNorm). If αj 6= 1, γj 6= 0, then there

does not exist γ′j , β
′
j such that for any

{
ĥi,j

}n
i=1

that the normalization is applied to, for any i,
GraphNorm{αj ,γj ,βj}

(
ĥi,j

)
= γj · ĥi,j−αj ·µj

σ̂j
+βj = γ′j ·

ĥi,j−µj

σj
+β′j = InstanceNorm{γ′

j ,β
′
j}
(
ĥi,j

)
, where µj =∑n

i=1 ĥi,j

n , σ̂2
j =

∑n
i=1(ĥi,j−αj ·µj)

2

n , σ2
j =

∑n
i=1(ĥi,j−µj)

2

n .

To validate our theory and the proposed GraphNorm in real-
world data, we conduct an ablation study on two typical
datasets, PROTEINS and IMDB-BINARY. As shown in
Figure 5, the graphs from PROTEINS and IMDB-BINARY
exhibit irregular-type and regular-type graphs, respectively.
We train GIN/GCN using our adaptation of InstanceNorm
and GraphNorm under the same setting in Section 5. The
training curves are presented in Figure 5. The curves show
that using a learnable α slightly improves the convergence
on PROTEINS, while significantly boost the training on
IMDB-BINARY. This observation verify that shifting the
feature values by subtracting the mean may lose informa-
tion, especially for regular graphs. And the introduction of
learnable shift in GraphNorm can effectively mitigate the
expressive degradation.

5. Experiments
In this section, we evaluate and compare both the training
and test performance of GraphNorm with other normaliza-
tion methods on graph classification benchmarks.

Settings. We use eight popularly used benchmark datasets
of different scales in the experiments (Yanardag & Vish-
wanathan, 2015; Xu et al., 2019), including four medium-
scale bioinformatics datasets (MUTAG, PTC, PROTEINS,
NCI1), three medium-scale social network datasets (IMDB-
BINARY, COLLAB, REDDIT-BINARY), and one large-
scale bioinformatics dataset ogbg-molhiv, which is recently
released on Open Graph Benchmark (OGB) (Hu et al.,
2020). Dataset statistics are summarized in Table 1. We use
two typical graph neural networks GIN (Xu et al., 2019) and
GCN (Kipf & Welling, 2017) for our evaluations. Specifi-
cally, we use a five-layer GCN/GIN. For GIN, the number
of sub-layers in MLP is set to 2. Normalization is applied
to each layer. To aggregate global features on top of the
network, we use SUM readout for MUTAG, PTC, PRO-
TEINS and NCI1 datasets, and use MEAN readout for other
datasets, as in Xu et al. (2019). Details of the experimental
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Table 1. Test performance of GIN/GCN with various normalization methods on graph classification tasks.

Datasets MUTAG PTC PROTEINS NCI1 IMDB-B RDT-B COLLAB
# graphs 188 344 1113 4110 1000 2000 5000
# classes 2 2 2 2 2 2 2
Avg # nodes 17.9 25.5 39.1 29.8 19.8 429.6 74.5

WL SUBTREE (SHERVASHIDZE ET AL., 2011) 90.4 ± 5.7 59.9 ± 4.3 75.0 ± 3.1 86.0 ± 1.8 73.8 ± 3.9 81.0 ± 3.1 78.9 ± 1.9
DCNN (ATWOOD & TOWSLEY, 2016) 67.0 56.6 61.3 62.6 49.1 - 52.1
DGCNN (ZHANG ET AL., 2018) 85.8 58.6 75.5 74.4 70.0 - 73.7
AWL (IVANOV & BURNAEV, 2018) 87.9 ± 9.8 - - - 74.5 ± 5.9 87.9 ± 2.5 73.9 ± 1.9

GIN+LAYERNORM 82.4 ± 6.4 62.8 ± 9.3 76.2 ± 3.0 78.3 ± 1,7 74.5 ± 4,4 82.8 ± 7.7 80.1 ± 0.8
GIN+BATCHNORM ((XU ET AL., 2019)) 89.4 ± 5.6 64.6 ± 7.0 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 92.4 ± 2.5 80.2 ± 1.9
GIN+INSTANCENORM 90.5 ± 7.8 64.7 ± 5.9 76.5 ± 3.9 81.2 ± 1.8 74.8 ± 5.0 93.2 ± 1.7 80.0 ± 2.1
GIN+GraphNorm 91.6 ± 6.5 64.9 ± 7.5 77.4 ± 4.9 81.4 ± 2.4 76.0 ± 3.7 93.5 ± 2.1 80.2 ± 1.0

Table 2. Test performance on OGB.

Datasets OGBG-MOLHIV
# graphs 41,127
# classes 2
Avg # nodes 25.5

GCN (Hu et al., 2020) 76.06 ± 0.97
GIN (Hu et al., 2020) 75.58 ± 1.40

GCN+LayerNorm 75.04 ± 0.48
GCN+BatchNorm 76.22 ± 0.95
GCN+InstanceNorm 78.18 ± 0.42
GCN+GraphNorm 78.30 ± 0.69

GIN+LayerNorm 74.79 ± 0.92
GIN+BatchNorm 76.61 ± 0.97
GIN+InstanceNorm 77.54 ± 1.27
GIN+GraphNorm 77.73 ± 1.29

settings are presented in Appendix C.

Results. We plot the training curves of GIN with Graph-
Norm and other normalization methods2 on different tasks
in Figure 2. The results on GCN show similar trends, and
are provided in Appendix D.3. As shown in Figure 2, Graph-
Norm enjoys the fastest convergence on all tasks. Compared
to BatchNorm used in Xu et al. (2019), GraphNorm con-
verges in roughly 5000/500 iterations on NCI1 and PTC
datasets, while the model using BatchNorm does not even
converge in 10000/1000 iterations. Remarkably, though In-
stanceNorm does not outperform other normalization meth-
ods on IMDB-BINARY, GraphNorm with learnable shift
significantly boosts the training upon InstanceNorm and
achieves the fastest convergence. We also validate the test

2The graph size normalization in the preliminary version of
Dwivedi et al. (2020) does not show significant improvement on
the training and test performance, so we do not report it.

performance and report the test accuracy in Table 1,2. The
results show that GraphNorm also improves the generaliza-
tion on most benchmarks.

For reference, we explain the possible reasons of higher test
accuracy in two folds. First, as shown in Figure 2, using
proper normalization helps the model find a minimum with
a higher training accuracy. Second, as suggested by Hardt
et al. (2016), faster training leads to smaller generalization
gap. Since the test accuracy equals the training accuracy
plus the generalization, these two views together suggest
better normalization leads to better test performance.

5.1. Ablation Study

In this subsection, we summarize the results of some ab-
lation studies, including BatchNorm with learnable shift,
BatchNorm with running statistics and the effect of batch
size. Due to the space limitation, the detailed results can be
found in Appendix D.

BatchNorm with learnable shift. We conduct experi-
ments on BatchNorm to investigate whether simply intro-
ducing a learnable shift can already improve the existing
normalization methods without concrete motivation of over-
coming expressiveness degradation. Specifically, we equip
BatchNorm with a similar learnable shift as GraphNorm and
evaluate its performance. We find that the learnable shift
cannot further improve upon BatchNorm (See Appendix
D), which suggests the introduction of learnable shift in
GraphNorm is critical.

BatchNorm with running statistics. We study the vari-
ant of BatchNorm which uses running statistics to replace
the batch-level mean and standard deviation (Similar idea
is also proposed in Yan et al. (2019)). At first glance, this
method may seem to be able to mitigate the problem of
large batch noise. However, the running statistics change
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a lot during training, and using running statistics disables
the model to back-propagate the gradients through mean
and standard deviation. Results in Appendix D show this
variant has even worse performance than BatchNorm.

The effect of batch size. We further compare the Graph-
Norm with BatchNorm with different batch sizes (8, 16, 32,
64). As shown in Appendix D, our GraphNorm consistently
outperforms the BatchNorm on all the settings.

6. Conclusion and Future Work
In this paper, we adapt and evaluate three well-used normal-
ization methods, i.e., BatchNorm, LayerNorm, and Instan-
ceNorm to GNNs. We give explanations for the successes
and failures of these adaptations. Based on our understand-
ing of the strengths and limitations of existing adaptations,
we propose Graph Normalization, that builds upon the adap-
tation of InstanceNorm with a learnable shift to overcome
the expressive degradation of the original InstanceNorm.
Experimental results show GNNs with GraphNorm not only
converge faster, but also achieve better generalization per-
formance on several benchmark datasets.

Though seeking theoretical understanding of normalization
methods in deep learning is challenging (Arora et al., 2018b)
due to limited understanding on the optimization of deep
learning models and characterization of real world data, we
take an initial step towards finding effective normalization
methods for GNNs with theoretical guidance in this paper.
The proposed theories and hypotheses are motivated by
several simple models. And we are not able to give concrete
theoretical results to problems such as: the convergence rate
of general GNNs with normalization, the spectrum of Q
normalized by learnable shift, etc. We believe the analyses
of more realistic but complicated settings, e.g., the dynamics
of GraphNorm on deep GNNs, are good future directions.
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